Nous donnons une preuve de la classification des représentations automorphes discrètes de
We prove the classification of discrete automorphic representations of
Accepté le :
Publié le :
DOI : 10.5802/jep.99
Keywords: Automorphic forms, trace formula, endoscopy, Arthur multiplicity formula, Siegel-Hilbert modular forms
Mot clés : Formes automorphes, formule des traces, endoscopie, formule de multiplicité d’Arthur, formes modulaires de Siegel-Hilbert
@article{JEP_2019__6__469_0, author = {Gee, Toby and Ta{\"\i}bi, Olivier}, title = {Arthur{\textquoteright}s multiplicity formula for ${\protect \bf GSp}_4$ and restriction to ${\protect \bf Sp}_4$}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {469--535}, publisher = {Ecole polytechnique}, volume = {6}, year = {2019}, doi = {10.5802/jep.99}, zbl = {07088011}, mrnumber = {3991897}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jep.99/} }
TY - JOUR AU - Gee, Toby AU - Taïbi, Olivier TI - Arthur’s multiplicity formula for ${\protect \bf GSp}_4$ and restriction to ${\protect \bf Sp}_4$ JO - Journal de l’École polytechnique - Mathématiques PY - 2019 SP - 469 EP - 535 VL - 6 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.99/ DO - 10.5802/jep.99 LA - en ID - JEP_2019__6__469_0 ER -
%0 Journal Article %A Gee, Toby %A Taïbi, Olivier %T Arthur’s multiplicity formula for ${\protect \bf GSp}_4$ and restriction to ${\protect \bf Sp}_4$ %J Journal de l’École polytechnique - Mathématiques %D 2019 %P 469-535 %V 6 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.99/ %R 10.5802/jep.99 %G en %F JEP_2019__6__469_0
Gee, Toby; Taïbi, Olivier. Arthur’s multiplicity formula for ${\protect \bf GSp}_4$ and restriction to ${\protect \bf Sp}_4$. Journal de l’École polytechnique - Mathématiques, Tome 6 (2019), pp. 469-535. doi : 10.5802/jep.99. https://www.numdam.org/articles/10.5802/jep.99/
[AMR18] Paquets d’Arthur des groupes classiques et unitaires, Ann. Fac. Sci. Toulouse Math. (6), Volume 27 (2018) no. 5, pp. 1023-1105 | DOI | MR | Zbl
[AP06] On certain multiplicity one theorems, Israel J. Math., Volume 153 (2006), pp. 221-245 | DOI | MR | Zbl
[Art01] A stable trace formula. II. Global descent, Invent. Math., Volume 143 (2001) no. 1, pp. 157-220 | DOI | MR | Zbl
[Art02] A stable trace formula. I. General expansions, J. Inst. Math. Jussieu, Volume 1 (2002) no. 2, pp. 175-277 | DOI | MR | Zbl
[Art03] A stable trace formula. III. Proof of the main theorems, Ann. of Math. (2), Volume 158 (2003) no. 3, pp. 769-873 | DOI | MR | Zbl
[Art04] Automorphic representations of
[Art13] The endoscopic classification of representations. Orthogonal and symplectic groups, Colloquium Publications, 61, American Mathematical Society, Providence, RI, 2013 | DOI | Zbl
[AS14] Image of functoriality for general spin groups, Manuscripta Math., Volume 144 (2014) no. 3-4, pp. 609-638 | DOI | MR | Zbl
[Aub95] Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif
[BCGP] Abelian surfaces over totally real fields are potentially modular (in preparation)
[Ber84]
[Bor79] Automorphic
[Bou05] Lie groups and Lie algebras. Chapters 7–9, Elements of Mathematics, Springer-Verlag, Berlin, 2005 | Zbl
[BT65] Groupes réductifs, Publ. Math. Inst. Hautes Études Sci. (1965) no. 27, pp. 55-150 | DOI | Zbl
[BW00] Continuous cohomology, discrete subgroups, and representations of reductive groups, Math. Surveys and Monographs, 67, American Mathematical Society, Providence, RI, 2000 | MR | Zbl
[BZ76] Induced representations of the group
[BZ77] Induced representations of reductive
[CG15] The local Langlands conjecture for
[Che18] On restrictions and extensions of cusp forms (2018) (preliminary draft available at http://gaetan.chenevier.perso.math.cnrs.fr/pub.html)
[CL10] Le lemme fondamental pondéré. I. Constructions géométriques, Compositio Math., Volume 146 (2010) no. 6, pp. 1416-1506 | DOI | Zbl
[Clo84] Théorème d’Atiyah-Bott pour les variétés
[Clo86] On limit multiplicities of discrete series representations in spaces of automorphic forms, Invent. Math., Volume 83 (1986) no. 2, pp. 265-284 | DOI | MR | Zbl
[CS80] The unramified principal series of
[GJ78] A relation between automorphic representations of
[GK82]
[GT10] The local Langlands conjecture for Sp(4), Internat. Math. Res. Notices (2010) no. 15, pp. 2987-3038 | DOI | MR | Zbl
[GT11a] The local Langlands conjecture for
[GT11b] Theta correspondences for
[Hal95] On the fundamental lemma for standard endoscopy: reduction to unit elements, Canad. J. Math., Volume 47 (1995) no. 5, pp. 974-994 | DOI | MR | Zbl
[Hen09] Sur la fonctorialité, pour
[HS12] On
[HT01] The geometry and cohomology of some simple Shimura varieties, Annals of Math. Studies, 151, Princeton University Press, Princeton, NJ, 2001 | MR | Zbl
[Joh84] Lie algebra cohomology and the resolution of certain Harish-Chandra modules, Math. Ann., Volume 267 (1984) no. 3, pp. 377-393 | DOI | MR | Zbl
[JS77] A non-vanishing theorem for zeta functions of
[JS81] On Euler products and the classification of automorphic forms. II, Amer. J. Math., Volume 103 (1981) no. 4, pp. 777-815 | DOI | MR | Zbl
[Kal15] Global rigid inner forms and multiplicities of discrete automorphic representations, 2015 (arXiv:1501.01667)
[Kim03] Functoriality for the exterior square of
[Knu91] Quadratic and Hermitian forms over rings, Grundlehren Math. Wiss., 294, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[Kot86] Stable trace formula: elliptic singular terms, Math. Ann., Volume 275 (1986) no. 3, pp. 365-399 | DOI | MR | Zbl
[Kri03] The Asai transfer to
[Kri12] Determination of cusp forms on
[KS99] Foundations of twisted endoscopy, Astérisque, 255, Société Mathématique de France, Paris, 1999 | Zbl
[KS12] On splitting invariants and sign conventions in endoscopic transfer, 2012 (arXiv:1201.5658)
[Lab85] Cohomologie,
[Lab99] Cohomologie, stabilisation et changement de base, Astérisque, 257, Société Mathématique de France, Paris, 1999, vi+161 pages | Zbl
[Lan79] Automorphic representations, Shimura varieties, and motives. Ein Märchen, Automorphic forms, representations and
[Lan80] Base change for
[Lan83] Les débuts d’une formule des traces stable, Publications Mathématiques de l’Université Paris VII, 13, Université de Paris VII, U.E.R. de Mathématiques, Paris, 1983 | Zbl
[Lan89] On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups (Math. Surveys Monogr.), Volume 31, American Mathematical Society, 1989, pp. 101-170 | DOI | MR | Zbl
[Lem10] Caractères tordus des représentations admissibles, 2010 (arXiv:1007.3576)
[LL79]
[LMW15] Le lemme fondamental pour l’endoscopie tordue: réduction aux éléments unités, 2015 (arXiv:1506.03383)
[LW13] La formule des traces tordue d’après le Friday Morning Seminar, CRM Monograph Series, 31, American Mathematical Society, Providence, RI, 2013 | Zbl
[LW15] Le lemme fondamental pour l’endoscopie tordue: le cas où le groupe endoscopique non ramifié est un tore, 2015 (arXiv:1511.08606)
[Mez16] Tempered spectral transfer in the twisted endoscopy of real groups, J. Inst. Math. Jussieu, Volume 15 (2016) no. 3, pp. 569-612 | DOI | MR | Zbl
[Mok14] Galois representations attached to automorphic forms on
[MR15] Paquets d’Arthur des groupes classiques complexes, 2015 (arXiv:1507.01432)
[MW89] Le spectre résiduel de
[MW94] Décomposition spectrale et séries d’Eisenstein. Une paraphrase de l’Écriture, Progress in Math., 113, Birkhäuser Verlag, Basel, 1994 | Zbl
[MW06] Sur le transfert des traces d’un groupe classique
[MW16a] Stabilisation de la formule des traces tordue. Vol. 1, Progress in Math., 316, Birkhäuser/Springer, Cham, 2016 | MR | Zbl
[MW16b] Stabilisation de la formule des traces tordue. Vol. 2, Progress in Math., 317, Birkhäuser/Springer, Cham, 2016 | MR | Zbl
[Mœg06] Sur certains paquets d’Arthur et involution d’Aubert-Schneider-Stuhler généralisée, Represent. Theory, Volume 10 (2006), pp. 86-129 | DOI | Zbl
[Mœg11] Multiplicité 1 dans les paquets d’Arthur aux places
[Ngô10] Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes Études Sci. (2010) no. 111, pp. 1-169 | DOI | Zbl
[PR94] Algebraic groups and number theory, Pure and Applied Math., 139, Academic Press, Inc., Boston, MA, 1994 | MR | Zbl
[Ram00] Modularity of the Rankin-Selberg
[Ram02] Modularity of solvable Artin representations of
[Rod73] Whittaker models for admissible representations of reductive
[RV18] A factorization result for classical and similitude groups, Canad. Math. Bull., Volume 61 (2018) no. 1, p. 174–190 | DOI | MR | Zbl
[Sat63] Theory of spherical functions on reductive algebraic groups over
[Ser97] Répartition asymptotique des valeurs propres de l’opérateur de Hecke
[Sha74] The multiplicity one theorem for
[Sha81] On certain
[Sha97] On non-vanishing of twisted symmetric and exterior square
[Sha10] Eisenstein series and automorphic
[She08] Tempered endoscopy for real groups. III. Inversion of transfer and
[She10] Tempered endoscopy for real groups. II. Spectral transfer factors, Automorphic forms and the Langlands program (Adv. Lect. Math. (ALM)), Volume 9, Int. Press, Somerville, MA, 2010, pp. 236-276 | MR | Zbl
[She12] On geometric transfer in real twisted endoscopy, Ann. of Math. (2), Volume 176 (2012) no. 3, pp. 1919-1985 | DOI | MR | Zbl
[Sil78] The Langlands quotient theorem for
[Spr98] Linear algebraic groups, Progress in Math., 9, Birkhäuser Boston, Inc., Boston, MA, 1998 | MR | Zbl
[SS97] Representation theory and sheaves on the Bruhat-Tits building, Publ. Math. Inst. Hautes Études Sci. (1997) no. 85, pp. 97-191 | DOI | MR | Zbl
[SZ14] Langlands classification for
[Taï19] Arthur’s multiplicity formula for certain inner forms of special orthogonal and symplectic groups, J. Eur. Math. Soc. (JEMS), Volume 21 (2019) no. 3, p. 839–871 | MR | Zbl
[vD72] Computation of certain induced characters of
[Vog86] The unitary dual of
[VW90] Intertwining operators for real reductive groups, Adv. in Math., Volume 82 (1990) no. 2, pp. 203-243 | DOI | MR | Zbl
[Wal88] Real reductive groups. I, Pure and Applied Mathematics, 132, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl
[Wal97] Le lemme fondamental implique le transfert, Compositio Math., Volume 105 (1997) no. 2, pp. 153-236 | DOI | MR | Zbl
[Wal03] La formule de Plancherel pour les groupes
[War72] Harmonic analysis on semi-simple Lie groups. I, Grundlehren Math. Wiss., 188, Springer-Verlag, New York-Heidelberg, 1972 | MR | Zbl
[Xu16] On a lifting problem of L-packets, Compositio Math., Volume 152 (2016) no. 9, pp. 1800-1850 | DOI | MR | Zbl
[Xu18] L-packets of quasisplit GSp(2n) and GO(2n), Math. Ann., Volume 370 (2018) no. 1-2, pp. 71-189 | DOI | MR | Zbl
Cité par Sources :