Counterexamples to local existence for nonlinear wave equations
Journées équations aux dérivées partielles (1994), article no. 10, 5 p.
@incollection{JEDP_1994____A10_0,
     author = {Lindblad, Hans},
     title = {Counterexamples to local existence for nonlinear wave equations},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {10},
     pages = {1--5},
     publisher = {Ecole polytechnique},
     year = {1994},
     mrnumber = {95k:35136},
     zbl = {0877.35081},
     language = {en},
     url = {http://archive.numdam.org/item/JEDP_1994____A10_0/}
}
TY  - JOUR
AU  - Lindblad, Hans
TI  - Counterexamples to local existence for nonlinear wave equations
JO  - Journées équations aux dérivées partielles
PY  - 1994
SP  - 1
EP  - 5
PB  - Ecole polytechnique
UR  - http://archive.numdam.org/item/JEDP_1994____A10_0/
LA  - en
ID  - JEDP_1994____A10_0
ER  - 
%0 Journal Article
%A Lindblad, Hans
%T Counterexamples to local existence for nonlinear wave equations
%J Journées équations aux dérivées partielles
%D 1994
%P 1-5
%I Ecole polytechnique
%U http://archive.numdam.org/item/JEDP_1994____A10_0/
%G en
%F JEDP_1994____A10_0
Lindblad, Hans. Counterexamples to local existence for nonlinear wave equations. Journées équations aux dérivées partielles (1994), article  no. 10, 5 p. http://archive.numdam.org/item/JEDP_1994____A10_0/

[1] M. Beals and M. Bezard, Low regularity local solutions for field equations, preprint. | Zbl

[2] L. Hörmander, The analysis of linear partial differential operators Vols. I-IV, Springer-Verlag, Berlin, 1983, 1985.

[3] S. Klainerman and M. Machedon, The null condition and local existence for nonlinear waves, Comm. Pure and Appl. Math. (to appear).

[4] H. Lindblad, A sharp counterexample to local existence of low regularity solutions to nonlinear wave equations, Duke Math. J. 72 (1993), 503-539. | MR | Zbl

[5] H. Lindblad, Counterexamples to local existence for quasilinear wave equations, in preparation (1994).

[6] H. Lindblad, Blow up for solutions of □u = |u|p with small initial data, Comm. Partial Differential Equations 15 (1990), 757-821. | MR | Zbl

[7] H. Lindblad and C. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, Jour., of Func. An (to appear). | Zbl

[8] G. Ponce and T. Sideris, Local regularity of nonlinear wave equations in three space dimensions, Comm. Partial Differential Equations 18 (1993), 169-177. | MR | Zbl

[9] J. Rauch, Explosion for some Semilinear Wave Equations, Jour. of Diff. Eq. 74 (1) (1988), 29-33. | MR | Zbl

[10] J. Shatah and A. Shadi Tahvildar-Zadeh, On the Cauchy Problem for Equivariant Wave Maps, preprint (1992). | MR

[11] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970. | MR | Zbl