Regularity properties of semilinear boundary problems in Besov and Triebel-Lizorkin spaces
Journées équations aux dérivées partielles (1995), article no. 14, 10 p.
@article{JEDP_1995____A14_0,
     author = {Johnsen, Jon},
     title = {Regularity properties of semilinear boundary problems in {Besov} and {Triebel-Lizorkin} spaces},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {14},
     publisher = {Ecole polytechnique},
     year = {1995},
     mrnumber = {1360483},
     zbl = {0948.35502},
     language = {en},
     url = {http://archive.numdam.org/item/JEDP_1995____A14_0/}
}
TY  - JOUR
AU  - Johnsen, Jon
TI  - Regularity properties of semilinear boundary problems in Besov and Triebel-Lizorkin spaces
JO  - Journées équations aux dérivées partielles
PY  - 1995
DA  - 1995///
PB  - Ecole polytechnique
UR  - http://archive.numdam.org/item/JEDP_1995____A14_0/
UR  - https://www.ams.org/mathscinet-getitem?mr=1360483
UR  - https://zbmath.org/?q=an%3A0948.35502
LA  - en
ID  - JEDP_1995____A14_0
ER  - 
%0 Journal Article
%A Johnsen, Jon
%T Regularity properties of semilinear boundary problems in Besov and Triebel-Lizorkin spaces
%J Journées équations aux dérivées partielles
%D 1995
%I Ecole polytechnique
%G en
%F JEDP_1995____A14_0
Johnsen, Jon. Regularity properties of semilinear boundary problems in Besov and Triebel-Lizorkin spaces. Journées équations aux dérivées partielles (1995), article  no. 14, 10 p. http://archive.numdam.org/item/JEDP_1995____A14_0/

[1] L. Boutet De Monvel. Boundary problems for pseudo-differential operators. Acta Math., 126 : 11-51, 1971. | MR | Zbl

[2] J. Franke. On the Spaces Fspq of Triebel-Lizorkin Type : Pointwise Multipliers and Spaces on Domains. Math. Nachr., 125 : 29-68, 1986. | MR | Zbl

[3] G. Grubb. Functional Calculus of Pseudo-Differential Boundary Problems, volume 65 of Progress in Mathematics. Birkhäuser, Boston, 1986. | MR | Zbl

[4] G. Grubb. Pseudo-differential boundary problems in Lp-spaces. Comm. Part. Diff. Equations, 15 : 289-340, 1990. | MR | Zbl

[5] G. Grubb. Parabolic pseudo-differential boundary problems and applications. In L. Cattabriga and L. Rodino, editors, Microlocal analysis and applications, Montecatini Terme, Italy, July 3-11, 1989, volume 1495 of Lecture Notes in Mathematics, Berlin, 1991. Springer. | Zbl

[6] G. Grubb and N. J. Kokholm. A global calculus of parameter-dependent pseudodifferential boundary problems in Lp Sobolev spaces. Acta Math., 171 : 165-229, 1993. | MR | Zbl

[7] G. Grubb and V. A. Solonnikov. Boundary value problems for the non-stationary Navier-Stokes equations treated by pseudo-differential methods. Math. Scand., 69 : 217-290, 1991. | MR | Zbl

[8] J. Johnsen. Elliptic boundary problems and the Boutet de Monvel calculus in Besov and Triebel-Lizorkin spaces. (to appear in Math. Scand.). | Zbl

[9] J. Johnsen. Pointwise multiplication of Besov and Triebel-Lizorkin spaces. (to appear in Math. Nachr.). | Zbl

[10] J. Johnsen. Regularity properties of semi-linear boundary problems in Lp-related spaces. (in preparation).

[11] J. Johnsen. The stationary Navier-Stokes equations in Lp-related spaces. PhD thesis, University of Copenhagen, Denmark, 1993. Ph.D.-series 1.

[12] S. I. Pohožaev. The Sharp Apriori Estimates for Some Superlinear Degenerate Elliptic Problems. In Schmeisser, H.-J. and Triebel, H., editor, Function Spaces, Differential Operators and Nonlinear Problems, volume 133 of Teubner-Texte zur Mathematik, pages 200-217, Leipzig, 1993. Teubner Verlagsgesellschaft. | MR | Zbl

[13] R. Temam. Navier-Stokes Equations, Theory and Numerical Analysis. Elsevier Science Publishers B.V., Amsterdam, 1984. (Third edition). | Zbl

[14] H. Triebel. Theory of function spaces, volume 78 of Monographs in mathematics. Birkhäuser Verlag, Basel, 1983. | MR | Zbl

[15] H. Triebel. Theory of function spaces II, volume 84 of Monographs in mathematics. Birkhäuser Verlag, Basel, 1992. | MR | Zbl

[16] M. Yamazaki. A quasi-homogeneous version of paradifferential operators, I. Boundedness on spaces of Besov type. J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 33 : 131-174, 1986. | MR | Zbl