On possible growths of arithmetical complexity
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 3, pp. 443-458.

The arithmetical complexity of infinite words, defined by Avgustinovich, Fon-Der-Flaass and the author in 2000, is the number of words of length n which occur in the arithmetical subsequences of the infinite word. This is one of the modifications of the classical function of subword complexity, which is equal to the number of factors of the infinite word of length n. In this paper, we show that the orders of growth of the arithmetical complexity can behave as many sub-polynomial functions. More precisely, for each sequence u of subword complexity f u (n) and for each prime p3 we build a Toeplitz word on the same alphabet whose arithmetical complexity is a(n)=Θ(nf u (log p n)).

DOI : 10.1051/ita:2006021
Classification : 68R15, 68Q45
Mots clés : arithmetical complexity, infinite word, subword complexity, Toeplitz word, bispecial words
@article{ITA_2006__40_3_443_0,
     author = {Frid, Anna E.},
     title = {On possible growths of arithmetical complexity},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {443--458},
     publisher = {EDP-Sciences},
     volume = {40},
     number = {3},
     year = {2006},
     doi = {10.1051/ita:2006021},
     mrnumber = {2269203},
     zbl = {1110.68120},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ita:2006021/}
}
TY  - JOUR
AU  - Frid, Anna E.
TI  - On possible growths of arithmetical complexity
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2006
SP  - 443
EP  - 458
VL  - 40
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ita:2006021/
DO  - 10.1051/ita:2006021
LA  - en
ID  - ITA_2006__40_3_443_0
ER  - 
%0 Journal Article
%A Frid, Anna E.
%T On possible growths of arithmetical complexity
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2006
%P 443-458
%V 40
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ita:2006021/
%R 10.1051/ita:2006021
%G en
%F ITA_2006__40_3_443_0
Frid, Anna E. On possible growths of arithmetical complexity. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 3, pp. 443-458. doi : 10.1051/ita:2006021. http://archive.numdam.org/articles/10.1051/ita:2006021/

[1] J.-P. Allouche, M. Baake, J. Cassaigne and D. Damanik, Palindrome complexity. Theoret. Comput. Sci. 292 (2003) 9-31. | MR | Zbl

[2] J.-P. Allouche and M. Bousquet-Mélou, Canonical positions for the factors in paperfolding sequences. Theoret. Comput. Sci. 129 (1994) 263-278. | MR | Zbl

[3] J.-P. Allouche and J. Shallit, Automatic sequences: theory, applications, generalizations. Cambridge Univ. Press (2003). | MR | Zbl

[4] S.V. Avgustinovich, J. Cassaigne and A.E. Frid, Sequences of low arithmetical complexity. submitted. | Numdam | MR | Zbl

[5] S.V. Avgustinovich, D.G. Fon-Der-Flaass and A.E. Frid, Arithmetical complexity of infinite words, in Words, Languages & Combinatorics III, Words, Languages & Combinatorics III, Singapore (2003), 51-62 World Scientific Publishing. ICWLC 2000, Kyoto, Japan, March (2000) 14-18.

[6] J. Cassaigne, Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon Stevin 4 (1997) 67-88. | EuDML | MR | Zbl

[7] J. Cassaigne, Constructing infinite words of intermediate complexity, in Developments in Language Theory VI, edited by M. Ito and M. Toyama. Lect. Notes Comput. Sci. 2450 (2003) 173-184. | MR | Zbl

[8] J. Cassaigne and A. Frid, On arithmetical complexity of Sturmian words, accepted to WORDS'05. | Zbl

[9] J. Cassaigne and J. Karhumäki, Toeplitz words, generalized periodicity and periodically iterated morphisms. Eur. J. Combin. 18 (1997) 497-510. | Zbl

[10] D. Damanik, Local symmetries in the period doubling sequence. Discrete Appl. Math. 100 (2000) 115-121. | Zbl

[11] A. Iványi, On the d-complexity of words, Ann. Univ. Sci. Budapest. Sect. Comput. 8 (1987) 69-90. | Zbl

[12] S. Ferenczi, Complexity of sequences and dynamical systems. Discrete Math. 206 (1999) 145-154. | Zbl

[13] A. Frid, A lower bound for arithmetical complexity of Sturmian words. Siberian Electronic Math. Reports 2 (2005) 14-22. | EuDML | Zbl

[14] A. Frid, Arithmetical complexity of symmetric D0L words. Theoret. Comput. Sci. 306 (2003) 535-542. | Zbl

[15] A. Frid, Sequences of linear arithmetical complexity. Theoret. Comput. Sci. 339 (2005) 68-87. | Zbl

[16] T. Kamae and L. Zamboni, Sequence entropy and the maximal pattern complexity of infinite words. Ergodic Theory Dynam. Syst. 22 (2002) 1191-1199. | Zbl

[17] T. Kamae and L. Zamboni, Maximal pattern complexity for discrete systems. Ergodic Theory Dynam. Syst. 22 (2002), 1201-1214. | Zbl

[18] T. Kamae and H. Rao, Maximal pattern complexity over letters. Eur. J. Combin., to appear. | Zbl

[19] T. Kamae and Y.-M. Xue, Two dimensional word with 2k maximal pattern complexity. Osaka J. Math. 41 (2004) 257-265. | Zbl

[20] M. Koskas, Complexités de suites de Toeplitz. Discrete Math. 183 (1998) 161-183. | Zbl

[21] I. Nakashima, J. Tamura and S. Yasutomi, Modified complexity and *-Sturmian words. Proc. Japan Acad. Ser. A 75 (1999) 26-28. | Zbl

[22] I. Nakashima, J.-I. Tamura and S.-I. Yasutomi, *-Sturmian words and complexity. J. Théorie des Nombres de Bordeaux 15 (2003) 767-804. | EuDML | Numdam | Zbl

[23] J.-E. Pin, Van der Waerden's theorem, in Combinatorics on words, edited by M. Lothaire. Addison-Wesley (1983) 39-54.

[24] A. Restivo and S. Salemi, Binary patterns in infinite binary words, in Formal and Natural Computing, edited by W. Brauer et al. Lect. Notes Comput. Sci. 2300 (2002) 107-116. | Zbl

[25] B.L. Van Der Waerden, Beweis einer Baudet'schen Vermutung. Nieuw. Arch. Wisk. 15 (1927) 212-216. | JFM

Cité par Sources :