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Conférence n® 7

LOWER BOUNDS FOR SCHRODINGER EQUATIONS

by C. FEFFERMAN and D. H. PHONG

The main purpose of this article is to establish the following theorem
on the lowest eigenvalue of Schrddinger equations with no regularity assumptions on

the potentials :

Theorem : Let V(x) be a negative function on Kfl, and set
E = sup [c—i—[ |V(x)ldx) - C(diam Q)_2]
small IQIJ : :
Q Q
E, . = sup [(——1—- IV(x)Ip«':lx)l/P - c(diam Q)—z] p>1
big 0 fo} 0

where Q ranges over cubes in R with sides parallel to the axes, |Ql| and diam Q are
respectively the measure and the diameter of Q, and C,c denote throughout constants

depending only on the dimension of R .

Then the lowest bound -E of the operator - A+ V(x) satisfies the

inequalities

< <
L CEsmall big

Remarks (a) It may happen that E = 0, in which case - A + V(x) has been proved

big
to be positive. When n = 3 we may thus apply the theorem with p < n/2 and obtain

2n/ (n-2)

as a corollary the Sobolev inequality, i.e., Vf € L2 implies £ € L In

. 2
2R2 the sharp form of 'the Sobolev inequality states that Vf € L implies
2 1
ex|fl € Lloc for small positive A . This is sharper than our result.

(b) In the definition of E , one cannot replace p > 1 simply by 1. In

ig
fact in Igz this would imply V£ € L8 =2 f € Lm, which is false. To get counterexamples

2
in r" (n > 2) just consider potentials of the form V(x',x") = V(x') with x' € R,

x" € Rn—2

(c) It is a natural guess that the sharp lower bound should involve L Log+ L
norms of |V| rather than L® norms. This would agree with the Sobolev inequality on
:R2 . If this were the case, however, a study of the function f# (see below) alone

would not suffice, since f# € L would merely imply f € exp(L).



(d) similar information can be obtained for higher eigenvalues,this

development will be reported on in detail elsewhere.

The proof of the theorem is based on three lemmas, the first providing
the key estimate in this work, while the other two are variants of results frdm
harmonic analysis established in the last decade (see e. g. [1] [2] and the refe-

rences therein). We begin by recalling some definitions

(1) A positive measure y is said to satisfy condition (A ) if for any € > O

there exists a § > O such that

Ec Q and |E|<§|Q] implies H(E) < eu(Q).

Q
%
f (x) = sup —l— J [£(y) ldy
x €0Q lol
f#(x) = sup —é——J l£(y) - ledy
x €Q

o
Fix a cube Q .

‘ps 0
Lemma 1 : Let iy be a positive measure on Q° such that

u(Q) < clgl (diam Q)-2 for all cubes Q ¢ Qo. (2)
Then
I 12 <o | 1veifax (3)
o ] o
Q Q
Lemma 2 : If py satisfies (Am) then
J e - £ _Pavw < o [ e %ae (4)
o ] o
Q Q Q
Iemma 3 : Let dy = |V(x)|dx , and assume that (p > 1)

(TngIJr 1v(0) 1Pax) /P < c(atam )72 for all cubes g < o° .
Q



- + + *
Then the megsure du defined by dy = [dV(x)lP) ]1/pdx will satisfy both (Am) and
the condition (2).

The constants in the conclusions can evidently be taken to be small if

- the constants in the hypotheses are small.

Proof of the theorem : Applying--A + V(x) to the dilates and translates of a fixed

[o o]
Co function, we get the estimate involving Es

at once. To establish the estimate

mall -1/2
’

involving Ebig' cut R® into a grid of cubes QO of equal size diam Qo = (CEbig)
and define di,d ¥ as in Lemma 3. Observe then that if the constants c appearing in

the definition of E and QO are small, we have

big

2 2
I £ 1fau < 1£ 17 u@®)

Q Q Q
< (—13 } olflde)[ClQol (diam QO)'Z]
o] ‘0
E, .
< -2ig [ g2 | (5)
2 JQO

while

2du+(x)

2
IQO|f(x) - £ 1Tdux) < [ JHERX) - £ ]

Q JQ Q

<c J L1 w1 Pan’ (o
Q

2
< l-j |VE(x) ]| ax (6)
2 o
Q
in view of Lemmas 1,2, and 3. The inequalities (5) and (6) in turn yield

J £ a0 < J
0

IVE(x) | %dx + B, . J £ (x) | 2ax
° big Qo

and the desired bound follows by summing over all cubes Qo.

Proof of Lemma 1 : Let o = 1 r |f(x) - £ |dx . For any 0. >0_, K>> 1 we
o o, .o o o
. o7l “Q Q
may apply the Calderdén-Zygmund stopping process to obtain a decomposition of the
# #

sets {x € Q°, £ (x) > a} and {x € QO ; £ (x) > Ko} into cubes with the following

properties.



(& >ar=ug > 1= v g
k k,Vv
(1) ka c Qk
1
(ii) — |f(x) - £ |dx ~ o
o) 0
k Qk k
1
(iii) —————'J |f(x) - £ ldx ~ Ko
IQkV' ka
% v
Next observe that
* -1
(VE) = ofdiam Qk) throughout Q (7)
=
1o, | 2| 3 Q! (8)

In fact (7) follows from

| . 1
e |f(x) - £ |ld&x < (diam Q, ) —— J | V£ (x) ldx
o, | JQk Q) k" Tg | o,

while (8) is a consequence of

oalg | ~ J l[f(x) - £ |dx = T I If(x) - £_ lax
k
Q %% Vo %

> 1 )X 1£(x) - £ | ax ~:-% Ko Z lg |

j o
v Qe kv
and the fact that K is large. We may thus write

[ e * o 1%ax > a?(diam 002 1o\ U o |
.| k k v kV
Qk\g v

1 2 ~2
> = i
> o (diam Qk) IQkI

> o’ u(Qk)/(2c).



which implies in turn

*
L ve) ) 12ax > o2u(e > o )/c .
# )
{o < £ < xa}

m .
Let now O range over 2K uo, m=0,1,2,..., and sum over m to obtain

*
J Lvn oo 2ax > (16 60 12an ) /e (9)
Q° J

{f > 2ao}

On the other hand note that

[
J{f;‘.:ﬁ 40(.0 u(Q )

< 4[ (diam QO)2 —lg- J o IVf(tzdx] [clo®l (diam QO)_Z]
Q™|

< c{Q | VE (x) | 2ax (10)
(o)

Combining (9), (10) and applying the maximal theorem establihes (3).

Proof of Lemma 2 : We may assume that f o = O, so it suffices to show that
Q
* 2. #
{Olf(xH du(x) < Cjcﬂf(xﬂzﬂux) (11)
Q Q
Let a_ = ——16- { [f(x)|dx , and let K be a large positive number. A Calderon-
Q71 ‘9

Zygmund decomposition yields for each o > ao :

{> 0} =UQ {f*>KOL}= U Q.

u
K * K,V

(1)

c
J [£(x)ldx ~ a

IO"—‘ 0

(i1)

(iii) IQ J | £(x)|ldx ~ Ko



1 ,
—_ |f(x) - £ ldx > 8o ; on the

remaining cubes, for any € > 0 a choice of § sﬁall enough will guarantee that

#
Obviously £ > 8a on cubes Qe satisfying

HOU Q) < € n(Q) (12)
Vv
Indeed we have in that case
§ > - f = I -
a|Qk| J | £ (x) Qk|dx z jQ | £(x) kal dx
Qk kv

>

N =

1
ZI lf(x) - £. | dx ~ =Ka Z1lQ |
Voo %v 2 v KV

and (12) follows from (A ). Thus
* * #
H(f > Ka) < € u(f > a) + u(f > éa) for o0 >0 .

. . . , #
For o < ao this estimate is trivial, since £ >ao) throughout Qo. To get (11),

integrate with respect to odo. and choose € = K_2/2. Q.E.D.
Proof of Lemma 3 : We need only prove a reverse HOlder inequality for some r > 1
+ .
L[ wrenTan T < ¢ A J viiax  all o g ¢° (13)
lol ] 1ol
Q Q
since then
+ 1/x! + 1 El,1/x!'
WE) = J[ XV wax < 1e1t* (J[ v Tao < gEp T ue

Q Q

for E € Q. Now introduce

K(Q) = sup [Té'_l Jf |V (x) IPdX]l/p
Q' Q Q'

VQ(x) = sup [Ilyl[ |V(y)|pdy]1/p
x € Ql gQ Q Ql

and observe that

V' (x) = max(K(Q), v, ()



K(Q) < min{C(diam Q) 2, Iélj v’ (x)dx}
0

+
Thus (13) and condition (2) for du are simple consequences of the following inequali-
ty

1

—J v _(x))Tax < c k(@F (14)
ol 0 Q

In view of the maximal theorem we may write

I{x € Q; VQ(X) > all

C 1 I P
< = — IV _(x)|Tdx
ol o ol o Q

C p
< = [K(Q)]
ap

Integrating with respect to o for o > K(Q), 1 <r < p yields

1

T v _(x)ax < clk@ 1"

JVQ(x) > k(@ 2

The inequality (14) now follows since ———

1ol J’VQ(X) < K(Q)

(v (x)rdx is also bounded

by K(Q)r. The proof of Lemma 3 and hence of the theorem is complete.
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