Sharp bounds for the number of the scattering poles
Journées équations aux dérivées partielles (1992), article no. 6, 5 p.
@incollection{JEDP_1992____A6_0,
     author = {Vodev, Georgi},
     title = {Sharp bounds for the number of the scattering poles},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {6},
     pages = {1--5},
     publisher = {Ecole polytechnique},
     year = {1992},
     zbl = {0771.35039},
     language = {en},
     url = {http://archive.numdam.org/item/JEDP_1992____A6_0/}
}
TY  - JOUR
AU  - Vodev, Georgi
TI  - Sharp bounds for the number of the scattering poles
JO  - Journées équations aux dérivées partielles
PY  - 1992
SP  - 1
EP  - 5
PB  - Ecole polytechnique
UR  - http://archive.numdam.org/item/JEDP_1992____A6_0/
LA  - en
ID  - JEDP_1992____A6_0
ER  - 
%0 Journal Article
%A Vodev, Georgi
%T Sharp bounds for the number of the scattering poles
%J Journées équations aux dérivées partielles
%D 1992
%P 1-5
%I Ecole polytechnique
%U http://archive.numdam.org/item/JEDP_1992____A6_0/
%G en
%F JEDP_1992____A6_0
Vodev, Georgi. Sharp bounds for the number of the scattering poles. Journées équations aux dérivées partielles (1992), article  no. 6, 5 p. http://archive.numdam.org/item/JEDP_1992____A6_0/

[1] A. Intissar, A polynomial bound on the number of scattering poles for a potential in even dimensional space in Rn, Commun. P.D.E. 11 (1986), 367-386. | MR | Zbl

[2] P. D. Lax and R. S. Phillips, Scattering Theory, New York, Academic Press, 1967. | Zbl

[3] R. B. Melrose, Polynomial bounds on the number of scattering poles, J. Funct. Anal. 53 (1983), 287-303. | MR | Zbl

[4] R. B. Melrose, Polynomial bounds on the distribution of the poles in scattering by obstacle, Journées «Equations aux Dérivées Partielles», Saint-Jean-de-Montes, 1984. | Numdam | Zbl

[5] J. Sjöstrand and M. Zworski, Complex scaling and distribution of the scattering poles, J. Amer. Math. Soc. 4 (1991), 729-769. | MR | Zbl

[6] J. Sjöstrand and M. Zworski, Distribution of scattering poles near real axis, Commun. P.D.E., to appear. | Zbl

[7] J. Sjöstrand and M. Zworski, Lower bounds on the number of scattering poles, preprint, 1992.

[8] E. Titchmarsh, The Theory of Functions, Oxford University Press, 1968.

[9] G. Vodev, Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in Rn, Math. Ann. 291 (1991), 39-49. | MR | Zbl

[10] G. Vodev, Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Commun. Math. Phys. 146 (1992), 205-216. | MR | Zbl

[11] G. Vodev, On the distribution of scattering poles for perturbations of the Laplacian, Ann. Inst. Fourier (Grenoble) 42 (1992), to appear. | Numdam | MR | Zbl

[12] M. Zworski, Sharp polynomial bounds on the number of scattering poles of radial potentials, J. Funct. Anal. 82 (1989), 370-403. | MR | Zbl

[13] M. Zworski, Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 (1989), 311-323. | MR | Zbl