@incollection{JEDP_1993____A2_0, author = {Harg\'e, Thierry}, title = {Diffraction pour l'\'equation de la chaleur}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {2}, pages = {1--9}, publisher = {Ecole polytechnique}, year = {1993}, mrnumber = {95a:35052}, zbl = {0844.35038}, language = {fr}, url = {http://archive.numdam.org/item/JEDP_1993____A2_0/} }
Hargé, Thierry. Diffraction pour l'équation de la chaleur. Journées équations aux dérivées partielles (1993), article no. 2, 9 p. http://archive.numdam.org/item/JEDP_1993____A2_0/
[Ag] Lectures on exponential decay of solutions of second order elliptic equations, Mathematical Notes 29, Princeton University Press. | Zbl
:[Bu] Continuum integrals and the asymptotic behavior of the solutions of parabolic equations as t → 0, Applications to Diffraction, 67-86 Topics in Mathematical Physics, Vol 2, Plenum, New-York, 1968.
:[Ha] Thèse Orsay.
:[Ha] Diffraction pour l'équation de la chaleur, A paraître au Duke Math. Journal. | Zbl
:[Hs] Short time asymptotics of the heat kernel on concave boundary, Siam J. Math. Anal 20 (1989), 1109-1127. | MR | Zbl
:[IK] Short time asymptotics for fundamental solutions of diffusion equations, Springer Lecture Notes in Mathematics 1322 (1988), 37-49. | MR | Zbl
et :[Le] Régularité Gevrey 3 pour la diffraction, Communication in Partial Differential Equations, 9 (15), 1437-1494 (1984). | MR | Zbl
:[Mi] Morse Theory, 67-76.
:[NS] Estimate on the fundamental solution to heat flows with uniformly elliptic coefficients, Proc. Lond. Math. Soc. 62 (1991), 375-402. | MR | Zbl
et :[VdB] A Gaussian lower bound for the Dirichlet heat kernel, Bull. Lond. Math. Soc. 24 (1992), 475-477. | MR | Zbl
: