@article{ITA_2000__34_6_515_0, author = {Vr\v{t}o, Imrich}, title = {Cutwidth of the $r$-dimensional mesh of $d$-ary trees}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {515--519}, publisher = {EDP-Sciences}, volume = {34}, number = {6}, year = {2000}, mrnumber = {1844716}, zbl = {0976.05059}, language = {en}, url = {http://archive.numdam.org/item/ITA_2000__34_6_515_0/} }
TY - JOUR AU - Vrťo, Imrich TI - Cutwidth of the $r$-dimensional mesh of $d$-ary trees JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2000 SP - 515 EP - 519 VL - 34 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/item/ITA_2000__34_6_515_0/ LA - en ID - ITA_2000__34_6_515_0 ER -
%0 Journal Article %A Vrťo, Imrich %T Cutwidth of the $r$-dimensional mesh of $d$-ary trees %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2000 %P 515-519 %V 34 %N 6 %I EDP-Sciences %U http://archive.numdam.org/item/ITA_2000__34_6_515_0/ %G en %F ITA_2000__34_6_515_0
Vrťo, Imrich. Cutwidth of the $r$-dimensional mesh of $d$-ary trees. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 34 (2000) no. 6, pp. 515-519. http://archive.numdam.org/item/ITA_2000__34_6_515_0/
[1] Réseaux d'Interconnexion: Structures et Communications. PhD. Thesis. LABRI, Université Bordeaux I, France (1994).
,[2] Bandwidth and cutwidth of the mesh of d-ary trees, in Proc, 2nd Intl. Euro-Par Conference, edited by L. Bougé et al. Springer Verlag, Berlin, Lecture Notes in Comput. Sci. 1123 (1996) 243-246.
,[3] Parallel geometric algorithms for digital pictures on mesh of trees, in Proc. 27th Annual IEEE Symposium on Foundation of Computer Science. IEEE Computer Society Press, Los Alamitos (1986) 270-273.
and ,[4] Complexity Issues in VLSI. MIT Press, Cambridge (1983).
,[5] Introduction to Parallel Algorithms and Architectures: Arrays, Trees, and Hypercubes, Morgan Kaufmann Publishers, San Mateo (1992). | MR | Zbl
,[6] Upper and Lower Bounds for the Min Cut Linear Arrangenents Problem on Trees. SIAM J. Algebraic Discrete Methods 3 (1982) 99-113. | MR | Zbl
,[7] A Dense Gâte Matrix Layout Method for MOS VLSI. IEEE Trans. Electr. Dev. 27 (1980) 1671-1675.
and ,[8] Linear layout of generalized hypercubes, in Proc. 19th Intl. Workshop on Graph-Theoretic Concepts in Computer Science. Springer Verlag, Berlin, Lecture Notes in Comput. Sci. 790 (1994) 364-375. | MR
,[9] Cutwidth of the de Bruijn Graph. RAIRO Theoret. Informatics Appl. 26 (1996) 509-514. | Numdam | MR | Zbl
, and ,[10] A Polynomial Algorithm for the Min Cut Linear Arrangement of Trees. J. ACM 32 (1985) 950-988. | MR | Zbl
,