In the paper we study abelian versions of the critical factorization theorem. We investigate both similarities and differences between the abelian powers and the usual powers. The results we obtained show that the constraints for abelian powers implying periodicity should be quite strong, but still natural analogies exist.
Mots clés : combinatorics on words, periodicity, central factorization theorem, abelian properties of words
@article{ITA_2012__46_1_3_0, author = {Avgustinovich, Sergey and Karhum\"aki, Juhani and Puzynina, Svetlana}, title = {On abelian versions of critical factorization theorem}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {3--15}, publisher = {EDP-Sciences}, volume = {46}, number = {1}, year = {2012}, doi = {10.1051/ita/2011121}, mrnumber = {2904957}, zbl = {1247.68200}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2011121/} }
TY - JOUR AU - Avgustinovich, Sergey AU - Karhumäki, Juhani AU - Puzynina, Svetlana TI - On abelian versions of critical factorization theorem JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2012 SP - 3 EP - 15 VL - 46 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2011121/ DO - 10.1051/ita/2011121 LA - en ID - ITA_2012__46_1_3_0 ER -
%0 Journal Article %A Avgustinovich, Sergey %A Karhumäki, Juhani %A Puzynina, Svetlana %T On abelian versions of critical factorization theorem %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2012 %P 3-15 %V 46 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2011121/ %R 10.1051/ita/2011121 %G en %F ITA_2012__46_1_3_0
Avgustinovich, Sergey; Karhumäki, Juhani; Puzynina, Svetlana. On abelian versions of critical factorization theorem. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 1, pp. 3-15. doi : 10.1051/ita/2011121. http://archive.numdam.org/articles/10.1051/ita/2011121/
[1] Words avoiding abelian inclusions. J. Autom. Lang. Comb. 7 (2002) 3-9. | MR | Zbl
and ,[2] Une caractérisation des mots périodiques. C.R. Acad. Sci. Paris, Ser. A 286 (1978) 1175-1177. | Zbl
and ,[3] Toeplitz words, generalized periodicity and periodically iterated morphisms. Eur. J. Comb. 18 (1997) 497-510. | MR | Zbl
and ,[4] Avoiding Abelian powers in binary words with bounded Abelian complexity. Int. J. Found. Comput. Sci. 22 (2011) 905-920. | MR | Zbl
, , and ,[5] Périodes et répetitions des mots du monoide libre. Theoret. Comput. Sci. 9 (1979) 17-26. | MR | Zbl
,[6] Locally periodic versus globally periodic infinite words. J. Comb. Th. (A) 100 (2002) 250-264. | MR | Zbl
, and ,[7] On Relations between Local and Global Periodicity. Ph.D. thesis (2002).
,[8] Algebraic combinatorics on words. Cambridge University Press (2002). | MR | Zbl
,[9] Periodicity and the golden ratio. Theoret. Comput. Sci. 204 (1998) 153-167. | MR | Zbl
, and ,[10] Abelian complexity of minimal subshifts. J. London Math. Soc. 83 (2011) 79-95. | MR | Zbl
, and ,[11] Everywhere α-repetitive sequences and Sturmian words. Eur. J. Comb. 31 (2010) 177-192. | MR | Zbl
,[12] Beispiele zur theorie der fastperiodischen Funktionen. Math. Ann. 98 (1928) 281-295. | JFM | MR
,Cité par Sources :