@incollection{JEDP_1993____A4_0, author = {Godin, Paul}, title = {Transformation de {Kelvin} et ondes non lin\'eaires globales}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {4}, pages = {1--6}, publisher = {Ecole polytechnique}, year = {1993}, mrnumber = {95a:35091}, language = {fr}, url = {http://archive.numdam.org/item/JEDP_1993____A4_0/} }
Godin, Paul. Transformation de Kelvin et ondes non linéaires globales. Journées équations aux dérivées partielles (1993), article no. 4, 6 p. http://archive.numdam.org/item/JEDP_1993____A4_0/
[1] Temps de vie et comportement explosif des solutions d'équations d'ondes quasilinéaires en dimension deux. I, prépublication 92-77 de l'Université de Paris-Sud, 1992 ; II, prépublication 93-23 de l'Université Paris-Sud, 1993.
,[2] Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math. 39 (1986), 267-282. | MR | Zbl
,[3] Global sound waves for quasilinear second order wave equations, preprint. | Zbl
,[4]
, article en cours de rédaction.[5] Développement asymptotique de solutions exactes de systèmes hyperboliques quasilinéaires, Asymptotic Analysis 6 (1993), 241-269. | MR | Zbl
,[6] Wave equations on homogeneous spaces, Springer Lecture Notes in Math. 1077 (1984), 254-287. | MR | Zbl
,[7] Non-existence of global solutions of ▫u = ∂/∂tF(ut) in two and three space dimensions, Supplemento al Rendiconti del Circolo Matematico di Palermo ; Série II, 8 (1985), 229-249. | MR | Zbl
,[8] The lifespan of classical solutions of non-linear hyperbolic equations, Springer Lecture Notes in Math. 1256 (1987), 214-280. | Zbl
,[9] Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math. 38 (1985), 321-332. | MR | Zbl
,[10] The null condition and global existence to nonlinear wave equations, Lect. Appl. Math. 23, vol. I (1986), 293-326. | MR | Zbl
,[11] Initial value problems for nonlinear wave equations, Comm. Part. Diff. Eq. 13 (1988), 383-422. | MR | Zbl
et ,[12] Ondes soniques, J. Math. Pures Appl. 70 (1991), 197-268. | MR | Zbl
,[13] Energy decay for star-shaped obstacles, dans P.D.LAX et R. PHILLIPS, Scattering theory, Academic Press (1967).
,[14] Global existence of small solutions to nonlinear evolution equations, J. Diff. Eq. 46 (1982), 409-425. | MR | Zbl
,