The solution of Kato's conjecture (after Auscher, Hofmann, Lacey, McIntosh and Tchamitchian)
Journées équations aux dérivées partielles (2001), article no. 14, 14 p.

Kato’s conjecture, stating that the domain of the square root of any accretive operator L=-div(A) with bounded measurable coefficients in n is the Sobolev space H 1 ( n ), i.e. the domain of the underlying sesquilinear form, has recently been obtained by Auscher, Hofmann, Lacey, McIntosh and the author. These notes present the result and explain the strategy of proof.

@article{JEDP_2001____A14_0,
     author = {Tchamitchian, Philippe},
     title = {The solution of Kato's conjecture (after Auscher, Hofmann, Lacey, McIntosh and Tchamitchian)},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     publisher = {Universit\'e de Nantes},
     year = {2001},
     doi = {10.5802/jedp.598},
     zbl = {01808690},
     mrnumber = {1843415},
     language = {en},
     url = {http://www.numdam.org/item/JEDP_2001____A14_0}
}
Tchamitchian, Philippe. The solution of Kato's conjecture (after Auscher, Hofmann, Lacey, McIntosh and Tchamitchian). Journées équations aux dérivées partielles (2001), article  no. 14, 14 p. doi : 10.5802/jedp.598. http://www.numdam.org/item/JEDP_2001____A14_0/

[ACT] Auscher, P., Coulhon, T., Tchamitchian, P. Absence de principe du maximum pour certaines équations paraboliques complexes, Coll. Math., 171 1996, 87-95. | MR 1397370 | Zbl 0960.35011

[AHLT] Auscher, P., Hofmann, S., Lewis, J., Tchamitchian, P. Extrapolation of Carleson measures and the analyticity of Kato's square root operator, Acta Math., to appear. | MR 1879847 | Zbl 01730745

[AHLMT] Auscher, P., Hofmann, S., Lacey, M., Mcintosh, A., Tchamitchian, P. The solution of the Kato square root problem for second order elliptic operators on n , submitted.

[AHLLMT] Auscher, P., Hofmann, S., Lacey, M., Lewis, J., Mcintosh, A., Tchamitchian, P. La solution des conjectures de Kato, C. R. Acad. Sci. Paris, 327, Série I (2001). | MR 1841892

[AMT] Auscher, P., Mcintosh, A., Tchamitchian, P. Heat kernel of complex elliptic operators and applications, J. Funct. Anal., 152 1998, 22-73. | MR 1600066 | Zbl 0919.35035

[AT95] Auscher, P., Tchamitchian, P. Calcul fonctionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux), Ann. Inst. Fourier, 45 1995, 721-778. | Numdam | MR 1340951 | Zbl 0819.35028

[AT] Auscher, P., Tchamitchian, P. Square root problem for divergence operators and related topics, Astérisque 249, Société Mathématique de France, 1998. | MR 1651262 | Zbl 0909.35001

[C] Calderón, A. P. Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 1965, 1092-1099. | MR 177312 | Zbl 0151.16901

[CDM] Coifman, R., Deng, D., Meyer, Y. Domaine de la racine carrée de certains opérateurs différentiels accrétifs, Ann. Inst. Fourier 33 1983, 123-134. | Numdam | MR 699490 | Zbl 0497.35088

[CJ] Christ, M., Journé, J.-L. Polynomial growth estimates for multilinear singular integral operators, Acta Math. 159 1987, 51-80. | MR 906525 | Zbl 0645.42017

[CMM] Coifman, R., Mcintosh, A., Meyer, Y. L’intégrale de Cauchy définit un opérateur borné sur L 2 () pour les courbes lipschitziennes, Ann. Math. 116 1982, 361-387. | MR 672839 | Zbl 0497.42012

[FJK] Fabes, E., Jerison, D., Kenig, C. Multilinear square functions and partial differential equations, Amer. J. of Math. 107 1985, 1325-1367. | MR 815765 | Zbl 0655.35007

[J] Journé, J.-L. Remarks on the square root problem, Pub. Math. 35 1991, 299-321. | MR 1103623 | Zbl 0739.47009

[K] Kato, T. Fractional powers of dissipative operators, J. Math. Soc. Japan 13 1961, 246-274. | MR 138005 | Zbl 0113.10005

[KM] Kenig, C., Meyer, Y. The Cauchy integral on Lipschitz curves and the square root of second order accretive operators are the same, Recent Progress in Fourier Analysis (I. Peral, ed.), Math. Studies 111, North Holland, 1985, 123-145. | MR 848144 | Zbl 0641.47039

[M72] Mcintosh, A. On the Comparability of A 1/2 and A *1/2 , Proc. Amer. Math. Soc. 32 1972, 430-434. | MR 290169 | Zbl 0248.47020

[M82] Mcintosh, A. On representing closed accretive sesquilinear forms as A 1/2 u,A *1/2 v, Collège de France Seminar, Volume III (H. Brezis and J.-L. Lions, eds.), Research Notes in Mathematics 70, Pitman, 1982, 252-267. | MR 670278 | Zbl 0515.47013

[M83] Mcintosh, A. Square roots of operators and applications to hyperbolic PDE, Miniconference on Operator Theory and Partial Differential Equations (Canberra), Center for Math. and Appl., The Australian National University, 1983. | MR 757577 | Zbl 0565.35064

[M85] Mcintosh, A. Square roots of elliptic operators, J. Funct. Anal. 61 1985,307-327. | MR 820618 | Zbl 0592.47043

[M86] Mcintosh, A. Operators which have an H functional calculus, Miniconference on Operator Theory and Partial Differential Equations (Canberra), Center for Math. and Appl., The Australian National University, 1986. | MR 912940 | Zbl 0634.47016

[S] Semmes, S. Square function estimates and the T(b) Theorem, Proc. Amer. Math. Soc. 110 1990, 3, 721-726. | MR 1028049 | Zbl 0719.42023

[Y] Yagi, A. Coïncidence entre des espaces d'interpolation et des domaines de puissances fractionnaires d'opérateurs, C. R. Acad. Sci. Paris 299, Série I 1984, 173-176. | MR 759225 | Zbl 0563.46042