JOURNAL

DE

MATHÉVATIQUES
 PURES ET APPLIQUÉES
 FONDÉ EN 1836 ET PUBLIE JUSQU'EN 1874
 Par Joseph Liouville

Harris Hancock
 Integral solutions of the equation $\xi^{2}+\eta^{2}=\zeta^{2}$ in the quadratic realms of rationality

Journal de mathématiques pures et appliquées 8^{e} série, tome 4 (1921), p. 327-341.
http://www.numdam.org/item?id=JMPA_1921_8_4__327_0

$\mathrm{g}^{\text {allica }}$
 Numdam

Article numérisé dans le cadre du programme Gallica de la Bibliothèque nationale de France http:// gallica.bnf.fr/

Integral solutions of the equation $\zeta^{2}+\gamma_{1}^{2}=\zeta_{\zeta}^{2}$ in the quadratic realms of rationality;

By Harris hancock.

One of the simplest Diophantine equations is $x^{2}+y^{2}=z^{2}$.
The solution of this equation gives the so called Pythagorean numbers $x=2 p q \ell, y=\left(p^{2}-q^{2}\right) t, \quad=\left(p^{2}+q^{2}\right) t$, where p, q, ι arc rational integers such that $p>q>0, t>0$ with the further condition that p and q arc relatively prime and both must not be odd.
For exemple,

$$
\begin{aligned}
& p=2, \quad q=1, \quad x=4, \quad y=3, \quad z=5, \quad 5^{2}=4^{2}+3^{2}, \\
& p=5, \quad y=4, \quad x=40, \quad y=9, \quad z=41, \quad 41^{\circ}=41^{2}+9^{2}, \text { etc. }
\end{aligned}
$$

A treatment of such problems in the realm of natural integrals is found in the second volume of Dickson's admirable History of the Theory of Numbers. As every problem, whose history is given by Dickson, admits a generalized treatment in the algebraic realms of the second, third and higher degrees, it is seen that a vast field of further investigation is open to Mathematicians. And by developing this algebraic number-theory new light may be thrown upon the theory of algebraic equations.

By definition a quadratic algebraic integer is the root of the equation $t^{2}+\mathrm{A} t+\mathrm{B}=\mathrm{o}$, where A and B arc rational integers and the coefficient of l^{2} is unity.

Let

$$
\xi=a_{1}+\sqrt{a_{\mathrm{i}}^{2}+a_{2}}, \quad r_{1}=b_{1}+\sqrt{b_{1}^{2}+b_{2}}, \quad \zeta=c_{1}+\sqrt{c_{\mathrm{i}}^{2}+c_{2}}
$$

be three quadratic algebraic integers, being respectively the roots of

$$
x^{2}-2 a_{1} x-a_{2}=0, \quad y^{2}-2 b_{1} y-b_{2}=0, \quad z^{2}-2 c_{1} 5-c_{2}=0,
$$

where $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}$ arc arbitrary rational integers.
If then $\xi^{2}+\eta^{2}=\zeta^{2}$, it follows that

$$
\begin{equation*}
2 a_{1} 亏+a_{2}+2 b_{1} n+b_{2}=2 c_{1} \zeta+c_{2}, \tag{I}
\end{equation*}
$$

or

$$
\begin{align*}
& 2 a_{1}^{2}+a_{2}+2 a_{1} \sqrt{a_{1}^{2}+a_{2}}+2 b_{1}^{2}+b_{2}+2 b_{1} \sqrt{b_{1}^{2}+b_{2}} \tag{a}\\
= & 2 c_{1}^{2}+c_{2}+2 c_{1} \sqrt{c_{1}^{2}+c_{2}} .
\end{align*}
$$

Our problem is to solve this latter equation in integral values of a_{1}, $a_{2}, b_{1}, b_{2}, c_{1}, c_{2}$.

First let $a_{1}=0$. lt follows that

$$
\begin{align*}
& a_{2}+2 b_{1}^{2}+b_{2}=2 c_{1}^{2}+c_{2} \tag{II}\\
& b_{1} \sqrt{b_{1}^{2}+b_{2}}=c_{1} \sqrt{c_{1}^{2}+c_{2}} . \tag{III}
\end{align*}
$$

Writing (11I) in the form

$$
\begin{equation*}
b_{1}^{\prime}-c_{1}^{\prime}=c_{1}^{2} c_{2}^{2}-b_{1}^{3} b_{2}, \tag{IV}
\end{equation*}
$$

it is seen that b_{1}, c_{1}, may be taken at pleasure and c_{2}, b_{2} so chosen as to satisfy (lV). Then from (II) a_{2} is determined.

For example let $b_{1}=4, c_{1}=3$, then is $b_{2}=-700, c_{2}=-1225$ and $a_{2}=-539$. And that is, if η is a root of $y^{2}-8 y+700=0$ and ζ a root ov $z^{2}-6=+1225$, then $\eta^{2}=!^{2}+539$. See Diophanlus II, II; Dickson II, p. 402.

Next observe that from ($1^{\text {a }}$) follow the two equations

$$
\begin{equation*}
2 a_{1}^{2}+a_{2}+2 b_{1}^{2}+b_{2}=2 c_{1}^{2}+c_{2}, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a_{1} \sqrt{a_{1}^{2}+a_{2}}+b_{1} \sqrt{b_{1}^{3}+b_{2}}=c_{1} \sqrt{c_{i}^{2}+c_{2}}, \tag{2}
\end{equation*}
$$

That these equations admit solution is seen at once if we put

$$
a_{1}=b_{1}=c_{1} ; \quad c_{2}=2 a_{1}^{2}+u_{2}+l_{2} . \quad a_{3}=b_{2}=-\frac{u_{1}^{2}}{2} .
$$

$$
\text { integhal solutions of the equation } \xi_{2}^{2}+\eta^{2}=\zeta^{2} .
$$

For it is evicent that if ξ, η, ζ are respectively the roots of

$$
x^{2}-2 a_{1} x+\frac{a_{1}^{2}}{2}=0, \quad y^{2}-2 a_{1} y+\frac{a_{1}^{2}}{2}=0, \quad z-2 a_{1} z-a_{1}^{2}=0,
$$

that $\xi^{8}+r_{1}^{2}=\%^{3}$.
Note that a_{1} must be an even integer in order that ξ and η be algebraic integers.

For example,

$$
x^{2}-4 x+2=1, \quad y^{2}-4 y+2=0, \quad z^{2}-4 z-4=0,
$$

have roots

$$
\xi=n=2+\sqrt{2}, \quad \zeta=2+2 \sqrt{2}
$$

such that

$$
\xi^{2}+n^{2}=\zeta^{2} .
$$

A solution of (1) and (2) is had as follows :
Put

$$
\begin{equation*}
\sqrt{b_{1}^{2}+b_{2}}=m \sqrt{a_{1}^{2}+a_{2}}, \tag{3}
\end{equation*}
$$

where m is a rational integer to be determined.
We have at once

$$
\begin{equation*}
c_{1}=a_{1}+m b_{1} \quad \text { and } \quad \sqrt{a_{1}^{2}+a_{2}}=\sqrt{c_{1}^{2}+c_{2}} . \tag{4}
\end{equation*}
$$

In the latter expression put for c_{4} its value so that

$$
\sqrt{a_{1}^{2}+a_{2}}=\sqrt{\left(a_{1}+m b_{1}\right)^{2}+c_{2}}=\sqrt{a_{1}^{2}+2 a_{1} m b_{1}+m^{2} b_{1}^{2}+c_{2}}
$$

and regarding a_{2} fixed, make c_{2} satisfy the relation

$$
\begin{equation*}
a_{2}=2 a_{1} m b_{1}+m^{2} b_{1}^{2}+c_{2} . \tag{}
\end{equation*}
$$

This expression may be simplified by observing from (1) that

$$
\begin{equation*}
a_{2}+2 b_{1}^{2}+b_{2}=4 a_{1} m b_{1}+2 m^{2} b_{1}^{9}+b_{2} . \tag{6}
\end{equation*}
$$

From (5) and (6) it is seen that

$$
\begin{equation*}
2 b_{1}^{9}+b_{2}=a_{2}-c_{2} \tag{7}
\end{equation*}
$$

and also that

$$
\begin{equation*}
m^{2} b_{1}^{2}+2 a_{1} b_{1} m=2 b_{1}^{2}+b_{2} \tag{8}
\end{equation*}
$$

The later equation in m may be satisfied in an infinite number of ways. For let $2 a_{1}=3 m b_{1}$, thus making a perfect square on the left hand side and put respectively $b_{2}=2 b_{1}^{2}$, $=14 l_{1}^{2},=34 b_{1}^{2}$, $=62 b_{1}^{\circ}$, etc.

It is seen that m may talie the values $1,2,3,4, \ldots$.
For example let $m=2$, so that $a_{1}=3 l_{1} ; b_{2}=1, b_{1}^{\circ}$. From (3) it follows that $b_{1}^{2}+l_{2}=m^{2}\left(a_{1}^{2}+a_{2}\right)$, or $-21 b_{1}^{2}=彳_{1} a_{2}$, all expression which offers an infinite number of values of a_{2} and b_{1}. Write $b_{1}=2$, $a_{2}=-21, a_{1}=6, b_{2}=56$. From (4) and (5) it is scen that $c_{1}=10$ and $c_{2}=-85$.

It is thus shown that the roots of

$$
x^{2}-12 x+21-0, \quad y^{2}-4 y-56=0, \quad z^{2}-20=+85=0,
$$

arc

$$
\xi=6+\sqrt{15}, \quad n=2+2 \sqrt{15}, \quad \zeta=11+\sqrt{15}
$$

and that

$$
\xi^{2}+n^{2}=\zeta_{\varphi}^{2} .
$$

A second method. --- Write as above

$$
x^{2}-3 a_{1} x+a_{2}=0, \quad y^{2}-2 b_{1} y-b_{2}=0, \quad z^{2}-2 c_{1} 5-c_{2}=0
$$

with roots, the algebraic integers,

$$
\xi=a_{1}+\sqrt{a_{1}^{2}+a_{2}}, \quad n=b_{1}+\sqrt{b_{1}^{2}+b_{2}}, \quad \zeta=c_{1}+\sqrt{c_{1}^{2}+c_{2}} .
$$

Put

$$
n=m \dot{\xi}+n,
$$

so that

$$
n^{2}=m^{2} \xi^{2}+2 m n \xi+n^{2} .
$$

It follows that

$$
2 b_{1} n+b_{2}=m^{2}\left(2 a_{1} \xi+a_{2}\right)+2 m n \xi+n^{2},
$$

or

$$
2 b_{1} m \xi+2 b_{1} n+b_{2}=2 a_{1} m^{2} \xi+a_{2} m^{2}+2 m n \xi+n^{2} .
$$

Il is clear from this last expression that

$$
\begin{gather*}
b_{1}=m a_{1}+n, \tag{1}\\
2 b_{1} n+b_{2}=m^{2} a_{2}+n^{2} . \tag{2}
\end{gather*}
$$

If n is eliminated from these equation we have

$$
\begin{equation*}
b_{1}^{2}+b_{2}=m^{2}\left(a_{1}^{2}+a_{2}\right) \tag{i}
\end{equation*}
$$

From equation (I), it follows that

$$
2 a_{1} \xi+a_{2}+2 b_{1} m \xi+2 b_{1} n+l_{2}=2 c_{1} \xi+c_{2} .
$$

If the rational and irrational part of this expression arc equated, it is secut that

$$
\begin{gather*}
a_{1}+m b_{1}=c_{1} \tag{3}\\
2 a_{1}^{3}+a_{2}+3 b_{1} m a_{1}+2 b_{1} n+b_{2}=2 c_{1}^{2}+c_{2} \tag{䒜}
\end{gather*}
$$

Eliminate n from (4) by means of (1), we have equation (ii) above

$$
\begin{equation*}
a_{2}+2 b_{1}^{2}+b_{2}=4 a_{1} m b_{1}+2 m^{2} b_{1}^{2}+c_{2} \tag{ii}
\end{equation*}
$$

Noting that the relation

$$
\sqrt{a_{1}^{2}+a_{2}}=\sqrt{c_{1}^{2}+c_{2}}=\sqrt{\left(a_{1}+m b_{1}\right)^{2}+c_{2}}
$$

must be satislied, it is seen that

$$
\begin{equation*}
a_{2}=2 a_{1} m b_{1}+m^{2} b_{1}^{2}+\dot{c} \tag{5}
\end{equation*}
$$

From (ii) and (5) the quantities $a_{2}-r_{2}$ and m may be respectively eliminated, and the following equations take their places

$$
\begin{gather*}
2 b_{1}^{2}+b_{2}=m^{2} b_{1}^{2}+2 a_{1} b_{1} m, \tag{a}\\
2 b_{1}^{2}+l_{2}=a_{2}-c_{2} . \tag{a}
\end{gather*}
$$

If as in the previous solution, we put in (4^{a}) the values $2 a_{1}=3 b_{1} m$, $b_{2}=14 b_{1}^{2}$, we have $16 b_{1}^{2}=4 m^{2} b_{1}^{2}$, or $m=2,2 a_{1}=6 b_{1}$. From (1) $n=-5 b_{1}$ and from (2) $-2 \mathrm{I} b_{1}^{2}=4 a_{2}$. Put $b_{1}=2, a_{2}=-21$, $a_{1}=6, b_{2}=56$. From (3) and (5^{a}) it is seen that $c_{1}=10$ and $c_{2}=-85$. Observe, however, that equations (1), (2) ct (4) may by eliminating n be replaced by

$$
b_{1}^{2}+b_{2}=m^{2}\left(a_{1}^{2}+a_{2}\right)
$$

and

$$
a_{2}+2 b_{1}^{2}+b_{2}=4 a_{1} m b_{1}+2 m_{1}^{2} b_{1}^{2}+c_{i}
$$

and it is seen that this solution is only a different form of the preceding one.

A more general solution. - Writing as in the preceding method

$$
n=m \zeta+n
$$

we have
(1)

$$
b_{1}=m c_{1}+n
$$

and

$$
\begin{equation*}
a b_{1} n+b_{2}=m^{2} c_{2}+n^{2} \tag{2}
\end{equation*}
$$

Again note if n is eliminated from (1) and (2), that

$$
b_{1}^{2}+b_{2}=m^{2}\left(c_{1}^{2}+c_{2}\right)
$$

Further write $\xi=p \zeta+q$ and it follows that

$$
\begin{equation*}
a_{1}=p c_{1}+q \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
3 a_{1} q+a_{2}=p^{2} c_{2}+q^{2} \tag{4}
\end{equation*}
$$

If q is eliminated from these latter equations, we have

$$
a_{1}^{3}+a_{2}=p^{2}\left(c_{1}^{2}+c_{2}\right) .
$$

The above values substituted in (I) cause that equation to become

$$
2 a_{1}(p \zeta+q)+a_{9}+2 b_{1}(m \zeta+n)+b_{2}=3 c_{1} \zeta+c_{2} .
$$

In this expression equate the real parts and also the imaginary parts and it is seen that

$$
\begin{gather*}
c_{1}=p a_{1}+m b_{1} \tag{5}\\
2 p a_{1} c_{1}+2 m b_{1} c_{1}+2 a_{1} \eta+2 b_{1} n+a_{2}+b_{2}=c_{2}+2 c_{1}^{2}
\end{gather*}
$$

Due to (5) the last equation becomes

$$
\begin{equation*}
2 a_{1} q+2 b_{1} n+a_{2}+b_{2}=c_{2} . \tag{6}
\end{equation*}
$$

From (1), (3) and (5) it is seen that

$$
\begin{equation*}
c_{1}=\frac{m n+p q}{1-m^{2}-p^{2}} \tag{7}
\end{equation*}
$$

and from (2), (4) and (6)

$$
\begin{equation*}
c_{2}=\frac{n^{2}+q^{2}}{1-m^{2}-p^{2}} \tag{8}
\end{equation*}
$$

A solution of (7) and (8) is had, if we put

$$
n=k\left(1-m^{2}-p^{2}\right) \quad \text { and } \quad q=l\left(1-m^{2}-p^{2}\right)
$$

where k and l arc arbitrary integers.
It follows that

$$
c_{2}=\left(k^{2}+l^{2}\right) H, \quad c_{1}=m k+p l, \quad \text { where } \quad \|=1-m^{2}-\mu^{2} .
$$

From (1) and (3) we have

$$
\begin{aligned}
& b_{1}=l+p(m l-p l) \\
& a_{1}=l+m(p l-m l) ;
\end{aligned}
$$

and from (2) and (4)

$$
\begin{aligned}
& b_{2}=\left[(m l-p l)^{:}-l^{2}\right] H 1 \\
& a_{2}=\left[(p l-m l)^{2}-l^{2}\right] H I .
\end{aligned}
$$

Further note t.iat.

$$
\begin{gathered}
c_{1}^{2}+c_{2}=l^{2}+l_{1}^{2}-\left(l_{i} p-l m\right)^{2}, \\
a_{1}^{3}+c_{2}=p^{2}\left(c_{1}^{\frac{2}{1}}+c_{2}\right), \quad b_{1}^{1}+b_{2}=m^{2}\left(c_{i}^{3}+c_{2}\right) .
\end{gathered}
$$

For example, let $\ell=2, k=3, p=5, m=7$.
It is seen that

$$
\begin{array}{rcr}
c_{1}^{2}+c_{2}=12, & a_{1}^{2}+a_{1}=5^{2} .12, & b_{1}^{2}+b_{2}=7^{2} .12, \\
c_{1}=31, & a_{1}=9, & b_{1}=-2, \\
3=3+2 \sqrt{3}, & \vdots=q+10 \sqrt{3}, & n=-2+14 \sqrt{3},
\end{array}
$$

where $\xi^{2}+\eta^{2}=\%^{2}$.
Again put

$$
m=3, \quad l=1, \quad p=1, \quad l i=5
$$

and we have

$$
\begin{array}{ll}
\zeta=22,+2 i \sqrt{23}, \quad n=9+3 i \sqrt{2 \overline{3}}, \quad \zeta=17+i \sqrt{3 \overline{3}}, \\
& \ddot{豸 勺}^{2}+n^{2}=\zeta^{2} .
\end{array}
$$

Finally make $\epsilon_{1}^{2}+\varepsilon_{2}$ a perfect square, and we have the Pythagorean numbers. For example, let

$$
m=5, \quad l=2, \quad \mu=3, \quad l=4,
$$

and we have

$$
\begin{array}{lll}
c_{1}^{3}+c_{2}=16, & c_{1}=26, & \zeta=36+4=30, \\
a_{1}^{2}+a_{2}=3^{2} \cdot 16, & a_{1}=12, & \zeta=12+10=34, \\
b_{1}^{2}+b_{2}=5^{2} .16, & b_{1}=-3, & n=-2+30=18, \\
& \because 2+n_{1}^{2}=900=\zeta^{2} .
\end{array}
$$

The quadratic realms of rationality.

We arc now in a position to express the above results in a more definite form, which is done through proof of the following theorem :

In every quadratic realm there is an infinite number of solutions of the equation

$$
\xi^{2}+n^{2}=\zeta^{2}
$$

through algebraic integers.
It is well known that any quadratic integer may be expressed in the form $a .1+b . \omega$, where a and b arc any two rational integers and where $1, \omega$ form the basis of the realm, say $R(\sqrt{l}), \ell$ any integer. If $t=2(\bmod 4)$ or $t \equiv 3(\bmod 4)$, then is $\omega=\sqrt{t}$; if, however, $t \equiv 1(\bmod 4)$, then is $\omega=\frac{1+\sqrt{t}}{2}$. The casc where t contains a squared factor may he reduçed to one or the other of the above cases, so that it is unnecessary to consider the case $m \equiv 0(\bmod 4)$. As the present paper is concerned particularly with the existence of such solutions as have been indicated, it is seen that the solutions of the second case necessarily imply those of the first case; for if

$$
\xi^{2}+n^{2}=\zeta^{2}
$$

then necessarily

$$
(2 \zeta)^{2}+(2 n)^{2}=(2 \zeta)^{2} .
$$

We may therefore consider here only the first case: If

$$
\xi=m_{1}+m \sqrt{\iota},
$$

where m, and m arc any rational integers and if satisfies the equation

$$
x^{2}-2 a_{1} x-a_{2}=0
$$

where u_{1}, a_{2} arc arbitrary rational integers, we have

$$
m_{1}^{2}+2 m m_{1} \sqrt{1}^{l}+m^{2} t=2 a_{1} m_{1}+2 a_{1} m \sqrt{\imath}+a_{2}
$$

It follows that

$$
m_{1}=a_{1} \quad \text { and } \quad m^{2} \iota=a_{i}^{i}+a_{2} .
$$

Similarly if η and ζ arc roots of the two equations

$$
y^{2}-b_{1} y-b_{2}=0 \quad \text { and } \quad s^{2}-2 c_{1} y-c_{2}=0
$$

we have

$$
\begin{aligned}
& \vdots=a_{1}+m c^{\frac{1}{2}} . \\
& n=b_{1}+m^{\frac{1}{2}},
\end{aligned}
$$

where $\%$ like m is an arbitrary integer,

$$
\zeta=c_{1}+\mu e^{\frac{1}{2}}
$$

p being likewise any rational integer; witk the conditions

$$
m^{2} l=a_{1}^{2}+a_{2}, \quad n^{2} \ell=b_{1}^{2}+b_{2}, \quad p^{2} t=c_{1}^{9}+c_{2} .
$$

Writing their values in equation (I) namely

$$
2 a_{1} \dot{\xi}+a_{2}+3 b_{1} n+b_{2}=2 c_{1} \xi+c_{2}
$$

it is seen that

$$
3 a_{i}^{2}+a_{2}+a a_{1} m \sqrt{i}+3 b_{i}^{2}+b_{2}+a b_{1} n \sqrt{t}=a c_{1}^{2}+c_{1}+3 c_{1} p \bar{t} .
$$

Equating the rational and irrational terms in this expression, we have the following equations to solve

$$
\begin{gather*}
a a_{1}^{2}+a_{2}+2 b_{1}^{2}+b_{2}=a c_{1}^{2}+c_{9} \tag{1}\\
a_{1} m+b_{1} n=c_{1} l^{\prime} \tag{2}\\
m^{2} l=a_{1}^{2}+a_{2} \tag{3}\\
n^{2} \iota=b_{1}^{2}+b_{2} \\
l^{2} l=c_{1}^{2}+c_{2} \tag{5}
\end{gather*}
$$

From (1), (3), (4) and (5) it follows that

$$
2\left(m^{2}+n^{2}-p^{2}\right) t=a_{2}+l_{2}-c_{2}
$$

or, what is the same thing,

$$
\begin{equation*}
\left(m^{2}+n^{2}-p^{2}\right) \ell=c_{i}^{2}-a_{i}^{2}-l_{i}^{2}, \tag{6}
\end{equation*}
$$

Eliminate respectively a_{1}, b_{1}, c_{1}, between (1) and (2) after (1) has been put in the form
and we have

$$
a_{1}^{3}+b_{1}^{\prime}+\left(m^{9}+n^{2}\right) \iota=c_{1}^{\prime 3}+p^{2} \iota, .
$$

$$
\begin{align*}
& p^{2}\left(m^{2}+n^{2}-p^{2}\right) t=\left(a_{1} m+b_{1} n\right)^{2}-p^{2}\left(a_{1}^{2}+b_{1}^{2}\right) . \tag{7}\\
& n^{2}\left(m^{2}+n^{2}-p^{2}\right) t=n^{2}\left(c_{1}^{3}-a_{1}^{2}\right)-\left(c_{1} p-a_{1} m\right)^{2} \tag{8}\\
& m^{2}\left(m^{2}+n^{2}-p^{2}\right) t=m^{2}\left(c_{1}^{2}-b_{1}^{2}\right)-\left(c_{1} / 1-b_{1} n\right)^{2} . \tag{9}
\end{align*}
$$

Note that if we put

$$
m^{2}+n^{s}=p^{2}
$$

in these equations, we have

$$
\frac{a_{1}}{m}=\frac{b_{1}}{n}=\frac{c_{1}}{l^{\prime}} .
$$

If then l'yihagorean numbers are chosen for m, n, p, the same are had for a_{1}, b_{1}, c_{1}, and from (6) the number t is indeterminate.

Observe that equations (2) are satisfied if we put

$$
m=k a_{1}, \quad n=k b_{1}, \quad p=k c_{1} \quad \text { (} k \text { any rational integer) }
$$

and choose fur a_{1}, b_{1}, c_{1} any Pythagorean numbers $\pi_{1}, \pi_{2}, \pi_{3}$, $\pi_{1}^{2}+\pi_{s}^{2}=\pi_{3}^{3}$. For example, in any realm of nationality $R(\sqrt{l})$, it is evident that the algebraic integers

$$
\vdots=\pi_{1}+k \pi_{1} \sqrt{l}, \quad n=\pi_{2}+l i \pi_{2} \sqrt{l}, \quad \zeta=\pi_{3}+k \pi_{i} \sqrt{l}
$$

salisfy the equation

$$
\check{\check{y}}+n^{n}=\check{c}_{0}^{2} .
$$

The theorem has resolved itself in the solution of the equation

$$
\begin{equation*}
\left(m^{2}+n^{2}-p^{2}\right) \iota=c_{i}^{2}-l_{i}^{2}-\iota_{1}^{2}, \tag{6}
\end{equation*}
$$

subject to the condition

$$
a_{1} m+b_{1} n=c_{1} p^{\prime}
$$

One method of procedure is the following:
The integer / being fixed, give to m, n, p fixed values and put

$$
p^{2}-m^{2}-n^{2}=k
$$

where k is constant.
From (6), it is seen that

$$
a_{i}^{2}+b_{i}^{2}-c_{i}^{2}=t . l_{1} .
$$

If r, is climinated from this latter equation and (2), we have

$$
\begin{equation*}
\left(p^{2}-m^{2}\right) a_{1}^{2}-3 m n a_{1} b_{1}+\left(p^{2}-n^{2}\right) b_{1}^{2}=p^{2} c l_{1}, \tag{II}
\end{equation*}
$$

which equation is a quadratic form in the two unknown quantities a_{1}, b_{1}, whose discriminant D is $-p^{2} /$.

The problem has now resolved itself into the solution of the quadratic form (ll) with negative, zero or positive, discriminant.
I^{0} If k is positive the discriminant is negative. In this case multiply (II) by $4\left(p^{2}-m^{2}\right)$ and put

$$
\begin{equation*}
a\left(p^{2}-m^{2}\right) a_{1}-a m n b_{1}=s \tag{i}
\end{equation*}
$$

It is seen that (II) becomes

$$
s^{2}+\frac{1}{1} p^{2} l_{1} l_{i}^{*}=4\left(p^{2}-m^{2}\right) d i p^{2},
$$

or

$$
\begin{equation*}
s^{2}=4 k p^{2}\left[\left(p^{2}-m^{2}\right) t-b_{1}^{2}\right] . \tag{ii}
\end{equation*}
$$

Hence through a finite number of trials, we may determine whither or not there is a value fur b_{1} which makes the right hand side of (ii) a perfect square - a condition witch is evidently necessary for the solution of the problem.

For example write $p=3, m=2, n=1$, so that $k=4$. Take $l=5$. From (ii) it is seen that, when
(a) \cdot

$$
\begin{array}{ll}
b_{1}=0, & s=4.3 .5 ; \\
b_{1}=3, & s=4.3 .4 ; \\
b_{1}=4 . & s=4.3 .3 ; \\
b_{1}=5, & s=0 .
\end{array}
$$

(b)
(c)
(d)

Hence from (i) and (2), we have

$$
\begin{equation*}
a_{1}=6, \quad b_{1}=0, \quad c_{1}=4 ; \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
a_{1}=6, \quad b_{1}=3, \quad c_{1}=5 ; \tag{b}
\end{equation*}
$$ no solution:

It is also evident from (ii) that negative values may be given to $l_{\text {, }}$ and s so that, for example, $b_{1}=-3, s=-4.3 .4$.

In this case $a_{1}=-b_{1}, b_{1}=-3, c_{1}=-4$.
Hence in the realm $R(\sqrt{5})$ if values $2,1,3$ arc taken respectively for m, n, p, it is seen that :
(11)
(b)
(c)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\xi= \pm 6+2 \sqrt{5}, \\
n=0+\sqrt{5} \\
\zeta= \pm 4+3 \sqrt{5}
\end{array},\right. \\
& \left\{\begin{array}{l}
\zeta= \pm 6+2 \sqrt{5}, \\
n= \pm 3+\sqrt{5} \\
\zeta= \pm 5+3 \sqrt{5}
\end{array}\right. \\
& \left\{\begin{array}{l}
\xi= \pm 2+2 \sqrt{5} \\
\xi= \pm 5+\sqrt{5} \\
\vdots= \pm 3+3 \sqrt{5}
\end{array}\right.
\end{aligned}
$$

arc solutions of the equation

$$
r_{1}^{2}=\zeta_{1}^{2}
$$

It is evident that if $\mathbf{- 2}, \mathbf{- 1},-3$ had been chosen respectively at values of m, n, p, the same values of a_{1}, b_{1}, c_{1} as those above would have been derived.
If we put $m=1, n=3, p=2$, it is seen that $k=-6$ and $\mathrm{D}=+24$. Equation (II) becomes, if t is taken $=3$,

$$
5 b_{i}^{\circ}+6 b_{1} a_{1}-3 a_{i}^{\circ}=7 a
$$

A solution is $a_{1}=3, b_{1}=3, c_{1}=\frac{a_{1} m+b_{1} n}{p}=6$. The corresponding values of ξ, η, ζ arc

$$
\xi=3+\sqrt{3}, \quad n=3+3 \sqrt{3}, \quad \zeta=6+2 \sqrt{3} .
$$

If $t=10$, the equation

$$
5 b_{1}^{2}+6 b_{1} a_{1}-3 a_{1}^{2}=340,
$$

admits solution $a_{1}=2, b_{1}=6, c_{1}=10$.
However if $t=5$, the equation

$$
5 b_{1}^{2}+6 b_{1} a_{1}-3 a_{1}^{2}=120
$$

does not admit solution, as is evident from elementary consideration.
Having one solution it is possible by means of the Pell's equation to derive an infinity of others.

In the first case, for example, where $D=24$, the equation of Pell, namely $\mathrm{T}^{2}-24 \mathrm{U}^{2}=1$, admits the solution $\mathrm{T}=5, \mathrm{U}=\mathrm{I}$.

Note that the equation

$$
5 b_{i}^{\stackrel{\imath}{i}}+6 b_{1} a_{1}-3 a_{i}^{2}=72
$$

may be written in the form

$$
\left(5 b_{1}+3 a_{1}\right)^{2}-34 a_{1}^{2}=5.72 .
$$

Hence writing

$$
5 b_{1}+3 a_{1}+\sqrt{34} a_{1}=(34+3 \sqrt{24})(5+\sqrt{24})^{k},
$$

we have the solutions corresponding to values of $k=1,2,3, \ldots$
If $k=\mathbf{r}$, it is seen that
and

$$
a_{1}=39, \quad b_{1}=13, \quad c_{1}=42,
$$

$$
\bar{\zeta}=39+\sqrt{3}, \quad n=15+3 \sqrt{3}, \quad \zeta=42+2 \sqrt{3}
$$

In the two examples given above it is seen that a_{1}, b_{1}, c_{1} have a common factor other than unity.

Take, however,

$$
m=3, \quad n=2, \quad p=1
$$

and let

$$
t=33
$$

It is seen that $k=-12$, and the discriminant $D=+12$. Equation (II) becomes

$$
8 a_{1}^{2}+12 a_{1} b_{1}+3 b_{1}^{2}=12.22
$$

Note that 12 is a quadratic residue of 12.22 , the congruence

$$
n^{2} \equiv 12 \quad(\bmod 13.32)
$$

admitting the solution $n=54$; and observe that

$$
a_{1}=3, b_{1}=4
$$

is a proper solution of the quadratic form, that is, one in which a_{1} and b_{1} arc relativily prime.
The corresponding Pell's equation
admits the solution

$$
T^{2}-13 U^{2}=1
$$

Write

$$
\mathrm{T}=\pi, \quad \mathrm{U}^{\prime}=\mathrm{a} .
$$

$$
8 a_{1}^{2}+13 a_{1} b_{1}+3 b_{1}^{2}=12.22
$$

in the form

$$
\left(8 a_{1}+6 b_{1}\right)^{2}-12 b_{1}^{2}=8.12 .22,
$$

and it is seen that the general solution is

$$
8 a_{1}+6 b_{1}+\sqrt{12} b_{1}=(48+4 \sqrt{13})(7+2 \sqrt{12})^{k} \quad(k=0,1, a, 3, \ldots) .
$$

When

$$
\begin{array}{llll}
k=1, & a_{1}=-39, & b_{1}=197, & c_{1}=131, \\
k=3, & a_{1}=-549, & b_{1}=173, & c_{1}=1817, \\
k=3, & a_{1}=-7647, & b_{1}=31124, & c_{1}=25307,
\end{array}
$$

The corresponding values of ξ, η, ζ, arc

$$
\begin{array}{ll}
k=0, & k=1, \\
\xi=3+3 \sqrt{32}, & \xi=-39+3 \sqrt{32}, \\
n=4+3 \sqrt{32}, & n=134+3 \sqrt{3.2}, \\
\zeta=17+\sqrt{32} ; & \zeta=131+\sqrt{23} ; \\
k=3, & k=3, \\
\xi=-549+3 \sqrt{32}, & \xi=-7647+3 \sqrt{32}, \\
n=1732+2 \sqrt{32}, & n=34134+3 \sqrt{32}, \\
\zeta=1817+\sqrt{22} ; & \zeta=25307+\sqrt{32} ;
\end{array}
$$

NTEGRAL SOLUTIONS OF TILE EQUATION $\zeta_{\zeta}^{2}+\eta^{2}=\zeta^{2}$.
Note that on the transition from a negative to a positive discriminant we must have

$$
\mathrm{D}=0=-p^{2} / i .
$$

If $k=0$, whe have the Pythagorean numbers considered above. And if $p=0$, the quadratic form (II) becomes

$$
a_{1} m+b_{1} n=0
$$

and the further solution is without difficulty.

