Asymptotic behaviors of internal waves
Journées équations aux dérivées partielles (2008), article no. 5, 17 p.

We present here a systematic method of derivation of asymptotic models for internal waves, that is, for the propagation of waves at the interface of two fluids of different densities. Many physical regimes are investigated, depending on the physical parameters (depth of the fluids, amplitude and wavelength of the interface deformations). This systematic method allows us to recover the many models existing in the literature and to derive some new models, in particular in the case of large amplitude internal waves and two-dimensional interfaces. We also provide rigorous consistency results for these models. We refer to [5] for full details.

@article{JEDP_2008____A5_0,
     author = {Bona, J. and Lannes, D. and Saut, J.-C.},
     title = {Asymptotic behaviors of internal waves},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2008},
     doi = {10.5802/jedp.49},
     language = {en},
     url = {http://www.numdam.org/item/JEDP_2008____A5_0}
}
Bona, J.; Lannes, D.; Saut, J.-C. Asymptotic behaviors of internal waves. Journées équations aux dérivées partielles (2008), article  no. 5, 17 p. doi : 10.5802/jedp.49. http://www.numdam.org/item/JEDP_2008____A5_0/

[1] B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water-waves and asymptotics, Invent. math. 171 (2008) 485-541. | MR 2372806 | Zbl 1131.76012

[2] T.B. Benjamin and T.J. Bridges, Reappraisal of the KelvinHelmholtz problem. Part 1. Hamiltonian structure, J. Fluid Mech. 333 (1997) 301-325. | MR 1437021 | Zbl 0892.76027

[3] J. L. Bona, T. Colin and D. Lannes, Long wave approximations for water-waves, Arch. Rational Mech. Anal. 178 (2005) 373-410. | MR 2196497 | Zbl 1108.76012

[4] J. L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Part I. Derivation and linear theory, J. Nonlinear Sci. 12 (2002) 283-318. | MR 1915939 | Zbl 1022.35044

[5] J. Bona, D. Lannes and J.-C. Saut, Asymptotic models for internal waves, J. Math. Pures Appl. 89 (2008) 538-566. | MR 2424620 | Zbl 1138.76028

[6] W. Choi and R. Camassa, Weakly nonlinear internal waves in a two-fluid system, J. Fluid Mech. 313 (1996) 83-103. | MR 1389977 | Zbl 0863.76015

[7] W. Choi and R. Camassa, Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech. 396 (1999) 1-36. | MR 1719287 | Zbl 0973.76019

[8] P. Constantin, On the Euler equations of incompressible fluids, Bull. AMS 44, 4, (2007), 603-621. | MR 2338368 | Zbl 1132.76009

[9] W. Craig, P. Guyenne, and H. Kalisch, Hamiltonian long-wave expansions for free surfaces and interfaces, Comm. Pure. Appl. Math. 58 (2005) 1587-1641. | MR 2177163 | Zbl 1151.76385

[10] W. Craig, U. Schanz and C. Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincaré, Anal. Non Linéaire 14 (1997) 615-667. | Numdam | MR 1470784 | Zbl 0892.76008

[11] W. Craig, C. Sulem and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity 5 (1992) 497-522. | MR 1158383 | Zbl 0742.76012

[12] K.R. Helfrich and W.K. Melville, Long nonlinear internal waves, Annual Review of Fluid Mechanics 38 (2006) 395-425. | MR 2206980 | Zbl 1098.76018

[13] T. Iguchi, N. Tanaka and A. Tani, On the two-phase free boundary problem for two-dimensional water waves, Math. Ann. 309 (1997) 199-223. | MR 1474190 | Zbl 0897.76017

[14] D. Lannes, Well-posedness of the water-waves equations, J. Amer. Math. Soc. 18 (2005) 605-654. | MR 2138139 | Zbl 1069.35056

[15] H.Y. Nguyen and F. Dias, A Boussinesq system for two-way propagation of interfacial waves, preprint , (2007). | MR 2455611

[16] K. Ohi and T. Iguchi, A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation, Discrete Contin. Dyn. Syst. 23 (2009) 1205-1240. | MR 2461848 | Zbl 1155.35416

[17] C. Sulem and P.-L. Sulem, Finite time analyticity for the two- and three-dimensional Rayleigh-Taylor instability, Trans. American Math. Soc. 287 (1985) 127-160. | MR 766210 | Zbl 0517.76051

[18] C. Sulem, P.-L. Sulem, C. Bardos and U. Frisch, Finite time analyticity for the two- and three-dimensional Kelvin-Helmholtz instability, Comm. Math. Phys. 80 (1981) 485-516. | MR 628507 | Zbl 0476.76032

[19] V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 2 (1968) 190-194.