Journées ÉQuATIONS AUX DÉRIVÉES PARTIELLES

Charles Fefferman
D. H. Phong
Pseudo-differential operators with symbols admitting negative values

Journées Équations aux dérivées partielles (1981), p. 1-6
<http://www.numdam.org/item?id=JEDP_1981 \qquad A10_0>

by C. FEFFERMAN and D. H. PHONG

Let $a(x, \xi) \in S^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ be a real symbol of order 2 and A be the associated pseudo-differential operator. In this artisle we shall consider the problem of finding conditions on $a(x, \xi)$ which would imply that A is positive, i.e., satisfies an inequality of the form

$$
\begin{equation*}
\operatorname{Re}<\mathrm{Au}, \mathrm{u}>\geqslant 0 \tag{1}
\end{equation*}
$$

for all $u \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right)$.
Such estimates are interesting for many reasons, of which we shall mention two :
(a) If $A_{t}(x, D)$ is a pseudo-differential operator in x depending on a parameter t and $u(x, t)$ is a solution of the evolution equation

$$
\frac{d u}{d t}+A_{t}(x, D) u=0
$$

positivity of $A_{t}(x, D)$ would allow us to control the size of u, since

$$
\begin{aligned}
d\|u(t)\|^{2} / d t & =2 \operatorname{Re}<d u / d t, u> \\
& =-2 \operatorname{Re}<A_{t}(x, D) u, u>\leqslant 0
\end{aligned}
$$

(b) If L_{1}, \ldots, L_{N} are pseudo-differential operators of order 1, then the subelliptic estimate

$$
\begin{equation*}
\sum_{j=1}^{N}\left\|L_{j} u\right\|^{2} \geqslant c\|u\|_{(\varepsilon)}^{2} \quad \varepsilon>0 \tag{2}
\end{equation*}
$$

is equivalent to the positivity of the operator

$$
\begin{equation*}
A=\sum_{j=1}^{N} L_{j}^{*} L_{j}-c(I-\Delta)^{\varepsilon} . \tag{3}
\end{equation*}
$$

In fact (b) is just one application of the general and simple observation that any estimate can be reduced to a positivity result, and hence we see immediately the value of good criteria for positivity.

The symbol $a(x, \xi)$ when A is the operator in (3) will usually take negative values $(a(x, \xi)$ can be considered to be real if we neglect in its expansion the purely imaginary symbols of order 1 and the symbols of order O). In some cases, for example when the symbols of L_{j} are all real, one can avoid the study of negative symbols by microlocalizing (2) to a cube of size $1 \times \mathrm{M}$ in phase space and view (3) as equivalent to saying that the first eigenvalue of the operator $L_{o}=\sum_{j=1}^{N} L_{j}^{*} L_{j}$ (which has a positive symbol) is always greater than $c M^{2 \varepsilon}$. The results of [3] [5] (see also (b) below) will then apply. However, if $\mathrm{N}=1$ and Symbol $\left(L_{1}\right)=p+i q$ the symbol of L_{o} is $p^{2}+q^{2}+\{p, q\}$ and already will not always remain positive. Thus in general we shall have to deal directly with negative symbols. With these applications in view, it:is evident that it suffices in fact to establish inequalities of the form

$$
\begin{equation*}
\operatorname{Re}\langle A u, u\rangle \geqslant-C_{\delta}\|u\|_{(\delta)}^{2} \tag{4}
\end{equation*}
$$

for some $\quad \delta, 0 \leqslant \delta \ll 1$. In [7], Hörmander established (4) with $\delta=0$ for a $\in S^{6 / 5}$ satisfying the condition $a+\frac{1}{2} \operatorname{Trace}{ }^{+} a^{\prime \prime} \geqslant 0$. Trace ${ }^{+} a^{\prime \prime}$ is a positive quantity associated to the Hessian of a which was introduced earlier by Melin [8] and which reduces to $2 \sum_{j=1}^{n} \lambda_{j} \mu_{j}$ if $a(x, \xi)=\sum_{j=1}^{n} \lambda_{j}^{2} \xi_{j}^{2}+\mu_{j}^{2} x_{j}^{2}$. Here we shall look instead for conditions not on the Taylor coefficients of $a(x, \xi)$ but rather on the symplectic geometry of the set $S_{K}=\left\{(x, \xi) \in T^{*}\left(\mathbb{R}^{n}\right) ; a(x, \xi)<K\right\}$. The uncertainty principle and the theorem of Egorov indicate that to each canonically twisted cube (i.e., the image $\phi\left(Q_{0}\right)$ of the unit cube $Q_{0}=\{|x| \leqslant 1,|\xi| \leqslant 1\}$ by a canonical transformation ϕ) contained in S_{K}, corresponds roughly an eigenstate of A with eigenvalue < K. In the case of positive symbols, this heuristic principle is largely justified and we now know that under this condition
(a) $\operatorname{Re}\langle\mathrm{Au}, \mathrm{u}\rangle \geqslant-\mathrm{C}\|\mathrm{u}\|^{2}$
(b) $\quad \operatorname{Re}\langle A u, u\rangle \geqslant c \lambda\|u\|^{2} \quad$ if $\quad \lambda=\min (\max a(x, \xi))$

$$
\phi(x, \xi) \in \phi\left(Q^{0}\right)
$$

is large ;
(c) The number of eigenvalues $<\mathrm{K}$ can be estimated in terms of the number of canonically twisted cubes disjointly imbedded in S_{CK}.

For precise statements we refer to the original articles [2] [3] [4] and to the more detailed exposition in [5].

When $a(x, \xi)$ takes negative values, the above considerations lead naturally to the following conjecture :
Conjecture : Given $\delta>0$ there exists a constant c_{δ} such that
$\operatorname{Re}\langle A u, u\rangle \geqslant-C\|u\|_{(\delta)}^{2}$
if $a(x, \xi)$ satisfies with $\varepsilon=c_{\delta}$

Condition ${ }^{(+)} \varepsilon_{\varepsilon}:$ The set $S_{o}=\left\{(x, \xi) \in T^{*}\left(\mathbb{R}^{n}\right) ; a(x, \xi)<0\right\}$ does not contain the image of the cube $Q_{\varepsilon}=\left\{(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n} ;|x|,|\xi|<\varepsilon\right\}$ by any canonical transformation.

Remarks : It is of course advantageous to have ε as large as possible. By modifying the size of ε it is not difficult to see that Condition ${ }^{(+)} \varepsilon$ is basically equivalent to the condition formulated in the last section of [3]. The strength of the conjecture can be assessed from the fact that essentially Assertion (b) above would follow easily by letting $a(x, \xi)=b(x, \xi)-$ small constant) (min (max $b(x, \xi)$) if $\psi(x, \xi) \in \phi(Q)$ $b(x, \xi)$ is a positive symbol. Finally it should be noted that in fact not all canonical transformations need be considered in Condition (+) ε^{\prime}, but only those with certain bounds Theorem : The conjecture is true when $n=2$.

The proof of the theorem is too lengthy to be described here in any detail. We shall just sketch some important steps in a very simple case. First observe that the result can be microlocalized to a cube of size $1 \times M$ and that $a(x, \xi)$ may be assumed to be a polynomial of fixed degree since errors of the form $C_{\delta}\|u\|_{(\delta)}^{2}$ are negligible; next apply the cutting and stopping procedures of [3] (this can be done in view of the $s_{\phi, \varphi}^{M, m}$ calculus of pseudo-differential operators of Beals and Fefferman [1]). Since S_{o} does not admit any canonically twisted cube it follows that the cubes $\left\{Q_{\nu}\right\}$ thus obtained still fall into three categories :
(1) Either $a(x, \xi) \geqslant c\left(\operatorname{diam}_{x} Q_{\nu}\right)^{2}\left(\operatorname{diam}_{\xi^{Q}}\right)^{2}$ for $(x, \xi) \in Q_{\nu}$

and (1) is not satisfied ;
(3) or $\left(\operatorname{diam}_{x} O_{V}\right)^{2}\left(\operatorname{diam}_{\xi^{Q}}\right)^{2} \sim 1$.

The cases (1) and (3) are easy to handle. The implicit function theorem and conjugation with Fourier integral operators reduce the second case to the case when

$$
a(x, \xi)=\xi_{1}^{2}+v\left(x, \xi^{\prime}\right) \quad \xi^{\prime}=\left(\xi_{2}, \ldots, \xi_{n}\right)
$$

Here $V\left(x, \xi^{\prime}\right)$ is in general a pseudo-differential operator of order 2 where the first variable x_{1} acts only as a parameter. The simple situation we shall study arises when $\mathrm{n}=2$ and $\mathrm{V}\left(\mathrm{x}, \xi^{\prime}\right)$ is a differential operator without first order terms. Changing the notation from $(x, \xi) \in \mathbb{R}^{2} \times \mathbb{R}^{2}$ to $(t, x ; \tau, \xi) \in \mathbb{R}^{2} \times \mathbb{R}^{2}$ we may then write $a(x, \xi)$ as

$$
a(x, \xi)=\tau^{2}+p(t, x) \xi^{2}+v(t, x)
$$

Then $p(x, t)$ and $V(x, t)$ are polynomials of a fixed degree d and $p(t, x) \geqslant 0$ in view of Condition (+). It will suffice to show that the quadratic form

$$
Q_{R}(u)=\iint_{I_{t} \times I_{x}}\left|\frac{\partial u}{\partial t}\right|^{2} d x d t+\iint_{I_{t} \times I_{x}} p(x, t)\left|\frac{\partial u}{\partial x}\right|^{2} d x d t+\iint_{I_{t} \times I_{x}} v(x, t) d x d t
$$

is positive μ to admissible errors) for all rectangles $R=I_{t} \times I_{x} \subset \mathbb{R}^{2}$ of a fixed size, say 1×1.

We introduce the following terminology
(1) A rectangle $I_{t} \times I_{x}$ will be said to be "natural" if

$$
\left.\left|I_{t}\right|^{-2} \sim\left\|\underline{L}^{\infty}\right\|_{\left(I_{t} \times I_{x}\right)}{ }^{\mid I_{x}}\right|^{-2}
$$

(2) A "stopping" rectangle $I_{t} \times I_{x}$ is a natural rectangle which satisfies in addition the condition

$$
\begin{equation*}
\|v\|_{L^{\infty}\left(I_{t} \times I_{x}\right)} \sim\left|I_{t}\right|^{-2} \tag{5}
\end{equation*}
$$

Consider now a fixed rectangle R of sizes 1×1. Unless $a(x, t) \equiv 0, R$ can be decomposed into a disjoint union of natural rectangles $I_{t} \times I_{x}$ with $\left|I_{t}\right|=1$ since $a(x, t)$ can vanish identically in t only for a finite number of values of x. Next observe that for a small natural rectangle $I_{t} \times I_{x}$
(1) the maximum of $p(t, x)$ on each of the two rectangles obtained by cutting I_{t} in two decreases at most by a multiplicative constant depending on d;
(2) $p\left(t_{o}, x\right)$ remains of the same size for all $x \in I_{x}$ if

for $\left|I_{t}\right|$ small since $I_{t} \times I_{x}$ is natural.
To obtain stopping rectangles it thus suffices to keep cutting I_{t} in two
and I_{x} in a bounded number of equal intervals, and among the new rectangles retain those for which $\|v\|_{L^{\infty} \text { (Rectangle) }} \leqslant\left|I_{t}\right|^{-2}$.

Finally we note that for any fixed $\omega>0$ Condition ${ }^{(+)} \varepsilon$ with ε small enough will imply that

$$
\begin{equation*}
\min _{t} \times I_{x} v(t, x) \geqslant-\omega\left|I_{t}\right|^{-2} \tag{6}
\end{equation*}
$$

if $I_{t} \times I_{x}$ is a stopping rectangle.
Now given a stopping rectangle $I_{t} \times I_{x}$ let $I_{t}^{O} \times I_{x} \subset I_{t} \times I_{x}$ be a
rectangle with $\left|I_{t}^{\circ}\right| /\left|I_{t}\right| \sim 1$ and $p(t, x) \sim\left\|\left\|_{L}^{\infty}\right\|_{t} \times I_{x}\right)$ for all $(t, x) \in I_{t}^{0} \times I_{x}$; then the presence of $\left\|D_{t} u\right\|^{2} L^{2}\left(I_{t}^{\circ} \times I_{x}\right)$ and $\| p i l L^{\infty}\left(I_{t} \times I_{x}\right){ }^{\left\|D_{x} u\right\|^{2}} L^{2}\left(I_{t}^{\circ} \times I_{x}\right)$ in the quadratic form $Q_{I_{t}}^{\circ} \times I_{x}$ (u) implies that $Q_{I_{t}}^{\circ} \times I_{x}$ (u) is bounded below by

$$
c_{d}^{\prime}\left(\iint_{I_{x} I_{t}^{o}}{ }^{\left.\min \left\{c_{d}\left|I_{t}\right|^{-2}, v(x, t)\right\} d x d t\right)\|u\|^{2}} L^{2}\left(I_{t}^{o} \times I_{x}\right)\right.
$$

and thus by

$$
c_{d}^{\left.\prime \prime\left|I_{t}\right|^{-2}\|u\|^{2}{ }^{2}\left(I_{t}^{o} \times I_{x}\right), ~\right)}
$$

in view of (5) and (6). But the positivity of $Q_{I_{t}} \times I_{x}(u)$ follows easily, since $V(x, t)$ is not that negative and the L^{2} norm of u on ($\left.I_{t} \backslash I_{t}^{0}\right) \times I_{x}$ can be controlled by $\|u\|^{2} L^{2}\left(I_{t}^{0} \times I_{x}\right)$ and $\left\|D_{t} u\right\|^{2} L^{2}\left(I_{t} \times I_{x}\right)$.

This completes the sketch of the proof of the simple case $\tau^{2}+p(t, x) \xi^{2}+v(t, x)$. More precise statements and complete proofs for the conjecture when $n=2$ will appear elsewhere.

REFERENCES

[1] Beals, R. and C. Fefferman, Spatially inhomogeneous pseudo-differential operators, Comm. Pure Appl. Math. 1974, Vol. 27, pp. 1-24.
[2] Fefferman, C. and D. H. Phong , On positivity of pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A. Vol 75, 1978, pp. 4673-4674.
[3] Fefferman, C. and D. H. Phong, The uncertainty principle and sharp Gárding inequalities, Comm. Pure Appl. Math. Vol. 34, 1981, pp. 285-331.
[4] Fefferman, C. and D. H. Phong, on the asymptotic eigenvalue distribution of a pseudo-differential operator, Proc. Nat. Acad. Sci. U.S.A. 1980, Vol. 77.
[5] Fefferman, C. and D. H. Phong, Pseudo-differential operators with positive symbols, Séminaire Goulaouic-Meyer-Schwartz, Ecole Polytechnique, 1981.
[6] Fefferman, C. and D. H. Phong, To appear in Proceedings of Conference in Harmonic analysis, Chicago, 1981.
[7] Hörmander, L., The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. Vol. 32, 1979, pp. 359-443.
[8] Melin, A., Lower bounds for pseudo-differential operators, Arkiv för Mat. Vol. 9, 1971, pp. 117-140.

