We give an overview of the ideas central to some recent developments in the ergodic theory of the stochastically forced Navier Stokes equations and other dissipative stochastic partial differential equations. Since our desire is to make the core ideas clear, we will mostly work with a specific example : the stochastically forced Navier Stokes equations. To further clarify ideas, we will also examine in detail a toy problem. A few general theorems are given. Spatial regularity, ergodicity, exponential mixing, coupling for a SPDE, and hypoellipticity are all discussed.
@article{JEDP_2003____A11_0, author = {Mattingly, Jonathan}, title = {On recent progress for the stochastic {Navier} {Stokes} equations}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {11}, pages = {1--52}, publisher = {Universit\'e de Nantes}, year = {2003}, doi = {10.5802/jedp.625}, mrnumber = {2050597}, zbl = {02079446}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jedp.625/} }
TY - JOUR AU - Mattingly, Jonathan TI - On recent progress for the stochastic Navier Stokes equations JO - Journées équations aux dérivées partielles PY - 2003 SP - 1 EP - 52 PB - Université de Nantes UR - http://archive.numdam.org/articles/10.5802/jedp.625/ DO - 10.5802/jedp.625 LA - en ID - JEDP_2003____A11_0 ER -
Mattingly, Jonathan. On recent progress for the stochastic Navier Stokes equations. Journées équations aux dérivées partielles (2003), article no. 11, 52 p. doi : 10.5802/jedp.625. http://archive.numdam.org/articles/10.5802/jedp.625/
[Arn98] Random dynamical systems. Springer-Verlag, Berlin,1998 | MR | Zbl
[AS03] Navier-stokes equation controlled by degenerate forcing: Controllabillity in finite-dimentional projections. Preprint, 2003. | MR
.[Bak02] Existence and uniqueness of stationary solution of %nonlinear stochastic differential equation with memory. Theory Probab. Appl, 47(4):764-769, 2002. | MR | Zbl
.[Bax91] Statistical equilibrium and two-point motion for a stochastic flow of diffeomorphisms. In Spatial stochastic processes, volume 19 of Progress in Probability, pages 189-218. Birkhäuser Boston, Boston, MA, 1991. | MR | Zbl
.[Bel95] Degenerate stochastic differential equations and hypoellipticity. Longman, Harlow, 1995. | MR | Zbl
.[BKL00] Probabilistic estimates for the two-dimensional stochastic Navier-Stokes equations.J. Statist. Phys., 100(3-4):743-756, 2000. | MR | Zbl
.[BKL01] Ergodicity of the 2D Navier-Stokes equations with random forcing. Comm. Math. Phys., 224(1):65-81, 2001. Dedicated to Joel L. Lebowitz. | MR | Zbl
.[BKL02] Exponential mixing of the 2D stochastic Navier-Stokes dynamics. Comm. Math. Phys., 230(1):87-132, 2002. | MR | Zbl
.[BM03] Stationary solutions of stochastic differential equation with memory and stochastic partial differential equations. Preprint, 2003. | Zbl
.[CDF97] Random attractors. J. Dynam. Differential Equations, 9(2):307-341, 1997. | MR | Zbl
.[Cer99] Ergodicity for stochastic reaction-diffusion systems with polynomial coefficients. Stochastics Stochastics Rep., 67(1-2):17-51, 1999. | MR | Zbl
.[CF88] Navier-Stokes Equations. University of Chicago Press, Chicago, 1988. | MR | Zbl
.[CFNT89] Integral manifolds and inertial manifolds for dissipative partial differential equations, volume 70 of Applied Mathematical Sciences. Springer-Verlag, New York-Berlin, 1989. | MR | Zbl
.[CFS82] Ergodic theory, volume 245 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York-Berlins, 1982. | MR | Zbl
.[CK97] Stationary solutions of nonlinear stochastic evolution equations. Stochastic Anal. Appl., 15(5):671-699, 1997. | MR | Zbl
.[DG95] Applied analysis of the Navier-Stokes equations}. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1995. | MR | Zbl
.[DLJ88] The statistical equilibrium of an isotropic stochastic flow with negative Lyapounov exponents is trivial. In Séminaire de Probabilités, XXII, volume 1321 of Lecture Notes in Math., pages 175-185. Springer, Berlins, 1988. | Numdam | MR | Zbl
.[DPZ92] Stochastic Equations in Infinite Dimensions. Cambridge, 1992. | MR | Zbl
.[DPZ96] Ergodicity for Infinite Dimensional Systems. Cambridge, 1996.
.[DPZ02] Second order partial differential equations in Hilbert spaces, volume 293 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2002. | MR | Zbl
.[DT95] Exponential decay rate of the power spectrum for solutions of the Navier-Stokes equations. Phys. Fluids, 7(6):1384-1390, 1995. | MR | Zbl
.[Dud76] Probabilities and metrics. Matematisk Institut, Aarhus Universitet, Aarhus, 1976. Convergence of laws on metric spaces, with a view to statistical testing, Lecture Notes Series, No. 45. | MR | Zbl
.[EFNT94] Exponential Attractors for dissipative Evolution equations. Research in Applied Mathematics. John Wiley and Sons and Masson, 1994. | MR | Zbl
.[EH01] Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise. Comm. Math. Phys., 219(3):523-565, 2001. | MR | Zbl
.[EKMS00] Invariant measures for Burgers equation with stochastic forcing. Ann. of Math. (2), 151(3):877-960, 2000. | MR | Zbl
.[EL02] Gibbsian dynamics and invariant measures for stochastic dissipative PDEs. J. Statist. Phys., 108(5/6):1125-1156, 2002. | MR | Zbl
.[EM01] Ergodicity for the Navier-Stokes equation with degenerate random forcing: finite-dimensional approximation. Comm. Pure Appl. Math., 54(11):1386-1402, 2001. | MR | Zbl
.[EMS01] Gibbsian dynamics and ergodicity for the stochastic forced navier-stokes equation. Comm. Math. Phys., 224(1), 2001. | MR | Zbl
.[EVE00] Generalized flows, intrinsic stochasticity, and turbulent transport. Proc. Natl. Acad. Sci. USA, 97(15):8200-8205 (electronic), 2000. | MR | Zbl
.[Fer97] Ergodic results for stochastic Navier-Stokes equation. Stochastics and Stochastics Reports, 60(3-4):271-288, 1997. | MR | Zbl
.[FG98] Kolmogorov equation associated to a stochastic Navier-Stokes equation. J. Funct. Anal., 160(1):312-336, 1998. | MR | Zbl
.[Fla94] Dissipativity and invariant measures for stochastic Navier-Stokes equations. NoDEA, 1:403-426, 1994. | MR | Zbl
.[FM95] Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Comm. in Math. Phys., 171:119-141, 1995. | MR | Zbl
.[FP67] Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova, 39:1-34, 1967. | Numdam | MR | Zbl
.[FST88] Inertial manifolds for nonlinear evolutionary equations. J. Differential Equations, 73(2):309-353s, 1988. | MR | Zbl
.[FT89] Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal., 87(2):359-369, 1989. | MR | Zbl
.[Hai02] Exponential mixing properties of stochastic PDEs through asymptotic coupling. Probab. Theory Related Fields, 124(3):345-380, 2002. | MR | Zbl
.[Jur97] Geometric control theory, volume 52 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. | MR | Zbl
.[Kif86] Ergodic theory of random transformations. Birkhäuser Boston Inc., Boston, MAs, 1986. | MR | Zbl
.[KPS02] A coupling approach to randomly forced nonlinear PDEs. II. Comm. Math. Phys., 230(1):81-85, 2002. | MR | Zbl
.[KS00] Stochastic dissipative PDEs and Gibbs measures. Comm. Math. Phys., 213(2):291-330, 2000. | MR | Zbl
.[KS02] Coupling approach to white-forced nonlinear PDEs. J. Math. Pures Appl. (9), 81(6):567-602, 2002. | MR | Zbl
.[Kuk03] Eulerian limit for 2d statistical hydrodynamics. Preprint, 2003. | MR
.[KS84] Applications of the Malliavin calculus. I. In Stochastic analysis (Katata/Kyoto, 1982), spages 271-306. North-Holland, Amsterdam, 1984. | MR | Zbl
.[LJ87] Équilibre statistique pour les produits de difféomorphismes aléatoires indépendants. Ann. Inst. H. Poincaré Probab. Statist., 23(1):111-120, 1987. | Numdam | MR | Zbl
.[LO97] Analyticity of solutions for a generalized Euler equation. J. Differential Equations, 133(2):321-339, 1997. | MR | Zbl
.[Mat98] The Stochastically forced Navier-Stokes equations: energy estimates and phase space contraction}. PhD thesis, Princeton University, 1998.
.[Mat99] Ergodicity of D Navier-Stokes equations with random forcing and large viscosity. Comm. Math. Phys., 206(2):273-288, 1999. | MR | Zbl
.[Mat02a] Contractivity and ergodicity of the random map . Theory of Probability and its Applications, 47(2):388-397, 2002. | MR | Zbl
.[Mat02b] The dissipative scale of the stochastics Navier-Stokes equation: regularization and analyticity. J. Statist. Phys., 108(5-6):1157-1179, 2002. | MR | Zbl
.[Mat02c] Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics. Comm. Math. Phys., 230(3):421-462, 2002. | MR | Zbl
.[MP03] Malliavin calculus and the randomly forced Navier Stokes equation. Preprint, 2003.
.[MR] Stochastic navier-stokes equations for turbulent flows. Preprint. | MR
.[MS99] An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equations. Commun. Contemp. Math., 1(4):497-516, 1999. | MR | Zbl
.[MS03] The small scales of the stochastic navier stokes equations under rough forcing. Preprint, 2003.
.[MSH02] Ergodicity for SDEs and approximations: Locally lipschitz vector fields and degenerate noise. Stochastic Process. Appl. 101, no. 2, 185-232, 2002. | MR | Zbl
.[MT93] Markov Chains and Stochastic Stability. Springer-Verlag, 1993. | MR | Zbl
.[MY02] Ergodic theory of infinite dimensional systems with applications to dissipative parabolic PDEs. Comm. Math. Phys., 227(3):461-481, 2002. | MR | Zbl
.[Nor86] Simplified Malliavin calculus. In Séminaire de Probabilités, XX, 1984/85, pages 101-130. Springer, Berlin,s 1986. | Numdam | MR | Zbl
.[Oks92] Stochastic Differential Equations. Springer-Verlag, 3nd edition, 1992. | MR | Zbl
.[OT00] Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in . J. Funct. Anal., 172(1):1-18, 2000. | MR | Zbl
.[Rom02] Ergodicity of the finite dimensional approximation of the 3d navier-stokes equations forced by a degenerate. Peprint, 2002.
.[RY94] Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, second edition, 1994. | MR | Zbl
.[Sch97] Qualitative properties for the stochastic Navier-Stokes equation. Nonlinear Anal., 28(9):1545-1563, 1997. | MR | Zbl
.[Shi02] A version of the law of large number and applications. In Probabilistic Methods in Fluids. World Scientific, 2002. | MR | Zbl
.[Sin94] Topics in ergodic theory, volume 44 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1994. | MR | Zbl
.[Tem95] Navier-Stokes equations and nonlinear functional analysis, volume 66 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 1995. | MR | Zbl
.[VF88] Mathematical Problems of Statistical Hydrodynamics. Kluwer Academic Publishers, 1988. Updated version of Russian original of same name. | Zbl
.Cité par Sources :