Thin vortex tubes in the stationary Euler equation
Journées équations aux dérivées partielles (2013), article no. 4, 13 p.

In this paper we outline some recent results concerning the existence of steady solutions to the Euler equation in 3 with a prescribed set of (possibly knotted and linked) thin vortex tubes.

On expose quelques nouveaux résultats sur l’existence de solutions stationnaires à l’équation d’Euler sur 3 avec un ensemble de tubes de vorticité étroits (qui peuvent être noués et entrelacés) qu’on peut prescrire a priori.

@article{JEDP_2013____A4_0,
     author = {Enciso, Alberto and Peralta-Salas, Daniel},
     title = {Thin vortex tubes in the stationary Euler equation},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2013},
     doi = {10.5802/jedp.100},
     language = {en},
     url = {http://www.numdam.org/item/JEDP_2013____A4_0}
}
Enciso, Alberto; Peralta-Salas, Daniel. Thin vortex tubes in the stationary Euler equation. Journées équations aux dérivées partielles (2013), article  no. 4, 13 p. doi : 10.5802/jedp.100. http://www.numdam.org/item/JEDP_2013____A4_0/

[1] V.I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier 16 (1966) 319–361. | Numdam | MR 202082 | Zbl 0148.45301

[2] V.I. Arnold, B. Khesin, Topological methods in hydrodynamics, Springer, New York, 1999. | MR 1612569 | Zbl 0902.76001

[3] D. Córdoba, C. Fefferman, On the collapse of tubes carried by 3D incompressible flows, Comm. Math. Phys. 222 (2001) 293–298. | MR 1859600 | Zbl 0999.76020

[4] J. Deng, T.Y. Hou, X. Yu, Geometric properties and nonblowup of 3D incompressible Euler flow. Comm. PDE 30 (2005) 225–243. | MR 2131052 | Zbl 1142.35549

[5] A. Enciso, D. Peralta-Salas, Knots and links in steady solutions of the Euler equation, Ann. of Math. 175 (2012) 345–367. | MR 2874645 | Zbl 1238.35092

[6] A. Enciso, D. Peralta-Salas, Existence of knotted vortex tubes in steady Euler flows, arXiv:1210.6271.

[7] A. Enciso, D. Peralta-Salas, Non-existence and structure for Beltrami fields with nonconstant proportionality factor, arXiv:1402.6825.

[8] A. González-Enríquez, R. de la Llave, Analytic smoothing of geometric maps with applications to KAM theory, J. Differential Equations 245 (2008) 1243–1298. | MR 2436830 | Zbl 1160.37024

[9] H. von Helmholtz, Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math. 55 (1858) 25–55. | Zbl 055.1448cj

[10] D. Kleckner, W.T.M. Irvine, Creation and dynamics of knotted vortices, Nature Phys. 9 (2013) 253–258.

[11] R.B. Pelz, Symmetry and the hydrodynamic blow-up problem, J. Fluid Mech. 444 (2001) 299–320. | MR 1856973 | Zbl 1002.76095

[12] W. Thomson (Lord Kelvin), Vortex Statics, Proc. R. Soc. Edinburgh 9 (1875) 59–73 (reprinted in: Mathematical and physical papers IV, Cambridge University Press, Cambridge, 2011, pp. 115–128).

[13] N. Nadirashvili, Liouville theorem for Beltrami flow, Geom. Funct. Anal. 24 (2014) 916–921.