La carte brownienne est un espace métrique mesuré aléatoire homéomorphe à une sphère, qui est construit en « recollant » les arbres continus décrits respectivement par l’abscisse et l’ordonnée d’un serpent brownien. Nous présentons une construction alternative, reliée au processus d’épluchage ou au cactus brownien, qui produit une surface à partir d’un certain processus de branchement décoré, correspondant à un parcours « en largeur » de la carte brownienne par une exploration.
En utilisant ces idées, nous montrons que la carte brownienne est le seul espace métrique mesuré aléatoire homéomorphe à une sphère possédant certaines propriétés, à savoir l’invariance d’échelle et l’indépendance conditionnelle du côté intérieur et du côté extérieur de certaines « tranches » délimitées par des géodésiques et des bords de boules métriques. Nous formulons aussi une caractérisation en termes du réseau de Lévy produit par une exploration métrique d’un point typique pour la métrique à un autre. Ce résultat est un élément important dans une série d’articles montrant l’équivalence entre la carte brownienne et la sphère en gravité quantique de Liouville de paramètre .
The Brownian map is a random sphere-homeomorphic metric measure space obtained by “gluing together” the continuum trees described by the and coordinates of the Brownian snake. We present an alternative “breadth-first” construction of the Brownian map, which produces a surface from a certain decorated branching process. It is closely related to the peeling process, the hull process, and the Brownian cactus.
Using these ideas, we prove that the Brownian map is the only random sphere-homeomorphic metric measure space with certain properties: namely, scale invariance and the conditional independence of the inside and outside of certain “slices” bounded by geodesics and metric ball boundaries. We also formulate a characterization in terms of the so-called Lévy net produced by a metric exploration from one measure-typical point to another. This characterization is part of a program for proving the equivalence of the Brownian map and the Liouville quantum gravity sphere with parameter .
Accepté le :
Publié le :
DOI : 10.5802/jep.155
Keywords: Brownian map, Brownian snake, Brownian tree, Brownian disk, random planar map, Liouville quantum gravity
Mot clés : Carte brownienne, serpent brownien, arbre brownien, disque brownien, carte planaire aléatoire, gravité quantique de Liouville
@article{JEP_2021__8__609_0, author = {Miller, Jason and Sheffield, Scott}, title = {An axiomatic characterization of {the~Brownian} map}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {609--731}, publisher = {Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.155}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jep.155/} }
TY - JOUR AU - Miller, Jason AU - Sheffield, Scott TI - An axiomatic characterization of the Brownian map JO - Journal de l’École polytechnique - Mathématiques PY - 2021 SP - 609 EP - 731 VL - 8 PB - Ecole polytechnique UR - http://archive.numdam.org/articles/10.5802/jep.155/ DO - 10.5802/jep.155 LA - en ID - JEP_2021__8__609_0 ER -
%0 Journal Article %A Miller, Jason %A Sheffield, Scott %T An axiomatic characterization of the Brownian map %J Journal de l’École polytechnique - Mathématiques %D 2021 %P 609-731 %V 8 %I Ecole polytechnique %U http://archive.numdam.org/articles/10.5802/jep.155/ %R 10.5802/jep.155 %G en %F JEP_2021__8__609_0
Miller, Jason; Sheffield, Scott. An axiomatic characterization of the Brownian map. Journal de l’École polytechnique - Mathématiques, Tome 8 (2021), pp. 609-731. doi : 10.5802/jep.155. http://archive.numdam.org/articles/10.5802/jep.155/
[Ald91a] The continuum random tree. I, Ann. Probab., Volume 19 (1991) no. 1, pp. 1-28 https://www.jstor.org/stable/2244250?seq=1 | DOI | MR | Zbl
[Ald91b] The continuum random tree. II. An overview, Stochastic analysis (Durham, 1990) (London Math. Soc. Lecture Note Ser.), Volume 167, Cambridge Univ. Press, Cambridge, 1991, pp. 23-70 | DOI | MR | Zbl
[Ald93] The continuum random tree. III, Ann. Probab., Volume 21 (1993) no. 1, pp. 248-289 https://www.jstor.org/stable/2244761?seq=1 | DOI | MR | Zbl
[ALG18] Excursion theory for Brownian motion indexed by the Brownian tree, J. Eur. Math. Soc. (JEMS), Volume 20 (2018) no. 12, pp. 2951-3016 | DOI | MR | Zbl
[Ang03] Growth and percolation on the uniform infinite planar triangulation, Geom. Funct. Anal., Volume 13 (2003) no. 5, pp. 935-974 | DOI | MR | Zbl
[AS03] Uniform infinite planar triangulations, Comm. Math. Phys., Volume 241 (2003) no. 2-3, pp. 191-213 | DOI | MR | Zbl
[BBCK18] Martingales in self-similar growth-fragmentations and their connections with random planar maps, Probab. Theory Related Fields, Volume 172 (2018) no. 3-4, pp. 663-724 | DOI | MR | Zbl
[BBI01] A course in metric geometry, Graduate Studies in Math., 33, American Mathematical Society, Providence, RI, 2001 | MR
[BCK18] Random planar maps and growth-fragmentations, Ann. Probab., Volume 46 (2018) no. 1, pp. 207-260 | DOI | MR | Zbl
[Beg44] Regular convergence, Duke Math. J., Volume 11 (1944), pp. 441-450 | DOI | MR | Zbl
[Ber96] Lévy processes, Cambridge Tracts in Math., 121, Cambridge University Press, Cambridge, 1996 | Zbl
[Ber07] Bijective counting of tree-rooted maps and shuffles of parenthesis systems, Electron. J. Combin., Volume 14 (2007) no. 1, 9, 36 pages http://www.combinatorics.org/Volume_14/Abstracts/v14i1r9.html | MR | Zbl
[BM17] Compact Brownian surfaces I: Brownian disks, Probab. Theory Related Fields, Volume 167 (2017) no. 3-4, pp. 555-614 | DOI | MR | Zbl
[BMS00] Enumeration of planar constellations, Adv. in Appl. Math., Volume 24 (2000) no. 4, pp. 337-368 | DOI | MR | Zbl
[Cha96] Conditionings and path decompositions for Lévy processes, Stochastic Process. Appl., Volume 64 (1996) no. 1, pp. 39-54 | DOI | Zbl
[CK14] Random stable looptrees, Electron. J. Probab., Volume 19 (2014), 108, 35 pages | DOI | MR | Zbl
[CLG16] The hull process of the Brownian plane, Probab. Theory Related Fields, Volume 166 (2016) no. 1-2, pp. 187-231 | DOI | MR | Zbl
[CLG17] Scaling limits for the peeling process on random maps, Ann. Inst. H. Poincaré Probab. Statist., Volume 53 (2017) no. 1, pp. 322-357 | DOI | MR | Zbl
[CLGM13] The Brownian cactus I. Scaling limits of discrete cactuses, Ann. Inst. H. Poincaré Probab. Statist., Volume 49 (2013) no. 2, pp. 340-373 | DOI | Numdam | MR | Zbl
[CLUB09] Proof(s) of the Lamperti representation of continuous-state branching processes, Probab. Surv., Volume 6 (2009), pp. 62-89 | DOI | MR | Zbl
[CS02] Random planar lattices and integrated superBrownian excursion, Math. and computer science, II (Versailles, 2002) (Trends Math.), Birkhäuser, Basel, 2002, pp. 127-145 | Zbl
[Cur15] A glimpse of the conformal structure of random planar maps, Comm. Math. Phys., Volume 333 (2015) no. 3, pp. 1417-1463 | DOI | MR | Zbl
[CV81] Planar maps are well labeled trees, Canad. J. Math., Volume 33 (1981) no. 5, pp. 1023-1042 | DOI | MR | Zbl
[DK88] Conformal Invariance and Intersections of random walks, Phys. Rev. Lett., Volume 61 (1988) no. 22, pp. 2514-2517 | DOI
[DLG02] Random trees, Lévy processes and spatial branching processes, Astérisque, 281, Société Mathématique de France, Paris, 2002 | Numdam | Zbl
[DLG05] Probabilistic and fractal aspects of Lévy trees, Probab. Theory Related Fields, Volume 131 (2005) no. 4, pp. 553-603 | DOI | Zbl
[DLG06] The Hausdorff measure of stable trees, ALEA Lat. Am. J. Probab. Math. Stat., Volume 1 (2006), pp. 393-415 | MR | Zbl
[DLG09] On the re-rooting invariance property of Lévy trees, Electron. Comm. Probab., Volume 14 (2009), pp. 317-326 | DOI | Zbl
[DMS14] Liouville quantum gravity as a mating of trees, 2014 (to appear in Astérisque) | arXiv
[DS89] Exact fractal dimension of 2D Ising clusters, Phys. Rev. Lett., Volume 63 (1989) no. 22, p. 2536 | DOI
[Dup98] Random walks and quantum gravity in two dimensions, Phys. Rev. Lett., Volume 81 (1998) no. 25, pp. 5489-5492 | DOI | MR | Zbl
[Dur10] Probability: theory and examples, Cambridge Series in Statistical and Probabilistic Math., Cambridge University Press, Cambridge, 2010 | DOI | Zbl
[FT83] Constructions of local time for a Markov process, Z. Wahrsch. Verw. Gebiete, Volume 62 (1983) no. 1, pp. 73-112 | DOI | MR | Zbl
[GM16] Convergence of the self-avoiding walk on random quadrangulations to SLE on -Liouville quantum gravity, 2016 to appear in Ann. Sci. École Norm. Sup. (4) | arXiv
[GM17] Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology, Electron. J. Probab., Volume 22 (2017), 84, 47 pages | DOI | MR | Zbl
[GM19] Metric gluing of Brownian and -Liouville quantum gravity surfaces, Ann. Probab., Volume 47 (2019) no. 4, pp. 2303-2358 | DOI | MR | Zbl
[GPW09] Convergence in distribution of random metric measure spaces (-coalescent measure trees), Probab. Theory Related Fields, Volume 145 (2009) no. 1-2, pp. 285-322 | DOI | MR | Zbl
[Jiř58] Stochastic branching processes with continuous state space, Czechoslovak Math. J., Volume 8 (83) (1958), pp. 292-313 | DOI | MR | Zbl
[JS98] A bijective census of nonseparable planar maps, J. Combin. Theory Ser. A, Volume 83 (1998) no. 1, pp. 1-20 | DOI | MR
[Kri05] Uniform infinite planar triangulation and related time-reversed critical branching process, J. Math. Sci., Volume 131 (2005) no. 2, pp. 5520-5537
[Kyp06] Introductory lectures on fluctuations of Lévy processes with applications, Universitext, Springer-Verlag, Berlin, 2006, xiv+373 pages | Zbl
[Lam67a] Continuous state branching processes, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 382-386 | DOI | MR
[Lam67b] The limit of a sequence of branching processes, Z. Wahrsch. Verw. Gebiete, Volume 7 (1967), pp. 271-288 | DOI | MR | Zbl
[Law05] Conformally invariant processes in the plane, Math. Surveys and Monographs, 114, American Mathematical Society, Providence, RI, 2005 | MR | Zbl
[LG99] Spatial branching processes, random snakes and partial differential equations, Lectures in Math. ETH Zürich, Birkhäuser Verlag, Basel, 1999 | DOI | Zbl
[LG10] Geodesics in large planar maps and in the Brownian map, Acta Math., Volume 205 (2010) no. 2, pp. 287-360 | DOI | MR | Zbl
[LG13] Uniqueness and universality of the Brownian map, Ann. Probab., Volume 41 (2013) no. 4, pp. 2880-2960 | DOI | MR | Zbl
[LG14a] The Brownian map: a universal limit for random planar maps, XVIIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2014, pp. 420-428 | Zbl
[LG14b] Random geometry on the sphere, Proceedings of the I.C.M. (Seoul 2014) Vol. 1, Kyung Moon Sa, Seoul, 2014, pp. 421-442 | Zbl
[LG18] Subordination of trees and the Brownian map, Probab. Theory Related Fields, Volume 171 (2018) no. 3-4, pp. 819-864 | DOI | MR | Zbl
[LG19] Brownian disks and the Brownian snake, Ann. Inst. H. Poincaré Probab. Statist., Volume 55 (2019) no. 1, pp. 237-313 | DOI | MR | Zbl
[LGLJ98] Branching processes in Lévy processes: the exploration process, Ann. Probab., Volume 26 (1998) no. 1, pp. 213-252 | DOI | Zbl
[LGM12] Scaling limits of random trees and planar maps, Probability and statistical physics in two and more dimensions (Clay Math. Proc.), Volume 15, American Mathematical Society, Providence, RI, 2012, pp. 155-211 | MR | Zbl
[LGP08] Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere, Geom. Funct. Anal., Volume 18 (2008) no. 3, pp. 893-918 | DOI | MR | Zbl
[Löh13] Equivalence of Gromov-Prohorov- and Gromov’s -metric on the space of metric measure spaces, Electron. Comm. Probab., Volume 18 (2013), 17, 10 pages | MR | Zbl
[Mie08] On the sphericity of scaling limits of random planar quadrangulations, Electron. Comm. Probab., Volume 13 (2008), pp. 248-257 | DOI | MR | Zbl
[Mie13] The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Math., Volume 210 (2013) no. 2, pp. 319-401 | DOI | MR | Zbl
[Mie14] Aspects of random planar maps (2014) (http://perso.ens-lyon.fr/gregory.miermont/coursSaint-Flour.pdf)
[Mil04] Pasting together Julia sets: a worked out example of mating, Experiment. Math., Volume 13 (2004) no. 1, pp. 55-92 http://projecteuclid.org/euclid.em/1086894090 | DOI | MR | Zbl
[MM06] Limit of normalized quadrangulations: the Brownian map, Ann. Probab., Volume 34 (2006) no. 6, pp. 2144-2202 | DOI | MR | Zbl
[Moo25] Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc., Volume 27 (1925) no. 4, pp. 416-428 | DOI | MR | Zbl
[MS16a] Imaginary geometry I: interacting SLEs, Probab. Theory Related Fields, Volume 164 (2016) no. 3-4, pp. 553-705 | DOI | MR | Zbl
[MS16b] Imaginary geometry II: reversibility of for , Ann. Probab., Volume 44 (2016) no. 3, pp. 1647-1722 | DOI | MR
[MS16c] Imaginary geometry III: reversibility of for , Ann. of Math. (2), Volume 184 (2016) no. 2, pp. 455-486 | DOI | Zbl
[MS16d] Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding, 2016 (to appear in Ann. Probab.) | arXiv
[MS16e] Liouville quantum gravity and the Brownian map III: the conformal structure is determined, 2016 (to appear in Probab. Theory Related Fields) | arXiv
[MS16f] Quantum Loewner evolution, Duke Math. J., Volume 165 (2016) no. 17, pp. 3241-3378 | DOI | MR | Zbl
[MS17] Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees, Probab. Theory Related Fields, Volume 169 (2017) no. 3-4, pp. 729-869 | DOI | MR | Zbl
[MS19] Liouville quantum gravity spheres as matings of finite-diameter trees, Ann. Inst. H. Poincaré Probab. Statist., Volume 55 (2019) no. 3, pp. 1712-1750 | DOI | MR | Zbl
[MS20] Liouville quantum gravity and the Brownian map I: the metric, Invent. Math., Volume 219 (2020) no. 1, pp. 75-152 | DOI | MR | Zbl
[Mul67] On the enumeration of tree-rooted maps, Canad. J. Math., Volume 19 (1967), pp. 174-183 | DOI | MR | Zbl
[RRT14] Commentary for “On planarity of compact, locally connected, metric spaces”, Combinatorica, Volume 34 (2014) no. 2, pp. 253-254 | DOI | Zbl
[RT02] 3-connected planar spaces uniquely embed in the sphere, Trans. Amer. Math. Soc., Volume 354 (2002) no. 11, pp. 4585-4595 | DOI | MR | Zbl
[RY99] Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1999 | MR | Zbl
[Sat99] Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Math., 68, Cambridge University Press, Cambridge, 1999 | Zbl
[Sch97] Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees, Electron. J. Combin., Volume 4 (1997) no. 1, 20, 14 pages http://www.combinatorics.org/Volume_4/Abstracts/v4i1r20.html | MR | Zbl
[Sch99] Random sampling of large planar maps and convex polyhedra, Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), ACM, New York, 1999, pp. 760-769 | DOI | Zbl
[Sch00] Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math., Volume 118 (2000), pp. 221-288 | DOI | MR | Zbl
[Ser97] A large deviation principle for the Brownian snake, Stochastic Process. Appl., Volume 67 (1997) no. 1, pp. 101-115 | DOI | MR | Zbl
[She16a] Conformal weldings of random surfaces: SLE and the quantum gravity zipper, Ann. Probab., Volume 44 (2016) no. 5, pp. 3474-3545 | DOI | MR | Zbl
[She16b] Quantum gravity and inventory accumulation, Ann. Probab., Volume 44 (2016) no. 6, pp. 3804-3848 | DOI | MR | Zbl
[SW12] Conformal loop ensembles: the Markovian characterization and the loop-soup construction, Ann. of Math. (2), Volume 176 (2012) no. 3, pp. 1827-1917 | DOI | MR | Zbl
[Tut62] A census of planar triangulations, Canad. J. Math., Volume 14 (1962), pp. 21-38 | DOI | MR | Zbl
[Tut68] On the enumeration of planar maps, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 64-74 | DOI | MR | Zbl
[Vil09] Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009 | DOI | Zbl
[Wat95] Construction of non-critical string field theory by transfer matrix formalism in dynamical triangulation, Nuclear Phys. B, Volume 441 (1995) no. 1-2, pp. 119-163 | DOI | MR | Zbl
Cité par Sources :