Mathematics of Invisibility
Journées équations aux dérivées partielles (2007), article no. 5, 11 p.

We will describe recent some of the recent theoretical progress on making objects invisible to electromagnetic waves based on singular transformations.

@article{JEDP_2007____A5_0,
     author = {Greenleaf, Allan and Kurylev, Yaroslav and Lassas, Matti and Uhlmann, Gunther},
     title = {Mathematics of Invisibility},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2007},
     doi = {10.5802/jedp.44},
     language = {en},
     url = {http://www.numdam.org/item/JEDP_2007____A5_0}
}
Greenleaf, Allan; Kurylev, Yaroslav; Lassas, Matti; Uhlmann, Gunther. Mathematics of Invisibility. Journées équations aux dérivées partielles (2007), article  no. 5, 11 p. doi : 10.5802/jedp.44. http://www.numdam.org/item/JEDP_2007____A5_0/

[AP] K. Astala and L. Päivärinta: Calderón’s inverse conductivity problem in the plane. Annals of Math., 163 (2006), 265-299. | MR 2195135 | Zbl 1111.35004

[ALP] K. Astala, M. Lassas, and L. Päiväirinta, Calderón’s inverse problem for anisotropic conductivity in the plane, Comm. Partial Diff. Eqns. 30 (2005), 207–224. | MR 2131051 | Zbl 1129.35483

[ALP2] K. Astala, M. Lassas, and L. Päivärinta, Limits of visibility and invisibility for Calderón’s inverse problem in the plane, in preparation.

[BT] R. Brown and R. Torres, Uniqueness in the inverse conductivity problem for conductivities with 3/2 derivatives in L p ,p>2n, J. Fourier Analysis Appl., 9 (2003), 1049-1056. | MR 2026763 | Zbl 0867.35111

[BU] R. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem with less regular conductivities in two dimensions, Comm. PDE, 22 (1997), 1009-10027. | MR 1452176 | Zbl 0884.35167

[C] A.P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), 65–73, Soc. Brasil. Mat., Rio de Janeiro, 1980. | MR 590275

[CPSSP] S. Cummer, B.-I. Popa, D. Schurig, D. Smith, and J. Pendry, Full-wave simulations of electromagnetic cloaking structures, Phys. Rev. E, 74 (2006), 036621.

[GKLU1] A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Full-wave invisibility of active devices at all frequencies. Comm. Math. Phys. 275, (2007), 749-789. | MR 2336363 | Zbl 1151.78006

[GKLU2] A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Phys. Rev. Lett. 99, 183901 (2007).

[GKLU3] A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Effectiveness and improvement of cylindrical cloaking with the SHS lining. Optics Express 15, (2007), 12717-12734.

[GLU1] A. Greenleaf, M. Lassas, and G. Uhlmann, The Calderón problem for conormal potentials, I: Global uniqueness and reconstruction, Comm. Pure Appl. Math 56, (2003), no. 3, 328–352. | MR 1941812 | Zbl 1061.35165

[GLU2] A. Greenleaf, M. Lassas, and G. Uhlmann, Anisotropic conductivities that cannot detected in EIT, Physiolog. Meas. (special issue on Impedance Tomography), 24, (2003), 413-420.

[GLU3] A. Greenleaf, M. Lassas, and G. Uhlmann, On nonuniqueness for Calderón’s inverse problem, Math. Res. Lett. 10 (2003), no. 5-6, 685-693. | MR 2024725 | Zbl 1054.35127

[KKM] T. Kilpeläinen, J. Kinnunen, and O. Martio, Sobolev spaces with zero boundary values on metric spaces. Potential Anal. 12 (2000), no. 3, 233–247. | MR 1752853 | Zbl 0962.46021

[KSVW] R. Kohn, H. Shen, M. Vogelius, and M. Weinstein, Cloaking via change of variables in Electrical Impedance Tomography, preprint 2007. | MR 2384775

[KV] R. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, in Inverse Problems, SIAM-AMS Proc., 14 (1984). | MR 773707 | Zbl 0573.35084

[LaU] M. Lassas and G. Uhlmann, Determining Riemannian manifold from boundary measurements, Ann. Sci. École Norm. Sup., 34 (2001), no. 5, 771–787. | Numdam | MR 1862026 | Zbl 0992.35120

[LTU] M. Lassas, M. Taylor, and G. Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Geom. Anal., 11 (2003), 207-222. | MR 2014876 | Zbl 1077.58012

[LeU] J. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42 (1989), 1097–1112. | MR 1029119 | Zbl 0702.35036

[Le] U. Leonhardt, Optical Conformal Mapping, Science, 312, 1777-1780. | MR 2237569

[MBW] G. Milton, M. Briane, and J. Willis, On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys., 8 (2006), 248.

[MN] G. Milton and N.-A. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. Royal Soc. A, 462 (2006), 3027–3059. | MR 2263683 | Zbl 1149.00310

[N] A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., 143 (1996), 71-96. | MR 1370758 | Zbl 0857.35135

[OPS] P. Ola, L. Päivärinta, E. Somersalo, An inverse boundary value problem in electrodynamics. Duke Math. J., 70 (1993), no. 3, 617–653. | MR 1224101 | Zbl 0804.35152

[PPU] L. Päivärinta, A. Panchenko and G. Uhlmann, Complex geometrical optics for Lipschitz conductivities, Revista Matematica Iberoamericana, 19(2003), 57-72. | MR 1993415 | Zbl 1055.35144

[PSS1] J.B. Pendry, D. Schurig, and D.R. Smith, Controlling electromagnetic fields, Science, 312, 1780-1782. | MR 2237570

[PSS2] J.B. Pendry, D. Schurig, and D.R. Smith, Calculation of material properties and ray tracing in transformation media, Opt. Exp., 14, (2006), 9794.

[Sc] D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science, 314 (2006), 977-980.

[Sh] V. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, Negative index of refraction in optical metamaterials Optics Letters, 30 (2005), 3356-3358

[SuU] Z. Sun and G. Uhlmann, Anisotropic inverse problems in two dimensions", Inverse Problems, 19 (2003), 1001-1010. | MR 2024685 | Zbl 1054.35139

[S] J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math. 43 (1990), 201–232. | MR 1038142 | Zbl 0709.35102

[SyU] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem. Ann. of Math., 125 (1987), 153–169. | MR 873380 | Zbl 0625.35078

[W] R. Weder, A Rigorous Time-Domain Analysis of Full–Wave Electromagnetic Cloaking (Invisibility), preprint 2007.