@article{JEDP_1992____A4_0, author = {Costabel, Martin and Dauge, Monique}, title = {Singularit\'es d'ar\^etes pour les probl\`emes aux limites elliptiques}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {4}, pages = {1--12}, publisher = {Ecole polytechnique}, year = {1992}, mrnumber = {93j:35201}, language = {fr}, url = {http://archive.numdam.org/item/JEDP_1992____A4_0/} }
TY - JOUR AU - Costabel, Martin AU - Dauge, Monique TI - Singularités d'arêtes pour les problèmes aux limites elliptiques JO - Journées équations aux dérivées partielles PY - 1992 SP - 1 EP - 12 PB - Ecole polytechnique UR - http://archive.numdam.org/item/JEDP_1992____A4_0/ LA - fr ID - JEDP_1992____A4_0 ER -
Costabel, Martin; Dauge, Monique. Singularités d'arêtes pour les problèmes aux limites elliptiques. Journées équations aux dérivées partielles (1992), article no. 4, 12 p. http://archive.numdam.org/item/JEDP_1992____A4_0/
[1] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math. 17 (1964) 35-92. | MR | Zbl
, , .[2] Reliable determination of edge and vertex stress intensity factors in three-dimensional elastomechanics. In 17th Congress of the International Council of the Aeronautical Sciences, Stockholm 1990. ICAS-90-4.9.2, pages 1730-1746. AIAA, Washington 1990.
, , .[3] Développement asymptotique le long d'une arête pour des équations elliptiques d'ordre 2 dans ℝ3. C. R. Acad. Sc. Paris, Série I 312 (1991) 227-232. | MR | Zbl
, .[4] General edge asymptotics of solutions of second order elliptic boundary value problems I. Publications du Laboratoire d'Analyse Numérique R91016, Université Paris VI 1991. To appear in Proc. Royal Soc. Edinburgh. | Zbl
, .[5] General edge asymptotics of solutions of second order elliptic boundary value problems II. Publications du Laboratoire d'Analyse Numérique R91017, Université Paris VI 1991. To appear in Proc. Royal Soc. Edinburgh. | Zbl
, .[6] Construction of corner singularities for Agmon-Douglis-Nirenberg elliptic systems. Preprint Bordeaux, 1992. | Zbl
, .[7] Edge asymptotics on a skew cylinder. In B.-W. SCHULZE, H. TRIEBEL, editors, Symposium “Analysis in Domains and on Manifolds with Singularities”, Breitenbrunn 1990, Teubner-Texte zur Mathematik, Vol. 131, pages 28-42. B. G. Teubner, Leipzig 1992. | Zbl
, .[8] Elliptic Boundary Value Problems in Corner Domains - Smoothness and Asymptotics of Solutions. Lecture Notes in Mathematics, Vol. 1341. Springer-Verlag, Berlin 1988. | MR | Zbl
.[9] Matrix polynomials. Computer Science and Applied Mathematics. Academic Press, New York 1982. | MR | Zbl
, , .[10] An operator generalization of the logarithmic residue theorem and the theorem of Rouché. Math. USSR Sbornik 13 (4) (1971) 603-625. | Zbl
, .[11] Boundary Value Problems in Non-Smooth Domains. Pitman, London 1985.
.[12] Boundary-value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16 (1967) 227-313. | MR | Zbl
.[13] Singularities of a solution of Dirichlet's problem for a second order elliptic equation in a neighborhood of an edge. Differential Equations 13 (1970) 1411-1415. | MR | Zbl
.[14] Lp estimates of solutions of elliptic boundary value problems in a domain with edges. Trans. Moscow Math. Soc. 1 (1980) 49-97. | Zbl
, .[15] Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten. Math. Nachr. 138 (1988) 27-53. | MR | Zbl
, .[16] On the asymptotics of solutions to the Dirichlet problem for second order elliptic equations in domains with critical angles on the edges. Preprint LiTH-MAT-R-91-37, Linköping University 1991.
, .[17] Elliptic theory of differential edge operators I. Comm. P. D. E. 16 (10) (1991) 1615-1664. | MR | Zbl
.[18] Pseudo-differential operators on manifolds with corners. Manuscript MIT, Boston 1987.
.[19] Singularities of the solution of the Dirichlet problem for a second order equation in a neighborhood of an edge. Moscow Univ. Math. Bull. 34(2) (1979) 53-64. | MR | Zbl
.[20] About the structure of branching asymptotics for elliptic boundary value problems in domains with edges. In B.-W. SCHULZE, H. TRIEBEL, editors, Symposium “Analysis in Domains and on Manifolds with Singularities”, Breitenbrunn 1990, Teubner-Texte zur Mathematik, Vol. 131, pages 202-208. B. G. Teubner, Leipzig 1992. | Zbl
.[21] Pseudo-differential operators on manifolds with singularities. Studies in Mathematics and its Applications, Vol. 24. North-Holland, Amsterdam 1991. | MR | Zbl
.