Hyperbolicity of two by two systems with two independent variables
Journées équations aux dérivées partielles (1998), article no. 10, 12 p.

We study the simplest system of partial differential equations: that is, two equations of first order partial differential equation with two independent variables with real analytic coefficients. We describe a necessary and sufficient condition for the Cauchy problem to the system to be C infinity well posed. The condition will be expressed by inclusion relations of the Newton polygons of some scalar functions attached to the system. In particular, we can give a characterization of the strongly hyperbolic systems which includes a fortiori symmetrizable systems.

@article{JEDP_1998____A10_0,
     author = {Nishitani, Tatsuo},
     title = {Hyperbolicity of two by two systems with two independent variables},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {10},
     pages = {1--12},
     publisher = {Universit\'e de Nantes},
     year = {1998},
     mrnumber = {2000k:35004},
     zbl = {01808719},
     language = {en},
     url = {http://archive.numdam.org/item/JEDP_1998____A10_0/}
}
TY  - JOUR
AU  - Nishitani, Tatsuo
TI  - Hyperbolicity of two by two systems with two independent variables
JO  - Journées équations aux dérivées partielles
PY  - 1998
SP  - 1
EP  - 12
PB  - Université de Nantes
UR  - http://archive.numdam.org/item/JEDP_1998____A10_0/
LA  - en
ID  - JEDP_1998____A10_0
ER  - 
%0 Journal Article
%A Nishitani, Tatsuo
%T Hyperbolicity of two by two systems with two independent variables
%J Journées équations aux dérivées partielles
%D 1998
%P 1-12
%I Université de Nantes
%U http://archive.numdam.org/item/JEDP_1998____A10_0/
%G en
%F JEDP_1998____A10_0
Nishitani, Tatsuo. Hyperbolicity of two by two systems with two independent variables. Journées équations aux dérivées partielles (1998), article  no. 10, 12 p. http://archive.numdam.org/item/JEDP_1998____A10_0/

[1] V. Ya. Ivrii AND V.M. Petkov, Necessary conditions for the Cauchy problem for non strictly hyperbolic equations to be well posed, Russian Math. Surveys, 29 1974 1-70. | Zbl

[2] V. Ya. Ivrii, Linear Hyperbolic Equations, In Partial Differential Equations IV, Yu. V. Egorov, M.A. Shubin (eds.), Springer-Verlag 1993.

[3] P.D. Lax, Asymptotic solutions of oscillatory initial value problems, Duke Math. J., 24 1957 627-646. | MR | Zbl

[4] W. Matsumoto, On the conditions for the hyperbolicity of systems with double characteristic roots I, J. Math. Kyoto Univ., 21 1981 47-84. | MR | Zbl

[5] W. Matsumoto, On the conditions for the hyperbolicity of systems with double characteristic roots II, J. Math. Kyoto Univ., 21 1981 251-271. | MR | Zbl

[6] S. Mizohata, Some remarks on the Cauchy problem, J. Math. Kyoto Univ., 1 1961 109-127. | MR | Zbl

[7] T. Nishitani, The Cauchy problem for weakly hyperbolic equations of second order, Comm. P.D.E., 5 1980 1273-1296. | MR | Zbl

[8] T. Nishitani, A necessary and sufficient condition for the hyperbolicity of second order equations with two independent variables, J. Math. Kyoto Univ., 24 1984 91-104. | MR | Zbl

[9] P.D'Ancona AND S. Spagnolo, On pseudosymmetric hyperbolic systems, preprint 1997. | MR | Zbl

[10] J. Vaillant, Systèmes hyperboliques à multiplicité constante et dont le rang peut varier, In Recent developments in hyperbolic equations, pp. 340-366, L. Cattabriga, F. Colombini, M.K.V. Murthy, S. Spagnolo (eds.), Pitman Research Notes in Math. 183, Longman, 1988. | MR | Zbl