@incollection{JEDP_1993____A16_0, author = {Markowich, Peter A. and Mauser, Norbert J. and Poupaud, Fr\'ed\'eric}, title = {Wigner series and (semi)classical limits with periodic potentials}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {16}, pages = {1--13}, publisher = {Ecole polytechnique}, year = {1993}, mrnumber = {94i:82021}, zbl = {0807.35139}, language = {en}, url = {http://archive.numdam.org/item/JEDP_1993____A16_0/} }
TY - JOUR AU - Markowich, Peter A. AU - Mauser, Norbert J. AU - Poupaud, Frédéric TI - Wigner series and (semi)classical limits with periodic potentials JO - Journées équations aux dérivées partielles PY - 1993 SP - 1 EP - 13 PB - Ecole polytechnique UR - http://archive.numdam.org/item/JEDP_1993____A16_0/ LA - en ID - JEDP_1993____A16_0 ER -
%0 Journal Article %A Markowich, Peter A. %A Mauser, Norbert J. %A Poupaud, Frédéric %T Wigner series and (semi)classical limits with periodic potentials %J Journées équations aux dérivées partielles %D 1993 %P 1-13 %I Ecole polytechnique %U http://archive.numdam.org/item/JEDP_1993____A16_0/ %G en %F JEDP_1993____A16_0
Markowich, Peter A.; Mauser, Norbert J.; Poupaud, Frédéric. Wigner series and (semi)classical limits with periodic potentials. Journées équations aux dérivées partielles (1993), article no. 16, 13 p. http://archive.numdam.org/item/JEDP_1993____A16_0/
[1] Solid State Physics. Holt, Rinehart, Winston, 1976.
and .[2] Wigner and Other Distribution Functions in Mock Phase Spaces. Phys. Rep., 104:347-391, 1984. | MR
and .[3] Semiclassical Behaviour of the Weyl Correspondence on the Circle. Proc. XIX Int. Col. Group Theor. Meth. - Salamanca, Anales di Fisica, 1992.
and .[4] Microlocal Analysis ... Springer Lecture Notes in Physics 345, 1989.
and .[5] Wigner-Weyl Formalisms for Toroidal Geometries. Technical report, TU Vienna, 1993.
and .[6] Sur les Mesures de Wigner. Revista Mat. Iberoamericana, to appear, 1993. | MR | Zbl
and .[7] The Classical Limit of a Self-consistent Quantum-Vlasov Equation in 3-D. Math. Mod. and Meth. in Appl. Sciences, 3:109-124, 1993. | MR | Zbl
and .[8] A Wigner Function Approach to (Semi) classical Limits : Electrons in a Periodic Potential. submitted to J. on Math. Phys. | Zbl
, , and .[9] The Wigner-Poisson Problem in the One-Band Approximation. in preparation, 1993.
.[10] Mesures Semi-Classiques et Ondes de Bloch. Sem. Ecole Polytechnique, XVI, 1991. | Numdam | MR | Zbl
.[11] Methods of Modern Mathematical Physics IV. Academic Press, 4th edition, 1987.
and .[12] Distribution Functions in Classical and Quantum Mechanics. Prog. of Theor. Phys. Suppl., 98:109-156, 1989. | MR
.[13] The Wigner Representation of Quantum Mechanics. Sov. Phys. Usb., 26:311-327, 1983. | MR
.[14] Theory of Bloch Waves. J. d'Analyse Mathematique, 33:146 - 167, 1978. | MR | Zbl
.