JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

ANNE-MARIE CHARBONNEL PHAM THE LAI

Estimation du nième diamètre dans L^p de la boule unité d'une classe d'espaces de Sobolev à poids mixte

Journées Équations aux dérivées partielles (1978), p. 1-2

http://www.numdam.org/item?id=JEDP_1978____A7_0

© Journées Équations aux dérivées partielles, 1978, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ESTIMATION DU Nième DIAMETRE DANS L^D DE LA BOULE UNITE D'UNE CLASSE D'ESPACES DE SOBOLEV A POIDS MIXTE

par A. M. CHARBONNEL et PHAM THE LAI

On s'intéresse à une classe d'espaces de Sobolev à poids mixte, définis sur un ouvert borné Ω de $\mathbf{R}^{\mathbf{m}}$ et associés à une classe d'opérateurs à dégénérescence mixte, étudiés par P. Bolley, J. Camus et Pham The Lai [2].

Soit Ω une variété à bord, de bord Γ , et φ une fonction C^{∞} de ${\bf R}^m$ dans ${\bf R}$, telle que $\Omega=\{x;\varphi(x)>0\}$

$$\Gamma = \{x; \varphi(x) = 0\} \text{ avec } \operatorname{grad} \varphi_x \neq 0 \quad \forall x \in \Gamma.$$

Soit $(X_i)_{0 \le i \le q}$, (q+1) champs de vecteurs de classe C^∞ sur $I\!\!R^m$, tels que :

 $\mathbf{X}_{\mathbf{A}}(\mathbf{x})$ est transversal à Γ en tout point

 $X_i(x)$, pour $1 \le i \le q$, est tangent à Γ en tout point.

Le rang du système $(X_i(x))_{0 \le i \le q}$ est m en tout point x de $\overline{\Omega}$.

On définit l'espace :

$$\mathbf{w}_{\mathbf{x},\delta}^{\mathbf{k},\mathbf{p}}(\Omega) = \{\mathbf{u} \in \mathcal{B}'(\Omega); \varphi^{(-\chi+\delta|\beta'|+\beta_0)} \mathbf{t} \ \mathbf{x}^{\beta} \mathbf{u} \in \mathbf{L}^{\mathbf{p}}(\Omega) \quad \forall \beta: \ |\beta| \leq \mathbf{k} \}$$

où $k \in \mathbb{N}$, $k \ge 1$, $\delta > 0$, $\chi > 0$, 1 ,

$$\beta = (\beta_0, \beta_1, \dots, \beta_q) = (\beta_0, \beta^q) \in \mathbb{N} \times \mathbb{N}^q$$
,

Yu est la dérivée de u suivant le champ de vecteurs Y.

$$x^{\beta} = x_0^{\beta_0} \cdot x_1^{\beta_1} \cdot \dots x_q^{\beta_q} .$$

Muni de sa norme naturelle, $W_{\chi,\delta}^{k,p}(\Omega)$ est un espace de Banach, vérifiant l'injection :

$$W_{\chi,\delta}^{k,p}(\Omega) \subseteq L^p(\Omega)$$
.

On cherche à déterminer une estimation asymptotique de d_n , nième diamètre de la boule unité de $W_{\chi}^k, p(\Omega)$ dans $L^p(\Omega)$.

Le cas p=2 a été étudié par P. Bolley, J. Camus et Pham The Lai [2] et celui correspondant à $\delta=1$ par A. Mohamed et Pham The Lai [6], El Kolli ayant obtenu auparavant une estimation du nième diamètre dans $L^p(\Omega)$ de la boule unité de $W^{k,p}_{\chi,1}(\Omega)$, adhérence de $\mathcal{D}(\Omega)$ dans $W^{k,p}_{\chi,1}(\Omega)$. Le résultat est le suivant, que l'on pourra rapprocher des résultats exposés par Sjöstrand :

Théorème : On suppose $\chi \leq \min(k, \delta k)$ et $\chi \neq \frac{1}{p}$. On a alors les estimations :

1)
$$m = 1$$
 $d_n \approx n^{-k}$

2)
$$m \neq 1$$
 $m_0 = \frac{\delta k}{-\chi + \delta k}$

(i)
$$m < m_0 d_n \approx n^{-k/m}$$

(ii)
$$m = m_0 \quad d_n \approx \left(\frac{\text{Log } n}{n}\right)^{k/m_0}$$

(iii)
$$m > m_0$$
 $d_n \approx n^{-\chi/\delta(m-1)}$

où la notation $u_n \approx v_n$ pour deux suites de nombres réels $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ signifie :

 $\exists A > 0 \text{ et } B > 0$, $N \text{ tels que } : Au_n \le v_n \le Bu_n \quad \forall n \ge N$.

Références

- [1] P. Bolley et J. Camus : Quelques résultats sur les espaces de Sobolev avec poids. Séminaire d'analyse fonctionnelle Rennes (1968-69).
- [2] P. Bolley, J. Camus et Pham The Lai : Une classe d'espaces de Sobolev à poids. (A paraître).
- [3] A. El Kolli : Nième épaisseur dans les espaces de Sobolev avec poids. Séminaire Goulaouic-Schwartz, exposé n⁰ 27 (1971-72).
- [4] J. L. Lions et J. Peetre : Sur une classe d'espaces d'interpolation (Publications de l'I.H.E.S. 19 (1964) 5-68).
- [5] P. Grisvard: Espaces intermédiaires entre espaces de Sobolev avec poids. Ann. Scuola Norm. Sup. Pisa 17 n^o 7 (1963).
- [6] A. Mohamed et Pham The Lai : Remarques sur les nièmes diamètres d'une classe d'espaces de Sobolev avec poids. Seminaire de Rennes (1977).