@article{JEDP_1994____A8_0, author = {Perry, Peter A.}, title = {Divisor of the {Selberg} zeta function for kleinian groups}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {8}, pages = {1--9}, publisher = {Ecole polytechnique}, year = {1994}, mrnumber = {1298679}, zbl = {0871.11056}, language = {en}, url = {http://archive.numdam.org/item/JEDP_1994____A8_0/} }
Perry, Peter A. Divisor of the Selberg zeta function for kleinian groups. Journées équations aux dérivées partielles (1994), article no. 8, 9 p. http://archive.numdam.org/item/JEDP_1994____A8_0/
[1] On the spectral theory of the Laplacian on non-compact hyperbolic manifolds. Journées « Équations aux dérivées partielles » (Saint Jean de Monts, 1987), Exposée No. XVII, École Polytechnique, Palaiseau, 1987. | Numdam | MR | Zbl
.[2] On the representation theorem for solutions of the Helmholtz equation in hyperbolic space. Preprint, Forschungsinstitut für Mathematik, ETH-Zürich, 1990.
.[3] Entire Functions. New York : Academic Press, 1954. | Zbl
,[4] Symbolic dynamics for hyperbolic flows, Amer. Math. J. 95 (1973), 429-460. | MR | Zbl
.[5] The zeta functions of Ruelle and Selberg, I, Ann. scient. Éc. Norm. Sup. 19 (1986), 491-517. | Numdam | MR | Zbl
.[6] The Laplace operator on hyperbolic three-manifolds with cusps of non-maximal rank. Inventiones Math. 106 (1991), 295-333. | MR | Zbl
, , .[7] Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes. Bulletin de la S.M.F. 116 (1988), Mémoire No. 31. | Numdam | Zbl
.[8] Upper bounds on the number of resonances for non-compact Riemann surfaces. Preprint, 1993. | Zbl
, .[9] Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity. Preprint, 1993. | Zbl
, .[10] On the poles of the scattering matrix for two strictly convex obstacles. J. Math. Kyoto Univ. 23 (1983), 127-194. | MR | Zbl
.[11] On the existence of poles of the scattering matrix for several convex bodies. Proc. Japan Acad. 64 (1988), 91-93. | MR | Zbl
.[12] The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. J. Funct. Anal. 46 (1982), 280-350. | MR | Zbl
, .[13] Translation representation for automorphic solutions of the non-Euclidean wave equation I, II, III. Comm. Pure. Appl. Math. 37 (1984), 303-328, 37 (1984), 779-813, and 38 (1985), 179-208. | Zbl
, .[14] Translation representation for automorphic solutions of the non-Euclidean wave equation IV. Preprint, Stanford University, 1990.
, .[15] Scattering operator, Eisenstein series, inner product formula, and «Maass-Selberg» relations for Kleinian groups. Mem. Amer. Math. Soc. 400 (1989). | Zbl
.[16] Axiom A difeomorphisms have rational zeta functions. Bull. London Math. Soc. 3 (1971), 215-220. | MR | Zbl
.[17] Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75 (1987), 260-310. | MR | Zbl
, .[18] The Laplacian operator on a Riemann surface I, II, III. Compositio Math. 31 (1975), 83-107, 32 (1976) 71-112, and 33 (1976), 227-259. | Numdam | Zbl
.[19] The Selberg zeta-function of a Kleinian group. In Number Theory, Trace Formulas, and Discrete Groups : Symposium in honor of Atle Selberg, Oslo, Norway, July 14-21, 1987, New York, Academic Press, 1989, pp. 409-442. | Zbl
.[20] On Ruelle's zeta-function. In Festschrift in honor of I.I. Piatetski-Shapiro on the occasion of his sixtieth birthday, ed. S. Gelbart, R. Howe, P. Sarnak. Jerusalem : Weizmann Science Press, 1990. | MR | Zbl
.[21] The divisor of the Selberg Zeta function for Kleinian groups, in preparation. | Zbl
, .[22] The Laplace operator on a hyperbolic manifold, II. Eisenstein series and the scattering matrix. J. reine angew. Math. 398 (1989), 67-91. | MR | Zbl
.[23] The Selberg zeta function and a local trace formula for Kleinian groups. J. reine angew. Math. 410 (1990), 116-152. | MR | Zbl
.[24] The Selberg zeta function and scattering poles for Kleinian groups. Bull. Amer. Math. Soc. 24 (1991), 327-333. | MR | Zbl
.[25] Zeta functions for expanding maps and Anosov flows, Inventiones Math. 34, (1976), 231-242. | MR | Zbl
.[26] Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47-87. | MR | Zbl
.