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TIME-DEPENDENT APPROACH TO RADIATION CONDITIONS

Erik Skibsted

Matematisk Institut

Aarhus Universitet
8000 Aarhus C
Denmark

In the first part of this note I shall give an account of
some recent results of Ira Herbst and myself [H-S]. These re-
sults deal with radiation conditions for two-body long-range
Schrédinger operators from a time-dependent point of view.

The second part contains various N-body propagation esti-
mates [S] which I believe (besides having interest of their own)
may serve as a basis for an extension of the method and results

of [H-S] to N-body long-range Hamiltonians (cf Th. 2.5).
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1. Radiation conditions

At first we shall recall some of the history of radiation
conditiong then we state some new results (Th. 1.4) fitting in-
to this history. At last we shall give a brief account of the
proof, which involves propagation estimates for certain "radi-
ation operators" (Th. 1.6). These estimates might equally well
be called radiation conditions. The traditional approach to ra-

diation conditions is purely stationary and rather P.D.E. ori-

ented.

We consider H = -A +V on the Hilbert space L2
n arbitrary, with the potential V = V(x) smooth and satis-

fying for some O <e, <1

lol-¢
Ol

IBaV(x)| < C <x> V multiindices o ;
X 2 T

_ 2,3
<x> = (1 +1x17)*%, jol

1]

Sa, .
S
Clearly H 1is selfadjoint on the standard Sobolev space

of degree two. As for the results to be presented, one can add

local singularities, not to be discussed here.

The set of bounded operators on L2 is denoted by B(L2)
the resolvent of H by R(z), z ¢ IR.

With the above condition on V, H is purely absolutely
continuous on IR (the positive reals). In fact, as is well-
known, the limiting absorption principle (L.A.P.) holds:

For A €IR+ and ¢ >3

lim<x>_6R(>\+ie:)<x>_(S exists in B(Lz). (1.1)
ev0

The proof of L.A.P. due to Ikebe and Saito [I-S] has as a

consequence the following
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Theorem 1.1. Suppose 0<¢ <€0/2 and <x>(1+€)/2f'€L2.

Then the function u = R(A+i0)f = 1}be1x+ie')f (defined by
€

(1.1)) is the unique solution to
(H=-X)u = £
such that

(1) <X>-(1+€)/2u€L2'

(=
(2) <x>1*EV/ 25 3 -I—z—l—)uELz ©--- OL>, p =-iv_.

The estimate (2) is a radiation condition. In order to
state a stronger radiation condition due to Isozaki [I1], we

need the following

Lemma 1.2. There exists Y(x,A) ECw(IRnx]R+), real, such

that

(1) Given. A compact 3R, >0: for «r = | x| >R, and
AEA

2/X 2, M) = V(x) 1V, ¥ (x,0) 17,

(2) With A given as above

la;‘(‘a];Y(x,x)l < cu'k<x>1"°‘"€0, V) €A.

Definitions. For A EIR+ and x € R"

(1) S(x,x) = YAIxl =Y(x,})

(notice that S satisfies the eikonal equation for
Ix| large, i.e. IVXS(x,X)I2 +V(x) =),

(2) With x(lxl2 >1) given as a smooth characteristic
function for the region IxI2 >1 (avoiding the sin-
gularity at x =0)

Vs(x,A) = x(Ixl%> 1)V, S (x,2),

(3) Y() = p- Vs(x,\).
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Theorem 1.3 ([I1]). For any €,A >0 and 3% >s >-}

s-1 2

<x>5Y (M) R(A+10) <x>" -€€B(L2,L ®'°'®L2).

Definitions.

(1) vau(X)

3{Vs(x, M)y (A) +y (M VS(x,1)},

(2) Yu(X)

Fx(I1x1? >N () +y () x(1x1? > 10

Theorem 1.4 ([H-S]). For any ¢€,XA >0

s-1

(1) <x>5v, QORO+10)<x> 5" 1€ g2y, 35s55-1

s-1

(2)  <x>°Y, (M) R(A+10) <x>" -€€B(L2), Tie
2

The time-dependent proof of Theorem 1.4 (1) (to be outlined
at the end of this section) includes a new proof of Theorem 1.3.
As for Theorem 1.4 (2) we mention that the statement is an easy
consequence of (1.1), Lemma 1.2 and Theorems 1.3, 1.4 (1). As an
application of Theorem 1.4 (2) we have the following result,which
also is proved by Isozaki [I.1],but in a rather complicated way
(since fhe proof 1is based on the weaker radiation condition of

Theorem 1.3).

Corollary 1.5. Let ¢g,A >0 and >s >% be given.

For v €L2, put

g = o517y,

and

rUrﬂ)/Ze-iS(r°

£4(x) A (R(A+10)g) (r+)

(r =I1xl and the dot indicates a function on the unit-sphere

s in mY.
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Then for any input Y

(1) 3F = Lz(sn"1)—1imfg(r),

gy A r->oo

12

(2) Im<g,R(A+i0)g> = V/XIIF _
g, Lz(sn 1)

(Im = imaginary part).

Proof. For «r sufficiently large

4a

4 ir(n—1)/2e—is(r-

£, (x) M) (T (MR(O+10) g) (r-) .

Hence for r,r, large, ¢ >r1,

r
d
£, (x) fg(r1)HL2(Sn_1)§J;raifg(l)ﬂdl

A

r 3
(J 1‘25d1) Il <x>5%, (\)R(A+10) gl|
X
1

Cr1_s+%l|wn, proving (1).

A

Let BR(O) and SR(O) be the ball and sphere with radius
R and centre 0, respectively.

Then by the Green identity, for R 1large and with h =R(A+io)g,

Im<g,R(x+io)g>BR(o)

In< (H-A)h,h>

B (0)

~In<(E2h)) ,h( )

>
sR(O)

1]

~Im< ({iY, (V) _n;1 +15%S(X,A)}h)( *),h ')>SR(O)-

Using this together with Lemma 1.2 and Theorem 1.4, we obtain

on a sequence R = Rm -+ » that

. . 2
limIm<g,R(XA+i0)g>g 0) = /XHFg'kH '

->00
m Rm

proving (2).
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Remark. As mentioned by Isozaki, Corollary 1.5 may serve
as a basis for constructing a diagonalizing operator T of the

continuous part of H obtained as the extension of T given by
1
_ A\ ? 2, .+ -2, .n-1
Tg = JIR+ @d)\(ﬁ) Fg,>\€L (IR ,L°(S )).

See [I1] for further information.

In order to explain the proof of Theorem 1.4 (1), we focus

on a compact interval Ac:IR+. We choose x1(£) GC:(Df” such
that
x1(E) =0 in a n.b.h. of 0, (1.2)
. 2
X1(E) =1 if |E| EAI (1-3)

XZ(X) € ¢c®(R"™) such that

x2(x) 1 outside a compact set, (1.4)

X2(X) = 0 in BR(O) for some large R. (1.5)

We shall introduce a symmetrized pseudodifferential opera-

tor (Ps.D.Op.) Y corresponding to the symbol

Y(x,8) = & =xq (E)xy (x) (V,5) (x,E° +V(x)). (1.6)

For that, let S? be the (symbol) class of (R xR") -

functions p(x,£) with

R—Ial< m

13%8p(x,8)1 < C g™, (1.7)

x°g ¢ Co, 8%
The corresponding class of Ps.D.Op.'s is given by
ExmY ) = 0[S e pyravas (1.8)

and is denoted by S?.
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Definitions:

(1) ; = 3 (y(X,D) + y(X,D)*), v(x,&) given by (1.6),

(2) For any m-tuple o = a(m) = (a1,...,am), aj integers
such that 1 < a. <n, Y=Y ...Y_ ; i.e. an ordered
= J = - Oy O

product of components of ¥.

We have the following propagation estimates for Ya.

w O o
Theorem 1.6: Let fEICO(A) (A = interior of A), €>0,
a(m) an m-tuple as above and L € R with m>£>0 be given.
Then

£ =0 . -itH

<x>" Y e £(H)<x> ™

- O(t-m+£+s)

in B(Lz) for t - +oo,

The proof of Theorem 1.6 involves various other propagation
estimates (cf. Section 2) and as a key ingredient the following

differential inequality for fixed m and any € > 0:

- 2 - - -
sl N7 M™ew ) ? ¢ 2EEEL 53w ?
o (m) o (m)
2
v o g2y
e(t) = e“itHf(H)<x>'m'2¢, we:LZ.

The factor =-2(m-€)/t comes about by computing the "leading

term" of the commutator i[H,y] to be
_1 -—
~2|plx, (P) Xy (x) [x]7 ¥,

. -1=
and subsequently by replacing by -(1-g/m)t 'vy.

The next step is to put £ = m=-2¢-1 in Theorem 1.6,

multiply by e and integrate from 0 to +«., We obtain

the resolvent estimate
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m-1-2€=qa

|| <x> YOR(A+ie ) £(H) <x>™ "

|<C < =, VAER, €,>0. (1.9)
By interpolating between (1.9) (with m large) and (1.1)

one obtains

o O
Theorem 1.7: Let fECO(A), §>3, m>s>0 and a(m) be

given. Then

-s=§

s=070(m g (4) £ (H) <x>

|| <x> || <C<®, Vz with Im z>O0.

o} w O
Let A €A, Choose then f€ CO(A) which is one in a n.b.h.

of A. Clearly Theorem 1.4 (1) follows if

s-1

<x>5 YW(A)R(k+io)f(H)<x>_ e B(Lz),-%> s> -3,

This estimate follows from Theorem 1.7 by using the follow-
ing identity (not to be discussed):

=2

Yo (A) = =% +D. (MY + D, () (H-2) + D3(A) + D, (1),

where for some m
m
D1(X)€ 8_1 '
m
DZ(A)GSO ’
m
D3(A) € S_2,

m

D4(A) € So

|2€A.

with vanishing symbol in |
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2. Some N-body estimates

We consider the N-body Hamiltonian H = -A +V on the space
2 .
L™ = L2(X), where X 1is the C.M.-configuration space
. N .
1
{x = (x ,...,xN) | x* e ®R", Y mixl = 0}
i=1

of N n-dimensional particles with masses m, . The inner prod-
uct in X 1is given by

N id
X.y = Z 2m.x7y" .

For any cluster decomposition a we put

{xex |xt=x) if i,jecCc for some C€a}

>
u

and

e
I

the orthogonal complement in X.

Corresponding to X = Xa'GXé we write for x €X X =xa+xé.

The cluster decomposition (1)...(i)...(5)...(N),(ij), where =

indicates omission, is denoted by (ij).

The potential V = Y Vij(x(lj)) satisfies the following
(i3)
conditions:
on LZ(X(lJ)) (or as function on X(lj))
(1) Vij(—A+1)-1 and (xVVij(—A+1)—1 are compact,

1

(2) ((XV)nVij)(—A+1)_ is bounded for any n,

(3) 3 R,>0, 1 >€0>0:

0
Vij(x) is smooth in |x]| >R0
and

0%, . (x) | < C <x>_1%l=¢€0,
X ij = T

We shall present four propagation estimates. The first two

are (more or less) due to Sigal and Soffer [S-S]. The last two
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follows by a certain extension of the method of [S-S] together
with an application of a certain vector field on X constructed
recently by Graf [G]. All results will appear in [S] with full

proofs.

Definition. For € >0 and any selfadjoint operator A,

F(A <-¢) denotes the spectral projection XI(A), I=(-»,-¢g).

Theorem 2.1. Let E,e > 0. Then for any f €C§(IR) sup-

ported in a small n.b.h. of E and any s' >s >0,

2
X __

4t2

Sl

E<-e)e *tHe(m)<x>™S = o(t”S

F ( )

for t » .

Theorem 2.2. Let E,e >0. Then 3E' >E: for any f'QC?(EU

supported in a small n.b.h. of E and any s 24 20,

2
<x>TF (B ——X—2

4t

i s

tHe my<x>™S = o (™57

<-g)e

for t > o,

Remark. As noted in [S-S] one can obtain (with some more
work) the conclusion of Theorem 2.2 with the explicit wvalue
E' = E - infoc(H), OC(H) = the continuous spectrum of H. This
is the best we can hope of without an additional localization,
cf. Theorem 2.3. For N =2, Theorems 2.1 and 2.2 can also be

proved by a method of Isozaki and Kitada [I-K], cf. [H-S].
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Definition. Let xfr(= ) be a Cm(X)-function, homo-

Xfree

geneous of degree zero outside the unit-sphere in X and satis-

fying the support condition

SUPP X, n U* Xa = @
a

(1)...(N)

(i.e. Xer is.supported in the "free" region, where the poten-

tial goes to zero).

Theorem 2.3. Let E,e > 0. Then for any £ ECg(IR) sup-
ported in a small n.b.h. of E, any function Xgp @S above and
any s' > s >0

2
.S

)Xo (x)e” s’
<-€e)xeo (X)e
4t2 fr

itHf(H)<x>’ = O(t

F(E -
for t > «,

Introducing Ps.D.Op.'s on X by replacing R™ by X and

utilizing (1.7) and (1.8), we have

Theorem 2.4. Suppose P_(X,D) ESO

0 and that

suppp_(x,&) = {(x,&) cXxX | x-& < (1-¢,) IxI1&1}

for some e, >0.

1
Then for any £ EC:(IR+), any Xg, @as in Theorem 2.3 and
any 0<s<s',

P_(X,D)xg, (x)e e (@) x>™S = 0(£79)

for t > +o,

Remark. For N = 2 there already exist two proofs of Theo-

rem 2.4 in the literature [J], [I2]. For N >3 there exist re-
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sults with some similarity [M], however with very restrictive
assumptions on either subsystems or the potential (still includ-

ing the pure Coulomb case).

With a few modifications the estimates presented in Theorems
2.1 -2.4 should suffice in applying the method in [H-S] to ob-
tain radiation conditions for the free channel. In particular
Theorem 1.6 with Xfr(x) inserted in front of e—itH, and with

S (the solution to the eikonal equation) and 7& suitably modi-

fied, and the following statement, should hold (to be worked on).

Theorem 2.5. Let ¢€,x >0 3 +e,.>s>% and Xg, @s in

0
Theorem 2.3 be given. For any ¢ ELZ(X), put

g = <x>_s_1_€¢

and (in polar coordinates)

- ridimx~1)/26-is(r-,X)

fg(r) Xfr(r-)(R(A+i0)g)(r-)-

Then 3

L2 (sHmX=Ty _qip £,(1).

Y >0
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