Global analytic and Gevrey surjectivity of the Mizohata operator D 2 +ix 2 2k D 1
Journées équations aux dérivées partielles (1989), article no. 15, 4 p.
@incollection{JEDP_1989____A15_0,
     author = {Cattabriga, L. and Zanghirati, L.},
     title = {Global analytic and {Gevrey} surjectivity of the {Mizohata} operator $D_2+ix_2^{2k}D_1$},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {15},
     pages = {1--4},
     publisher = {Ecole polytechnique},
     year = {1989},
     zbl = {0697.35028},
     language = {en},
     url = {http://archive.numdam.org/item/JEDP_1989____A15_0/}
}
TY  - JOUR
AU  - Cattabriga, L.
AU  - Zanghirati, L.
TI  - Global analytic and Gevrey surjectivity of the Mizohata operator $D_2+ix_2^{2k}D_1$
JO  - Journées équations aux dérivées partielles
PY  - 1989
SP  - 1
EP  - 4
PB  - Ecole polytechnique
UR  - http://archive.numdam.org/item/JEDP_1989____A15_0/
LA  - en
ID  - JEDP_1989____A15_0
ER  - 
%0 Journal Article
%A Cattabriga, L.
%A Zanghirati, L.
%T Global analytic and Gevrey surjectivity of the Mizohata operator $D_2+ix_2^{2k}D_1$
%J Journées équations aux dérivées partielles
%D 1989
%P 1-4
%I Ecole polytechnique
%U http://archive.numdam.org/item/JEDP_1989____A15_0/
%G en
%F JEDP_1989____A15_0
Cattabriga, L.; Zanghirati, L. Global analytic and Gevrey surjectivity of the Mizohata operator $D_2+ix_2^{2k}D_1$. Journées équations aux dérivées partielles (1989), article  no. 15, 4 p. http://archive.numdam.org/item/JEDP_1989____A15_0/

[1] R.W. Braun - R. Meise - D. Vogt. “Applications of the projiective limit functor to convolution and partial differential equations”, Proceeding of the NATO ASW on “Fréchet spaces”, Istanbul August 1988, D. Reidel Publishing Comp., (to appear). | Zbl

[2] L. Cattabriga. “Solutions in Gevrey spaces of partial differential equations with constant coefficients”, Astérisque 89-90 (1981), 129-151. | Numdam | MR | Zbl

[3] L. Cattabriga. “On the surjectivity of differential polynomials on Gevrey spaces”, Rend. Sem. Mat. Univ. Politec. Torino, Fasc. speciale, Convegno “Linear partial and pseudo-differential operators”, Torino, 30 Sett.-2 Ott. 1982, 41 (1983), 81-89. | MR | Zbl

[4] E.De Giorgi. “Solutions analytiques des équations aux dérivées partielles à coefficients constants”, Séminaire Goulaouic-Schwartz 1971-1972, Equations aux dérivées partielles et analyse fonctionnelle, Exp. N. 29, Ecole Polytech. Centre de Math. Paris 1972. | Numdam | Zbl

[5] E. De Giorgi - L. Cattabriga. “Una dimostrazone diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti”, Boll. Un. Mat. Ital. (4) 4 (1971), 1015-1027. | MR | Zbl

[6] L. Ehrenpreis. “Lewy's operator and its ramifications”, J. Funct. Analysis 68 (1986), 329-365. | MR | Zbl

[7] J. Friberg. “Estimates for partially hypoelliptic differential operators”, Medd. Lund Univ. Mat. Sem. 17 (1963), 1-93. | MR | Zbl

[8] L. Hörmander. “On the existence of real analytic solutions of partial equations with constant coefficients”, Inventiones Math. 21 (1973), 151-182. | MR | Zbl

[9] L. Hörmander. “The analysis of linear partial differential operators”, Springer-Verlag, (1983), vol. IV. | Zbl

[10] T. Kawai, “On the global existence of real analytic solutions of linear differential equations” I and II, J. Math. Soc. Japan 24 (1972), 481-517; 25 (1973), 644-647. | Zbl

[11] T. Kawai, “On the global existence of real analytic solutions and hyperfunction solutions of linear differential equations”, Publ. RIMS Kyoto University 555 (1986). | MR | Zbl

[12] H. Komatsu, “An analogue of the Cauchy-Kowalevsky theorem for ultradifferentiable functions and a division theorem of ultradistributions as its dual”, J. Fac. Sci. Univ. Tokyo, Sec. IA 26 (1979), 239-254. | MR | Zbl

[13] S. Mizohata, «Solutions nulles et solutions non analytiques», J. Math. Kyoto Univ. 1 (1962), 271-302. | MR | Zbl

[14] L. Rodino, “On linear partial differential operators with multiple characteristics”, Proceedings Conf. on partial Differential Equations, Holzhau (GDR), 1988, Teubner Text zur Mathematik. | Zbl

[15] G. Zampieri, “An application of the fundamental principle of Ehrenpreis to the existence of global Gevrey solutions of linear differential equations”, Boll. Un. Mat. Ital. (6) V B (1986), 361-392. | MR | Zbl