We consider the operator in , of the form with a function periodic with respect to a lattice in . We prove that the number of gaps in the spectrum of is finite if . Previously the finiteness of the number of gaps was known for . Various approaches to this problem are discussed.
@article{JEDP_2000____A17_0, author = {Parnovski, Leonid and Sobolev, Alexander V.}, title = {On the {Bethe-Sommerfeld} conjecture}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {17}, pages = {1--13}, publisher = {Universit\'e de Nantes}, year = {2000}, mrnumber = {2002i:35137}, zbl = {01808707}, language = {en}, url = {http://archive.numdam.org/item/JEDP_2000____A17_0/} }
Parnovski, Leonid; Sobolev, Alexander V. On the Bethe-Sommerfeld conjecture. Journées équations aux dérivées partielles (2000), article no. 17, 13 p. http://archive.numdam.org/item/JEDP_2000____A17_0/
[1] On the lattice point problem for ellipsoids, Acta Arithm. 80 (1997), 101-125. | MR | Zbl
, ,[2] A remark on two dimensional periodic potentials, Comment. Math. Helvetici 57 (1982), 130-134. | MR | Zbl
, ,[3] Lattice points, Longman 1987.
, , ,[4] Lattice point problems and the central limit theorem in Eucledian spaces, Documenta Mathematica, Extra Volume ICM 1998, III, 5245-255. | Zbl
,[5] Spectral theory of Laplace-Beltrami operators with periodic metrics, J. Diff. Eq. 133 (1997), 15-29. | MR | Zbl
,[6] Asymptotics of the density of states for the Schrödinger operator with periodic electric potential, Duke Math. J. 92 (1998), 1-60. | MR | Zbl
, ,[7] Sur les points à coordonnées entières dans les ellipsoïdes à plusieurs dimensions, Bull. Intern. Acad. Sci. Bohéme (1928).
,[8] Analytic perturbation theory for a periodic potential, Izv. Akad. Nauk SSSR Ser. Mat., 53 (1989), No 1, 45-65 ; English transl. : Math. USSR Izv., 34 (1990), No 1, 43-63. | Zbl
,[9] Perturbation theory for the Schrödinger operator with a periodic potential, Lecture Notes in Math. vol 1663, Springer Berlin 1997. | Zbl
,[10] On the number of points of a given lattice in a random hypersphere, Quart. J. Math. Oxford 2, 4 (1953), 178-189. | MR | Zbl
, ,[11] Lattice points in large convex bodies, II, Acta Arithmetica, 62 (1992), 285-295. | MR | Zbl
, ,[12] Floquet theory for partial differential equations, Birkhäuser, Basel, 1993. | MR | Zbl
,[13] Zur analytischen Zahlentheorie der definiten quadratischen Formen (Über die Gitterpunkte in einem mehrdimensionalen Ellipsoid), Sitzber. Preuss. Akad. Wiss. 31 (1915), 458-476. | JFM
,[14] Über die Gitterpunkte in einem mehrdimensionalen Ellipsoid, Math. Z. 21 (1924), 126-132. | JFM
,[15] Asymptotics of the density of states for the Schrödinger operator with periodic electromagnetic potential, J. Math. Phys. 38 (1997), 4023-4051. | MR | Zbl
,[16] On the Bethe-Sommerfeld conjecture for the polyharmonic operator, to appear in Duke Math. J. | Zbl
, ,[17] Perturbation theory and the Bethe-Sommerfeld conjecture, CMAIA report No : 2000-05, 2000.
, ,[18] A remark on the spectral structure of the two dimensional Schrödinger operator with a periodic potential, Zap. Nauchn. Sem. LOMI AN SSSR 109 (1981), 131-133 (Russian). | MR | Zbl
, ,[19] Methods of modern mathematical physics, IV, Academic Press, New York, 1975. | Zbl
, ,[20] Finiteness of the number of gaps in the spectrum of the multi-dimensional polyharmonic operator with a periodic potential, Mat. Sb. 113 (155) (1980), 131-145 ; Engl. transl. : Math. USSR Sb. 41 (1982). | Zbl
,[21] Geometrical and arithmetical methods in the spectral theory of the multi-dimensional periodic operators, Proc. Steklov Math. Inst. Vol. 171, 1984. | Zbl
,[22] The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Inv. Math. 80 (1985), 107-121. | MR | Zbl
,[23] Asymptotic formulas for the eigenvalues of a periodic Schrödinger operator and the Bethe-Sommerfeld conjecture, Funkt. Anal. i Prilozhen. 21 (1987), 1-15 (in Russian) ; Engl. transl. : Functional Anal. Appl. 21 (1987), 87-99. | Zbl
,[24] Asymptotic estimates of the densities of lattice k-packings and k-coverings, and the structure of the spectrum of the Schrödinger operator with a periodic potential, Dokl. Akad. Nauk SSSR, 276 (1984), No 1 ; English transl. : Soviet Math. Dokl., 29 (1984), No 3, 457-460. | Zbl
,[25] On spectra of multi-dimensional pseudo-differential periodic operators, Vestn. Mosk. Univ. Ser. 1 Mat, Mekh, No 3 (1985), 80-81 (Russian). | MR | Zbl
,