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The Cauchy-Riemann equations in infinite
dimensions

Laszlo Lempert

Abstract

I will explain basic concepts/problems of complex analysis in infinite di-
mensions, and survey the few approaches that are available to solve those
problems.

1. Introduction.

Our subject matter being complex analysis in infinite dimensions, we shall start
out by explaining why do analysis, and of the complex variety at that, in infinite di-
mensions. There is a very general reason for pursuing infinite dimensional analysis:
systems with infinitely many degrees of freedom give rise to problems in infinite di-
mensions, and such systems do occur in theoretical physics, notably in field theories.
Of course one could adopt a conservative point of view and maintain that infinitely
many degrees of freedom appear but in idealized situations, and only systems with
finitely many degrees of freedom are of practical interest. — Oddly, a radical might
also be drawn to the same conclusion by positing that space is discrete rather than
continuous, and bounded, which would then imply that fields have finitely many de-
grees of freedom. — Yet even the practically minded conservative will not deny that
in many ways, a system with 6 degrees of freedom has much less in common with a
system with 6 • 1023 degrees of freedom, than a system with infinitely many degrees
of freedom has. Ergo, finite, but huge dimensional systems should be thought of
as perturbations of infinite dimensional systems, and the first step in their study
should be understanding infinite dimensional systems.1 If the need arises for better
approximations, one can subsequently try to find terms of an entire perturbation
series about the value d = oo of the dimension.
Research partially supported by an NSF grant.

^his is routinely done in statistical physics. However, not all huge or infinite dimensional
problems are amenable to a statistical approach. In our subject, the infinite dimensional theory
of the Cauchy-Riemann equations, the first two significant results were found using tools from
statistics: Wiener measures on Hilbert spaces, see [H, R]. In certain ways these results were
nevertheless unsatisfactory, and now much stronger theorems follow from the recent resp. imminent
[L2, L3], which do not rely on statistics, cf. Section 5.
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This then justifies doing infinite dimensional analysis. One is led to the complex
brand of this analysis because a host of examples of infinite dimensional manifolds
that arise in physics, but also in geometry and representation theory, carry nat-
ural complex structures. Now most fundamental questions pertaining to complex
manifolds can be answered in terms of Dolbeault cohomologies, and this brings us
to our subject proper: the inhomogeneous Cauchy-Riemann equations in infinite
dimensions.

2. The Cauchy-Riemann equations in a Banach space.

Let us quickly review calculus, real and complex, in a Banach space V over the
complex numbers. (For a treatment of general locally convex spaces, see [LI, D].)
Suppose n C V is open and u : H -^ C is a function. If the directional derivatives

(2.1) du(z', 0 == \im(u(z + ̂ ) - u(z))/t, R 9 t -^ Q

exist for all z e H, ^ e V, and du : f2 x V -> C is continuous, we write u € G^H)
If du € C^n x V) we write u G C2^) etc.

A 1-form on n is a function / : H x V -> C, R-linear in V. If it is also C-linear
resp. C-antilinear, / is called a (1,0) resp. (0,1) form. General (p,g) forms are
defined analogously (see [LI]) but no formal definition will be given here since our
focus is on (0,1) forms. A 1-form / is said to be r times continuously differentiable on
n , r = = 0 , l , . . . , i f / e C^^t x V), and the space ofr-times continuously differentiable
(0,1) forms on 0 is denoted C^(n), C^W = Co,iW. A continuous 1-form / on
^ is Lipschitz continuous if

|/|i = sup{|/(^; o - /(w; 01/11^ -- w||: z + w e n, 11^11 < i} < oo.
I f u e C^n) then du is a continuous 1-form, which can be uniquely decomposed

into the sum 9u + 9u of a (1,0) and a (0,1) form. This defines the operator 9 :
C1^) —^ Co,i(n), and allows us to formulate the 9, or Cauchy-Riemann equation

(2.2) 9u = /

for a given / € Co,i(n).
A distinctive feature of the Cauchy-Riemann equation is that it is hereditary:

if (2.2) holds and W C V is a subspace (or submanifold) then 9(u\w) = f\w'
Hence there is a strong link between the finite and infinite dimensional theories;
in particular regularity and uniqueness results for (2.2) in a Banach space follow
directly from the corresponding finite or even one dimensional results. The principal
problem remaining is thus whether (2.2) can be solved.

Just like in C1, n > 1, in order that (2.2) be solvable a compatibility condition
must be imposed on /. When dimY < oo, this condition is 9f = 0 (in the sense
of distribution theory, since we are only assuming / is continuous, see [Ho]). In
general, an / € Co,i(n) is said to be closed i f 9 ( f \ w ) = 0 for all finite dimensional
subspaces W C V. Clearly / must be closed if (2.2) is to have a solution, and
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then the problem becomes finding reasonable conditions on V, fi, and the closed
/ € Q),i(^) that ensure (2.2) has a solution u G G^n).

When dimY < oo and H is pseudoconvex, (in particular, if it is convex) (2.2)
is known to be solvable for any closed / G Co,i(n), see e.g. [Ho]. The infinite
dimensional theory is not nearly as complete. So far three approaches have been
proposed to solve (2.2) that we are going to discuss presently. They all have serious
limitations; on the other hand a family of examples shows that in infinite dimensions
(2.2) will not be solvable in sweeping generality, see Theorem 4.4.

As in C71, pseudoconvexity will play an important role in the theory of the 9
equation. Various equivalent definitions are known. For example, fl C V is pseudo-
convex if —logdist(^,5n) is a plurisubharmonic function (with the understanding
that V itself is pseudoconvex). Here a continuous function y : H —^ R is called
plurisubharmonic if its restrictions to one dimensional affine subspaces are subhar-
monic. Alternatively, ̂  is pseudoconvex if its intersections with finite (or even only
two) dimensional affine subspaces are. One should keep in mind that all convex
domains are pseudoconvex.

3. Early work.

The most obvious attempt to solve the equation

(3.1) 9u = /, / e Go,i(n), closed

in infinite dimensions is to solve (3.1) on n intersected with finite dimensional sub-
spaces W C y, prove pointwise or preferably uniform estimates for the solutions,
and see what happens when dim W —> oo. If the estimates are independent of
dim W ^ it is reasonable to expect that from the finite dimensional solutions one
can construct a solution of the infinite dimensional equation. Unfortunately this
approach fails because the uniform estimates that the usual methods yield in C^
tend to blow up as N —^ oo.

Henrich, and subsequently in a much improved manner Raboin, noticed that
instead of uniform estimates one can use L2 estimates of Hormander, see [H, R],
which are independent of the dimension. This does not rid us of all difficulties,
though. Indeed, even if the constants in the estimates do not blow up as dim W —^
oo, Lebesgue measure on W does. Accordingly, Henrich and Raboin are able to
treat (3.1) when V is a Hilbert space, ^ is pseudoconvex (and / € C^i(^))? but
they cannot solve (3.1) on the whole of n; instead, only on ^ n X where X C V is a
"not too large55 linear subspace. We shall not precisely formulate their theorems here,
as much stronger results are now seen to follow from Theorem 5.1 to be discussed
further down.

4. The second method.

Another approach to connect (3.1) with finite dimensional 9 problems is to con-
sider one dimensional affine subspaces only, i.e. lines L C V, and for each L solve

(4.1) 9uL = /ILHQ.
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In this approach one can estimate various norms of njr,, independently of L, but
the question is then how to construct a solution of (3.1) out of the functions UL.
Suppose we select a family C of lines that covers f l . simply. Then {u^^c patch
together to give a function u : n —> C

(4.2) u(z) = u^z) ifz e L n n, L e r.

Is it reasonable to expect that this u will solve (3.1)? Clearly no. The problem
is that (4.1) has many solutions z^, and carelessly choosing UL for varying L will
result in a function u that is not even continuous. Even if the UL are chosen to
depend somewhat regularly on L so that the resulting function u is (71, one should
not expect u to solve (3.1). Indeed, for each z 6 H (3.1) requires infinitely many
relations to be satisfied among the directional derivatives d,u[z\ -), while (4.1) takes
care only of derivatives along the one L 6 C that passes through z.

Thus the main issue is whether an intelligent choice of the solution UL of (4.1)
is possible that leads, through (4.2), to a solution of (3.1). In certain situations
it indeed is possible to make such a choice. The most interesting instance of this
is when Sl is not an open set in a Banach space but a complex Banach manifold:
projectivized Banach space PV, i.e. the space of one dimensional subspaces of V,
endowed with a complex structure pretty much in the same way as is done for
P^ = PC^. In this way one obtains

Theorem 4.1 For any Banach space V and any closed f € C^\(PV) the equation
Qu = f is solvable.

This is but a special case of a more general result for forms of higher degree,
except that in general one requires that V should admit smooth cut off functions.

Theorem 4.2 Suppose there exists a not identically 0 function y 6 C°°(V) with
bounded support. Then for any closed f € C^q(TV), 1 <: q < dimPY the equation
Qu == / admits a solution u € C^° -^(PV).

For example Hilbert spaces and U spaces with p an even integer satisfy the
condition of the theorem. — One can further generalize Theorem 4.2 to (p^q)
forms, with values in holomorphic vector bundles of finite rank over PV; for all this,
consult [LI].

Another situation where the method introduced above works is when f2 is the
whole Banach space, but then a growth condition has to be imposed on /. We shall
say that / € CQ^(V} is of order d > 0 if with some A € R

|/(^)|<A(i4-N^ ^ev, ||0 <i .
Theorem 4.3 ( c f . [ L I ] . ) Suppose r e N, / € C^(V) is closed and of order r -e
with some e> 0. Then the equation Qu = / has a solution u € ^(V).

In the proof of both Theorems 4.1 and 4.3 the family C of lines one works with
consists of all lines through a given point of PV resp. V. These lines do cover

•s
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Py resp. V simply, except for the base point. Accordingly one is first able to
solve 9u = f on PV resp. V minus a point, and then one shows that the isolated
singularity of u is removable.

Perhaps surprisingly, Theorem 4.3 is sharp in that for general Banach spaces the
statement would not be true without the 6. In [L2] we prove

Theorem 4.4 For p = 1,2,... there is a closed f G C^1^); °f order p — 1; such
that on no open set Sl ̂  0 is the equation 9u = f solvable.

The case p = 2 was first found in the late seventies by Coeure, see [C, M]. The
general case requires but small modifications of the original construction.

5. The 9 equation in I1.

There is now a third method, the only one that is capable of solving the 9-
equation on domains in a Banach space; however, so far it has brought fruit only in
the space /1:

Theorem 5.1 ( c f . [L2, L3j) If f l . C I1 is pseudoconvex, f £ Go,i(n) is Lipschitz
continuous and closed then the equation

(5.1) 9u = /

has a solution u 6 (^(n).

Note that by Theorem 4.4 mere continuity of /, as opposed to Lipschitz conti-
nuity, would not guarantee that (5.1) is solvable, not even locally. This is in marked
contrast with the finite dimensional theory.

The proof consists of three steps. In the first step one solves (5.1) when n =
B(R) = {z € I1 : \\z\\ < R}. This step uses the symmetry of the ball B(R) as follows.
One considers the circle R/Z and the infinite dimensional torus T = ]~[^° R/Z. This
is a compact group, which acts continuously on I1 and B(R) by

^)=(e2^^)^, <=(^)er, z=(z^)el1.

The action p induces a Fourier decomposition of (5.1). Indeed, the given form / can
be expanded into a series

(5.2) /-E^ ^= I e - ^ p ^ f d t .
k JT

Here k = ( fc i ,A;2, . . . ) G Z°° is a multiindex such that only finitely many k^ -^ 0,
kt = ^^A:^, and dt stands for the Haar probability measure on T. The terms in
the series (5.2) satisfy
(5.3) p;fk = e^fk.

It is not hard to solve the equations

(5.4) 9uk = fk
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with Uk that themselves transform as the f k do in (5.3). Indeed, using (5.3), (5.4)
reduces to an equation involving de Rham's d operator rather than the Dolbeault
9 operator (plus a potential term, when k ^ 0). The question then is whether the
Uk add up to a solution u of (5.1). Again, (5.4) does not uniquely determine Uk
for each k = (&„), notably when all k^ > 0; but even in the ambiguous cases an
optimal choice of Uk is possible, to ensure that ^ Uk does converge (in some sense)
to a solution u of (5.1). All this is explained in [L2].

The second step is a slight generalization. Instead of a ball in I1 one considers
an n C C^ © I1 that fibers into balls. More precisely, if M C C^ is a domain and
R: M -> (0, oo) is a continuous function, the domain

n = {(c,^) e M x l1: |H| < R(Q} cCN xl1

will be called a domain of type (B). Combining the result (and method) of Step 1
with Hormander's theorem on solving 9 in C^, see [Ho, Theorem 4.2], one can show
that Theorem 5.1 holds whenever 0 is a pseudoconvex domain of type (B).

The third, and final step is to consider a general pseudoconvex domain H ^ ^,
and observe that it can be represented as an increasing union of pseudoconvex
domains f^y, all of type (B). Indeed, given N , consider the two complementary
projections 7r,<7 : l1 —> Z1,

7r(z) = (^i , . . . , Z N , 0,...), a(z) = (0,. . . . 0, ZN+i.ZN+2,...),

and
UN = {z € ^ : |K^)|| < dist(7r(^),^n)},

which is a domain of type (B) in l1 = Tr^1)®^1) ^ C^®/1. It is also pseudoconvex,
so that by Step 2 (5.1) has a solution u = u1^ on f^v. The proof is concluded by
constructing a solution u on n out of the solutions ^Ar; this involves a Runge-type
approximation theorem, see [L4].

6. Concluding remarks.

The reader will notice that as far as the infinite dimensional theory of the ~Q
equation is concerned, in spite of the existence of some results, our knowledge is
dwarfed by our ignorance. In this last section we would like to point out what we
consider to be the most urgent questions in the field that should be answered.

First and foremost one should see whether some variant of Theorem 5.1 is true in
the Hilbert space l2 rather than in l1. The space /1 is quite awkward to do analysis in,
for example it does not admit smooth (or even C1) partitions of unity. By constrast,
in Hilbert spaces many tools that one is accustomed to in finite dimensions are
available. However, the proof of Theorem 5.1 would break down in l2 — even if the
role of l1 may not be apparent from the sketch given in section 5. Of course, Theorem
4.4 shows that Lipschitz continuity of / is not sufficient even for the local solvability
of the 9 equation in l2. Instead we offer the conjecture that on pseudoconvex domains
fl in V the 9 equation is solvable if / 6 Co,i(0) is Holder continuous of order p.

Second, it would be important to clarify whether the global condition of Lipschitz
continuity in Theorem 5.1 can be replaced by a local condition such as / € C^i(n).
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In finite dimensions the distinction between local and global conditions is much less
important, since any domain can be exhausted by relatively compact subdomains,
and local conditions have global consequences on these subdomains. However, this
is not so in infinite dimensions, and typically it is very hard if not impossible to
bridge the gap between local and global.

The assumption of Lipschitz continuity in Theorem 5.1 is also unsatisfactory
because it is not holomorphically invariant. In other words, if $ : W —^ n is a
biholomorphism, then / G Co,i(^) may be Lipschitz continuous while $*/ may not
be. Short of proving Theorem 5.1 for general / 6 C^ i(H) one would at least like to
replace Lipschitz continuity by a holomorphically invariant condition.

Finally, most available results on the 9 equation pertain to (0,1) forms /, except
for those in section 4. Many problems in geometry lead to the 9 equation for
(0,2) forms. For example, an extension of the Newlander-Nirenberg theorem on
integrating almost complex structures (see [NN]) to infinite dimensions seems to
require a solution of 9u = / with / a closed (0,2) form. It would therefore be
important to extend Theorem 5.1 to general (0,g)-forms /.
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