An axiomatic characterization of the Brownian map
[Une caractérisation axiomatique de la carte brownienne]
Journal de l’École polytechnique - Mathématiques, Tome 8 (2021), pp. 609-731.

La carte brownienne est un espace métrique mesuré aléatoire homéomorphe à une sphère, qui est construit en « recollant » les arbres continus décrits respectivement par l’abscisse et l’ordonnée d’un serpent brownien. Nous présentons une construction alternative, reliée au processus d’épluchage ou au cactus brownien, qui produit une surface à partir d’un certain processus de branchement décoré, correspondant à un parcours « en largeur » de la carte brownienne par une exploration.

En utilisant ces idées, nous montrons que la carte brownienne est le seul espace métrique mesuré aléatoire homéomorphe à une sphère possédant certaines propriétés, à savoir l’invariance d’échelle et l’indépendance conditionnelle du côté intérieur et du côté extérieur de certaines « tranches » délimitées par des géodésiques et des bords de boules métriques. Nous formulons aussi une caractérisation en termes du réseau de Lévy produit par une exploration métrique d’un point typique pour la métrique à un autre. Ce résultat est un élément important dans une série d’articles montrant l’équivalence entre la carte brownienne et la sphère en gravité quantique de Liouville de paramètre γ=8/3.

The Brownian map is a random sphere-homeomorphic metric measure space obtained by “gluing together” the continuum trees described by the x and y coordinates of the Brownian snake. We present an alternative “breadth-first” construction of the Brownian map, which produces a surface from a certain decorated branching process. It is closely related to the peeling process, the hull process, and the Brownian cactus.

Using these ideas, we prove that the Brownian map is the only random sphere-homeomorphic metric measure space with certain properties: namely, scale invariance and the conditional independence of the inside and outside of certain “slices” bounded by geodesics and metric ball boundaries. We also formulate a characterization in terms of the so-called Lévy net produced by a metric exploration from one measure-typical point to another. This characterization is part of a program for proving the equivalence of the Brownian map and the Liouville quantum gravity sphere with parameter γ=8/3.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.155
Classification : 60D05
Keywords: Brownian map, Brownian snake, Brownian tree, Brownian disk, random planar map, Liouville quantum gravity
Mot clés : Carte brownienne, serpent brownien, arbre brownien, disque brownien, carte planaire aléatoire, gravité quantique de Liouville
Miller, Jason 1 ; Sheffield, Scott 2

1 University of Cambridge, Statslab, DPMMS Wilberforce Road, Cambridge CB3 0WB, UK
2 Department of Mathematics, MIT 77 Massachusetts Avenue Cambridge, MA 02139, USA
@article{JEP_2021__8__609_0,
     author = {Miller, Jason and Sheffield, Scott},
     title = {An axiomatic characterization of {the~Brownian} map},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques},
     pages = {609--731},
     publisher = {Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.155},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jep.155/}
}
TY  - JOUR
AU  - Miller, Jason
AU  - Sheffield, Scott
TI  - An axiomatic characterization of the Brownian map
JO  - Journal de l’École polytechnique - Mathématiques
PY  - 2021
SP  - 609
EP  - 731
VL  - 8
PB  - Ecole polytechnique
UR  - http://archive.numdam.org/articles/10.5802/jep.155/
DO  - 10.5802/jep.155
LA  - en
ID  - JEP_2021__8__609_0
ER  - 
%0 Journal Article
%A Miller, Jason
%A Sheffield, Scott
%T An axiomatic characterization of the Brownian map
%J Journal de l’École polytechnique - Mathématiques
%D 2021
%P 609-731
%V 8
%I Ecole polytechnique
%U http://archive.numdam.org/articles/10.5802/jep.155/
%R 10.5802/jep.155
%G en
%F JEP_2021__8__609_0
Miller, Jason; Sheffield, Scott. An axiomatic characterization of the Brownian map. Journal de l’École polytechnique - Mathématiques, Tome 8 (2021), pp. 609-731. doi : 10.5802/jep.155. http://archive.numdam.org/articles/10.5802/jep.155/

[Ald91a] Aldous, David The continuum random tree. I, Ann. Probab., Volume 19 (1991) no. 1, pp. 1-28 https://www.jstor.org/stable/2244250?seq=1 | DOI | MR | Zbl

[Ald91b] Aldous, David The continuum random tree. II. An overview, Stochastic analysis (Durham, 1990) (London Math. Soc. Lecture Note Ser.), Volume 167, Cambridge Univ. Press, Cambridge, 1991, pp. 23-70 | DOI | MR | Zbl

[Ald93] Aldous, David The continuum random tree. III, Ann. Probab., Volume 21 (1993) no. 1, pp. 248-289 https://www.jstor.org/stable/2244761?seq=1 | DOI | MR | Zbl

[ALG18] Abraham, Céline; Le Gall, Jean-François Excursion theory for Brownian motion indexed by the Brownian tree, J. Eur. Math. Soc. (JEMS), Volume 20 (2018) no. 12, pp. 2951-3016 | DOI | MR | Zbl

[Ang03] Angel, O. Growth and percolation on the uniform infinite planar triangulation, Geom. Funct. Anal., Volume 13 (2003) no. 5, pp. 935-974 | DOI | MR | Zbl

[AS03] Angel, Omer; Schramm, Oded Uniform infinite planar triangulations, Comm. Math. Phys., Volume 241 (2003) no. 2-3, pp. 191-213 | DOI | MR | Zbl

[BBCK18] Bertoin, Jean; Budd, Timothy; Curien, Nicolas; Kortchemski, Igor Martingales in self-similar growth-fragmentations and their connections with random planar maps, Probab. Theory Related Fields, Volume 172 (2018) no. 3-4, pp. 663-724 | DOI | MR | Zbl

[BBI01] Burago, Dmitri; Burago, Yuri; Ivanov, Sergei A course in metric geometry, Graduate Studies in Math., 33, American Mathematical Society, Providence, RI, 2001 | MR

[BCK18] Bertoin, Jean; Curien, Nicolas; Kortchemski, Igor Random planar maps and growth-fragmentations, Ann. Probab., Volume 46 (2018) no. 1, pp. 207-260 | DOI | MR | Zbl

[Beg44] Begle, Edward G. Regular convergence, Duke Math. J., Volume 11 (1944), pp. 441-450 | DOI | MR | Zbl

[Ber96] Bertoin, Jean Lévy processes, Cambridge Tracts in Math., 121, Cambridge University Press, Cambridge, 1996 | Zbl

[Ber07] Bernardi, Olivier Bijective counting of tree-rooted maps and shuffles of parenthesis systems, Electron. J. Combin., Volume 14 (2007) no. 1, 9, 36 pages http://www.combinatorics.org/Volume_14/Abstracts/v14i1r9.html | MR | Zbl

[BM17] Bettinelli, Jérémie; Miermont, Grégory Compact Brownian surfaces I: Brownian disks, Probab. Theory Related Fields, Volume 167 (2017) no. 3-4, pp. 555-614 | DOI | MR | Zbl

[BMS00] Bousquet-Mélou, Mireille; Schaeffer, Gilles Enumeration of planar constellations, Adv. in Appl. Math., Volume 24 (2000) no. 4, pp. 337-368 | DOI | MR | Zbl

[Cha96] Chaumont, L. Conditionings and path decompositions for Lévy processes, Stochastic Process. Appl., Volume 64 (1996) no. 1, pp. 39-54 | DOI | Zbl

[CK14] Curien, Nicolas; Kortchemski, Igor Random stable looptrees, Electron. J. Probab., Volume 19 (2014), 108, 35 pages | DOI | MR | Zbl

[CLG16] Curien, Nicolas; Le Gall, Jean-François The hull process of the Brownian plane, Probab. Theory Related Fields, Volume 166 (2016) no. 1-2, pp. 187-231 | DOI | MR | Zbl

[CLG17] Curien, Nicolas; Le Gall, Jean-François Scaling limits for the peeling process on random maps, Ann. Inst. H. Poincaré Probab. Statist., Volume 53 (2017) no. 1, pp. 322-357 | DOI | MR | Zbl

[CLGM13] Curien, Nicolas; Le Gall, Jean-François; Miermont, Grégory The Brownian cactus I. Scaling limits of discrete cactuses, Ann. Inst. H. Poincaré Probab. Statist., Volume 49 (2013) no. 2, pp. 340-373 | DOI | Numdam | MR | Zbl

[CLUB09] Caballero, Ma. Emilia; Lambert, Amaury; Uribe Bravo, Gerónimo Proof(s) of the Lamperti representation of continuous-state branching processes, Probab. Surv., Volume 6 (2009), pp. 62-89 | DOI | MR | Zbl

[CS02] Chassaing, Philippe; Schaeffer, Gilles Random planar lattices and integrated superBrownian excursion, Math. and computer science, II (Versailles, 2002) (Trends Math.), Birkhäuser, Basel, 2002, pp. 127-145 | Zbl

[Cur15] Curien, Nicolas A glimpse of the conformal structure of random planar maps, Comm. Math. Phys., Volume 333 (2015) no. 3, pp. 1417-1463 | DOI | MR | Zbl

[CV81] Cori, Robert; Vauquelin, Bernard Planar maps are well labeled trees, Canad. J. Math., Volume 33 (1981) no. 5, pp. 1023-1042 | DOI | MR | Zbl

[DK88] Duplantier, Bertrand; Kwon, Kyung-Hoon Conformal Invariance and Intersections of random walks, Phys. Rev. Lett., Volume 61 (1988) no. 22, pp. 2514-2517 | DOI

[DLG02] Duquesne, Thomas; Le Gall, Jean-François Random trees, Lévy processes and spatial branching processes, Astérisque, 281, Société Mathématique de France, Paris, 2002 | Numdam | Zbl

[DLG05] Duquesne, Thomas; Le Gall, Jean-François Probabilistic and fractal aspects of Lévy trees, Probab. Theory Related Fields, Volume 131 (2005) no. 4, pp. 553-603 | DOI | Zbl

[DLG06] Duquesne, Thomas; Le Gall, Jean-François The Hausdorff measure of stable trees, ALEA Lat. Am. J. Probab. Math. Stat., Volume 1 (2006), pp. 393-415 | MR | Zbl

[DLG09] Duquesne, Thomas; Le Gall, Jean-François On the re-rooting invariance property of Lévy trees, Electron. Comm. Probab., Volume 14 (2009), pp. 317-326 | DOI | Zbl

[DMS14] Duplantier, Bertrand; Miller, Jason; Sheffield, Scott Liouville quantum gravity as a mating of trees, 2014 (to appear in Astérisque) | arXiv

[DS89] Duplantier, Bertrand; Saleur, Hubert Exact fractal dimension of 2D Ising clusters, Phys. Rev. Lett., Volume 63 (1989) no. 22, p. 2536 | DOI

[Dup98] Duplantier, Bertrand Random walks and quantum gravity in two dimensions, Phys. Rev. Lett., Volume 81 (1998) no. 25, pp. 5489-5492 | DOI | MR | Zbl

[Dur10] Durrett, Rick Probability: theory and examples, Cambridge Series in Statistical and Probabilistic Math., Cambridge University Press, Cambridge, 2010 | DOI | Zbl

[FT83] Fristedt, Bert; Taylor, S. J. Constructions of local time for a Markov process, Z. Wahrsch. Verw. Gebiete, Volume 62 (1983) no. 1, pp. 73-112 | DOI | MR | Zbl

[GM16] Gwynne, Ewain; Miller, Jason Convergence of the self-avoiding walk on random quadrangulations to SLE_8/3 on 8/3-Liouville quantum gravity, 2016 to appear in Ann. Sci. École Norm. Sup. (4) | arXiv

[GM17] Gwynne, Ewain; Miller, Jason Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology, Electron. J. Probab., Volume 22 (2017), 84, 47 pages | DOI | MR | Zbl

[GM19] Gwynne, Ewain; Miller, Jason Metric gluing of Brownian and 8/3-Liouville quantum gravity surfaces, Ann. Probab., Volume 47 (2019) no. 4, pp. 2303-2358 | DOI | MR | Zbl

[GPW09] Greven, Andreas; Pfaffelhuber, Peter; Winter, Anita Convergence in distribution of random metric measure spaces (Λ-coalescent measure trees), Probab. Theory Related Fields, Volume 145 (2009) no. 1-2, pp. 285-322 | DOI | MR | Zbl

[Jiř58] Jiřina, Miloslav Stochastic branching processes with continuous state space, Czechoslovak Math. J., Volume 8 (83) (1958), pp. 292-313 | DOI | MR | Zbl

[JS98] Jacquard, Benjamin; Schaeffer, Gilles A bijective census of nonseparable planar maps, J. Combin. Theory Ser. A, Volume 83 (1998) no. 1, pp. 1-20 | DOI | MR

[Kri05] Krikun, MA Uniform infinite planar triangulation and related time-reversed critical branching process, J. Math. Sci., Volume 131 (2005) no. 2, pp. 5520-5537

[Kyp06] Kyprianou, Andreas E. Introductory lectures on fluctuations of Lévy processes with applications, Universitext, Springer-Verlag, Berlin, 2006, xiv+373 pages | Zbl

[Lam67a] Lamperti, John Continuous state branching processes, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 382-386 | DOI | MR

[Lam67b] Lamperti, John The limit of a sequence of branching processes, Z. Wahrsch. Verw. Gebiete, Volume 7 (1967), pp. 271-288 | DOI | MR | Zbl

[Law05] Lawler, Grégory F. Conformally invariant processes in the plane, Math. Surveys and Monographs, 114, American Mathematical Society, Providence, RI, 2005 | MR | Zbl

[LG99] Le Gall, Jean-François Spatial branching processes, random snakes and partial differential equations, Lectures in Math. ETH Zürich, Birkhäuser Verlag, Basel, 1999 | DOI | Zbl

[LG10] Le Gall, Jean-François Geodesics in large planar maps and in the Brownian map, Acta Math., Volume 205 (2010) no. 2, pp. 287-360 | DOI | MR | Zbl

[LG13] Le Gall, Jean-François Uniqueness and universality of the Brownian map, Ann. Probab., Volume 41 (2013) no. 4, pp. 2880-2960 | DOI | MR | Zbl

[LG14a] Le Gall, Jean-François The Brownian map: a universal limit for random planar maps, XVIIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2014, pp. 420-428 | Zbl

[LG14b] Le Gall, Jean-François Random geometry on the sphere, Proceedings of the I.C.M. (Seoul 2014) Vol. 1, Kyung Moon Sa, Seoul, 2014, pp. 421-442 | Zbl

[LG18] Le Gall, Jean-François Subordination of trees and the Brownian map, Probab. Theory Related Fields, Volume 171 (2018) no. 3-4, pp. 819-864 | DOI | MR | Zbl

[LG19] Le Gall, Jean-François Brownian disks and the Brownian snake, Ann. Inst. H. Poincaré Probab. Statist., Volume 55 (2019) no. 1, pp. 237-313 | DOI | MR | Zbl

[LGLJ98] Le Gall, Jean-François; Le Jan, Yves Branching processes in Lévy processes: the exploration process, Ann. Probab., Volume 26 (1998) no. 1, pp. 213-252 | DOI | Zbl

[LGM12] Le Gall, Jean-François; Miermont, Grégory Scaling limits of random trees and planar maps, Probability and statistical physics in two and more dimensions (Clay Math. Proc.), Volume 15, American Mathematical Society, Providence, RI, 2012, pp. 155-211 | MR | Zbl

[LGP08] Le Gall, Jean-François; Paulin, Frédéric Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere, Geom. Funct. Anal., Volume 18 (2008) no. 3, pp. 893-918 | DOI | MR | Zbl

[Löh13] Löhr, Wolfgang Equivalence of Gromov-Prohorov- and Gromov’s ̲ λ -metric on the space of metric measure spaces, Electron. Comm. Probab., Volume 18 (2013), 17, 10 pages | MR | Zbl

[Mie08] Miermont, Grégory On the sphericity of scaling limits of random planar quadrangulations, Electron. Comm. Probab., Volume 13 (2008), pp. 248-257 | DOI | MR | Zbl

[Mie13] Miermont, Grégory The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Math., Volume 210 (2013) no. 2, pp. 319-401 | DOI | MR | Zbl

[Mie14] Miermont, Grégory Aspects of random planar maps (2014) (http://perso.ens-lyon.fr/gregory.miermont/coursSaint-Flour.pdf)

[Mil04] Milnor, John Pasting together Julia sets: a worked out example of mating, Experiment. Math., Volume 13 (2004) no. 1, pp. 55-92 http://projecteuclid.org/euclid.em/1086894090 | DOI | MR | Zbl

[MM06] Marckert, Jean-François; Mokkadem, Abdelkader Limit of normalized quadrangulations: the Brownian map, Ann. Probab., Volume 34 (2006) no. 6, pp. 2144-2202 | DOI | MR | Zbl

[Moo25] Moore, R. L. Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc., Volume 27 (1925) no. 4, pp. 416-428 | DOI | MR | Zbl

[MS16a] Miller, Jason; Sheffield, Scott Imaginary geometry I: interacting SLEs, Probab. Theory Related Fields, Volume 164 (2016) no. 3-4, pp. 553-705 | DOI | MR | Zbl

[MS16b] Miller, Jason; Sheffield, Scott Imaginary geometry II: reversibility of SLE κ (ρ 1 ;ρ 2 ) for κ(0,4), Ann. Probab., Volume 44 (2016) no. 3, pp. 1647-1722 | DOI | MR

[MS16c] Miller, Jason; Sheffield, Scott Imaginary geometry III: reversibility of SLE κ for κ(4,8), Ann. of Math. (2), Volume 184 (2016) no. 2, pp. 455-486 | DOI | Zbl

[MS16d] Miller, Jason; Sheffield, Scott Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding, 2016 (to appear in Ann. Probab.) | arXiv

[MS16e] Miller, Jason; Sheffield, Scott Liouville quantum gravity and the Brownian map III: the conformal structure is determined, 2016 (to appear in Probab. Theory Related Fields) | arXiv

[MS16f] Miller, Jason; Sheffield, Scott Quantum Loewner evolution, Duke Math. J., Volume 165 (2016) no. 17, pp. 3241-3378 | DOI | MR | Zbl

[MS17] Miller, Jason; Sheffield, Scott Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees, Probab. Theory Related Fields, Volume 169 (2017) no. 3-4, pp. 729-869 | DOI | MR | Zbl

[MS19] Miller, Jason; Sheffield, Scott Liouville quantum gravity spheres as matings of finite-diameter trees, Ann. Inst. H. Poincaré Probab. Statist., Volume 55 (2019) no. 3, pp. 1712-1750 | DOI | MR | Zbl

[MS20] Miller, Jason; Sheffield, Scott Liouville quantum gravity and the Brownian map I: the QLE (8/3,0) metric, Invent. Math., Volume 219 (2020) no. 1, pp. 75-152 | DOI | MR | Zbl

[Mul67] Mullin, R. C. On the enumeration of tree-rooted maps, Canad. J. Math., Volume 19 (1967), pp. 174-183 | DOI | MR | Zbl

[RRT14] Richter, R. Bruce; Rooney, Brendan; Thomassen, Carsten Commentary for “On planarity of compact, locally connected, metric spaces”, Combinatorica, Volume 34 (2014) no. 2, pp. 253-254 | DOI | Zbl

[RT02] Richter, R. Bruce; Thomassen, Carsten 3-connected planar spaces uniquely embed in the sphere, Trans. Amer. Math. Soc., Volume 354 (2002) no. 11, pp. 4585-4595 | DOI | MR | Zbl

[RY99] Revuz, Daniel; Yor, Marc Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1999 | MR | Zbl

[Sat99] Sato, Ken-iti Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Math., 68, Cambridge University Press, Cambridge, 1999 | Zbl

[Sch97] Schaeffer, Gilles Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees, Electron. J. Combin., Volume 4 (1997) no. 1, 20, 14 pages http://www.combinatorics.org/Volume_4/Abstracts/v4i1r20.html | MR | Zbl

[Sch99] Schaeffer, Gilles Random sampling of large planar maps and convex polyhedra, Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), ACM, New York, 1999, pp. 760-769 | DOI | Zbl

[Sch00] Schramm, Oded Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math., Volume 118 (2000), pp. 221-288 | DOI | MR | Zbl

[Ser97] Serlet, Laurent A large deviation principle for the Brownian snake, Stochastic Process. Appl., Volume 67 (1997) no. 1, pp. 101-115 | DOI | MR | Zbl

[She16a] Sheffield, Scott Conformal weldings of random surfaces: SLE and the quantum gravity zipper, Ann. Probab., Volume 44 (2016) no. 5, pp. 3474-3545 | DOI | MR | Zbl

[She16b] Sheffield, Scott Quantum gravity and inventory accumulation, Ann. Probab., Volume 44 (2016) no. 6, pp. 3804-3848 | DOI | MR | Zbl

[SW12] Sheffield, Scott; Werner, Wendelin Conformal loop ensembles: the Markovian characterization and the loop-soup construction, Ann. of Math. (2), Volume 176 (2012) no. 3, pp. 1827-1917 | DOI | MR | Zbl

[Tut62] Tutte, W. T. A census of planar triangulations, Canad. J. Math., Volume 14 (1962), pp. 21-38 | DOI | MR | Zbl

[Tut68] Tutte, W. T. On the enumeration of planar maps, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 64-74 | DOI | MR | Zbl

[Vil09] Villani, Cédric Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009 | DOI | Zbl

[Wat95] Watabiki, Yoshiyuki Construction of non-critical string field theory by transfer matrix formalism in dynamical triangulation, Nuclear Phys. B, Volume 441 (1995) no. 1-2, pp. 119-163 | DOI | MR | Zbl

Cité par Sources :