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INTEGRAL SOLUTIONS OF THE ‘EQUATION 52 + =% 327

Integral solutions of the equation E’-{—'q*———'g’v"
in the quadratic realms of rationality ;

By Harris HANCOCK.

One of the simplest Diophantine équations is x? + y* = 3*.

The solution of this equalion gives the so called Pythagorean num-
bers x =2pqt, y =(p*—q*)t, 5= (p*+ g*)t, vhere p, g, arc
rational intégers such that p > ¢ > o, ¢ > o with the further condition
that p and ¢ arc relatively prime and both must not be odd.

For exemple, \

p=2, qg==1, r =4, vy =3, 5=3, 5= 44 32,
p =35, =4, x = 4o, y =09, =4, 417 = 4o+ @3, etc.

A treatment of such problems in the realm of natural integrals is
found in the second volume of Dickson’s admirable History of the
Theory of Numbers. As every problem, whose history is given by
Dickson, admits a generalized treatment in the algebraic realms of
the sccond, third and higher degrees, it is seen that a vast field of
further investigation is open to Mathematicians. And by developing this
algebraic number-theory new light may be thrown upon the theory
of algebraic equations.

By delinition a quadratic algebraic integer is the root of the equa-
tion ¢+ A¢+ B =0, where A\ and B arc rational integers and the
coefficient of ¢* is unity.

Let

E=a,+vVai+a, n=b+\Vbi+b, {=c,+ i+ c
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be'three quadratic algebraic integers, being respectively the roots of

2P —aa,x — ay==o0, yi—a2bjy—b=o, -2 3—c¢,==o0,

where a,, a,, b,, b,, ¢,, ¢, arc arbitrary rational integers.
If then §* + n* =2, it follows that

(N 2@+ ay+ 20,0+ by=2¢,{ + ¢y,
or
(12) 20 + @y + 24, ay+ 2! + by 20,074 b,

=2c? + g+ 20,V + ¢y

Our problem is to solve this latter equation in integral values of «,,
Ayy byy by, €4, .
First let a, = o. 1t follows that

(1T _ ay+ b} + by=aci+ ¢y,
(I11) by Vbl 4 b= Cr\/ci + c,.

Writing (111) in the form

(V) Y —ci=clea— b by,

it is seen that b,, ¢,, may be taken at pleasure and ¢,, 0, so chosen as
to satisfy (1V). Then from (1I) @, is determined.
" For example let b, = 4, ¢, =3, then is b, = — 700, ¢, = — 1225
and a, = — 539. And thatis, if v} is a root of y*— 8y + 700 = 0 and
{ a root ov 3% — 63 + 1225, then 0* = {* + 539. Sce Diophantus 11,
113 Dickson 11, p. 4o2.

Next observe that from (1) follow the two equations

(1) 205 + Ay + 203 4 by==2¢? + ¢y,

(2) ' aai +a, + bV oi+ by = c,Vei+ ¢y,

That these cyuations admit solution is seen al once if we put

a,=b=¢;; Ca== 2a3 + 0y + by, a;== by — =,
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For it is evident that if &, v, { are respectively the roots of
3 a!
w—za,a-{—-i‘-::o, yz—aa,y—i——g—‘::o, s*—a2aqys—al=o,

that £* + n* =

Note that @, mnst be an even integer in order that & and v be alge-

braic integers.
For example,

—hx+2=no, y")_fl}"i‘?:O, 52_4;_4:0’

have roots

E=n=12+\/2, =a2+2ya
such that o
B+ n={
A solution of (1) and (2) is had as follows
Put
(3) BT+ b= m @ ¥ ay,

where 2 is a rational integer to be determined.
We have at once

(4) = a,+ mb, and  \Jai+a,=\ci+ec,.

In the latter expression put for ¢, its value so that

Vai+a,=(a,+ mb,) + ¢, =\at + aa,mb, + m?b: + ¢,

and regarding a, fixed, make c, satisfy the relation
(3) ay=2ay,mb, + m?b} + c,.

This expression may be simplified by observing frbm (1) that
(6) a, + 2b§+b,=4a,mb.+2m“b‘;‘+c.;. |

From (5) and (6) itis seen that
(7) 202+ by = a, — ¢,
and also that

(8) . m2b} 4+ aa,bym=120}+ b,.
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The latter equation in m may be satisfied in an infinité number
of ways. For let 2a,=3mb,, thus making a perfect square on
the left hand side and pul respectively b,== 28}, =140}, = 3403,
= 620}, etc.

It is seen that m may takethe values 1, 2, 3,4, .... _—

For example let m = 2, so that @, = 34, b,=146¢. From (3) it
follows that 0} + b, = m*(a} + a,), or — 210 = fa,, an cxpression
which offers an infinite number of values of @, and b,. Write b, = 2,
a,=—21, a,=06, b,=56. From (4) and (3) it is scen that
¢,=10and ¢,= — 85.

It is thus shown that the roots of

Zr— 12z +21—0, yr—4y — 36 =o, 3*—203+8)=o,
arc '
' E=6+ /15, n=2 + 217, I=10+\1d
and that

Pagr=1p

.

A second method. --—- Write as above

Z— 20,1 4 Qy== O, y—aby—by=o, 3*—2¢,3—cCy=0
with roots, the algebraic integers,

S = a,+ \a} + a,, N == b, + 0T + by, L=c¢, + Ve + e

Put '
‘ n == mg -+ n,
so that '
nt= mE:+ amni + n?,
It follows that
2byn+ by=m*(2a,§ + ay) + 2mné + n,
or

20, mE 4+ abin + by==2a,m* + agm® + amni + n*.

Il is clear from this last expression that

(1) by=ma, + n,
(2) 20,n 4+ by=m2a,+ nd.

If n is eliminated from these equation we have

(%) b+ by= m*(a? +- a,).
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I'rom equation (1), it follows that

aa f+ @yt 20 mi-a2bin-+by=20%+ ¢,

If the rational and irvational part of this expression arc equated, it
is scen that

(3) a,+ mb,=c,,
) 2al +ay,+20yma +2bn + by=2c} + .

Eliminate 2 from (4) by means of (1), we have equation (ii) above
() ay+ 20+ by=ha mb -+ am?b} + ¢,.

Noting that the relation

Var--a,=vet+ ey=\(a,+ mb,)*+ ¢,
must be satislied, it is secn that
() ay=2a,mby+ m*b? + c..

From (¢7) and (5) the quantities @,—r, and m may be respectively
eliminated, and the following equations take their places

(4%) 26+ by=m2 bt + 2a,b,m,
(39) 20+ by=a,— ¢,.

Ifasin the previous solulion, we put in (4%) the values 2a, = 3b,m,
h,=14b?, we have 1607 ==4m*]}, or m =2, 2a,=060,. From (1)
n=—>5b, and from (z) - 211»| =4a,. Put b, =2, a,=— 21,
a, =6, by=>56. From (3) and (5¢) it is seen that ¢, =10 and
¢, = — 85. Observe, however, that equations (1), (2) et (4) m.ly by
eliminating » be replaced by

b3 + by=m?*(ai + a,)

and .
ay+ 2b} + by=fha mb,+2m3h} -+ ¢,

and it is seen that this solution is only a different form of the prece-
ding onec.

A more general solution. — Writing as in the preceding method

n=mf+n,
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we have

(1) b=nme,+n

and

(2) 20,0 + by= m2cy4- n*,

Again note if # is eliminated from (1) and (2), that
b -+ by=m?(ci + c;).

Further write £ = p{ + ¢ and it follows that

(3) ay==per+q
and
(4) 2a,q + @y == prey+ ¢

If ¢ is eliminated from these latter equations, we have
al + a,= p*(ct + ¢).
The above values substituted in (1) causc that cquation to hecome
aa (pl+ g+ as+20,(mf 4 n) -+ by=1c¢,{ + c,.

In this expression equate the real parts and also the imaginary
parts and it is seen that

(5) c=pa,+mb,,
apac,+ambey+2aqg+abin+a,+ by=c,+ 2¢}.

Due to (5) the last equation becomes

(6) 20, + ab n + ag+ by=c,.

From (1), (3) and (5) it is seen that

. mn—+pqg o
(7) O pt
-and from (2), (4) and (6)
(8) 6= ek

1—mi—p?
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A solution of (7) and (8) is had, if we put

n=k(1—m?—p?) and =11 — m*— p?),

where & and [ arc arbitrary integers.

It follows that
ey=mk+pl,
¢, == (k*-+ £2)H, where H=1—n2—p2

From (1) and (3) we have
by=k+ p(ml —pk),
a == -~ m(pk — ml);
and from (2) and (4)

hy=|(ml— ph)* = [*]H,
ay=[(pk — ml)*— *1H,

Further note that
A =04 1 — (hp — lm)?,
al -, = prlel+ ), b+ by=m?(c}+ ¢,
For example, let { =2, k =3, p=5, m = .
It is seen that
ci-+ca=12, al + a,=:5%1a, 0% -1~ by= 1912,
¢y =31, ay==q, b =—2,
23+ 2y/3, f=g¢+10V/3, n=—2+ 153,
where §2 + 0 = {3,

Again put

m-=3, =1, p=n, h=13,

and we have

fzmaa, 4 20Va3, =g+ 3iy/23, {=19+iy23,

5=,

Finally make ¢; + ¢, a perfect square, and we have the Pythagorean
numbers. For cxample, let : x

m =2, ==, p =3, k=4,
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and we have

¢} + ¢, = 16, ¢, = 10, L= 26+ 4=23o,
a3} -+ a; = 32.16, a= 12, E= 124+ 12=2],
b b= 5216, by =— 2, N =— 24 20=18,

-y

-

4+ = Q0o = 4R

The quadratic realms of rationality.

We arc now in a position to express the above results in a more
definite form, which is done through proof of the following theorem :

In every quadratic realm there is an infinite number of solutions
of the equation

t/u'ou.g/z algebraic integers.

It is well known that any quadralic inleger may be expressed in
the form a.1 + ., where @ and & arc any two rational integers and

where 1, © form the basis of the realm, say R(y¢), ¢ any integer.

If t2:2(mod4) or (=3 (mod4), then is o =yz; if, however,

[
1=\t .
T\- The case where ¢ contains

t==1(mod4), then is w=
a squared factor may he reduced to onc or the other of the above
cases, so that it is unnecessary to consider the case m==o0(mod4).
As the present paper is concerned particularly with the caistence of
such solutions as have been indicaled, it is seen that the solutions of
the second case necessarily imply those of the fivst case; for if
, Emt=4
then necessarily
(2Z)2 4 (20) = (22)%

We may therefore consider here only the first case : If
E=m,+ myt,

where m, and m arc any rational integers and if % satisfics the

equation
zr—va,x — a,—=o0,
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where «,, a, arc arbitrary rational integers, we have
mi - amm\l+ mit=aa,m,+ aa,myt + a,.
It follows that |
m, - a, and mi = ui + ay.
Similarly if v and { arc roots of the two equations
yi—oby —by=o and st—ac, y—cy=o,
we have
I=a+ mt';.
n=b,+n (}é,
where # like 72 is an arbitrary integer,
Il
J=c,+pt*,
p heing likewisc any rational integer; witk the condilions
mit = at + a,, L= b+ by, prt=cicy.
Writing their values in equation (1) namely

20,5 + Ay+23b 0+ by=2ac¢, {4+ ¢y,
it 1s scen that

20 4 g+ ray M- 20T 4 by - w by nyE = et 4 ey ae py L

dquating the rational and irrational terms in this expression, we

have the following equations to solve

(1) 2a] + @+ a0+ by= ¢t - ¢y,
(2) am+bn=cp,

(3) nil=ai+ a,

(4) nit =03+ by,

(3) Pto=c} +cy

From (1), (3), (4)and (3) it follows that

2(mi 4 nt=piYli=ay,+ by — ¢y}

Journ, de Math. (8¢ série), tome 1V, — Fasc. IV, g1,
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or, whal is the same thing,

(6) (m* = n2—p*)t=ct— a} — Ui,

Eliminate vespectively a,. b,. ¢,, between (1) and (2) after (1) has

been put in the form

@y + b+ (m¥—+ n?) 0 =i+ pte,
and we have ‘

(7) P nt—ph = (aym + b)) —p*(ai + b}).
(8) e (mE-E = pty =t (e — ai) - (e p — a3
(9) mA(mE =t — p )= mi (et — b)) — (e p — byn)

Note that if we pul
ned 4 = p

in these equations, we have

Q,
m-_n p

Lf then Pythagorean nambers are chosen for e, n, p, the same avc

had for @,. b,, ¢,. and from (6) the number ¢ is indeterminate.
Obscrve that equations (2) arc satisfied if we put

m = ka,, n=~nrb, P =ke (A any vational integer)

and choose fur a,, b,, ¢, any Pythagorcan numbers =,

T} + =) ==}, For example, in any realm of nationality R(ye), it is

cvident Lhat the algebraic integers
I=m4bnVt., n=r+ ki Lormg e Ayt

salisfy the equation

The theorem has resolved itself in the solution of the equation

{6) (M 02— P2z et = o} — b},

subject to the condition

(2 aym =+ by =zep.
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One mcthod of procedure is the following :
The integer ¢ being fixed, give to m, n, p fixed values and put

pr— mt— =k,
where A 1s constant. '
From (6), it is seen that

a;+ bl —ci=t.k.
If ¢, is climinated from this latter equation and (2), we have
1y (pr—mya} — 2mna, by + (p*— n*) b} ::p’t/.‘?

which equation is a quadratic form in the two unknown quantities a,,
b,y whose discriminant D is — p*#.

The problem has now resolved itself into the solution of the qua-
dratic form (1I) with negative, zero or positive, discriminant.

1° If k& is positive the discriminant is negative. In this case mul-

tiply (IT) by 4(p* — m*) and put

(&) a2 pr—mHa,—amnb =y,

[t is seen that (IT) becomes

S Aphhi= G (pr— mH) thp,
or

(£0) M= hpl(pP—md)t— 03],

Hence through a finite number of trials, we may determine whither
or not there is a value fur b, which makes the right hand side of (i7) a
perfect square -— a condition witch is evidently necessary for the
solution of the problem.

For example write p =3, m = 2, n =1, so that k = 4. Take ¢ = 5.
From (/7) it is seen that, when

(a) - b, =o. §=4.3.5;
(4) bi=3,  s==4.3.4;
(c) b,=4. s=14.3.3;
(d) bi=5, s=o
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Hence from (7) and (2), we have

(a) a=0, bi=o. c=4;
(b) a, =6, b, =3, =35
(¢) no solution ;

(d) a,=a, b, =5, c,=3.

It is also evident from (/) that negative values may be given to 4,
and s so that, for example, b, = — 3, s = — 4.3.4.

In this case ¢, =— b, b, =~ 3, ¢, =— 4.

Hence in the realm R(y3) if values 2, 1, 3 arc taken vespectively
for m, n, p, itis seen that :

E:i6+2\/gy
() nN= o+ \/3,
) {:i4+3\/3:

{==x0 +v-).\/§.

() n=x3+ /5,
L =%5+3y/5;
E==a+ ayh,
() n==x3+ I,
L =3+ 3\/5;

arc solutions of the equation
LR P

It is evident that if —2, — 1, — 3 had been chosen respectively at
values of m, n, p, the same values of a,, b,, ¢, as those above would
have been derived.

Ifweputm=1,n=3,p=2,itisseenthath =— Gand D =+ 24.
Equation (II) becomes, if ¢ is taken = 3,

3b;i+6ba,— 3a} =19, .

Asolationis a,=3,b,=3, ¢, = a—!'—‘%'—b-l—'f = 6. The corresponding

values of £, v, L are ‘

E_::3+\/§, ‘n:3+3\/§, t =6+ 2y3.
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If ¢ =10, the equation
303 +-6b,a,— 3ai=12ajo,

admits solution @, = 2, b, =6, ¢, =10.
However if ¢ = 5, the equation

5b14-6b,a,— 3ai =120

does not admit solution, as is evident from elementary consideration.

Having one solution it is possible by means of the Pell’s equation to
derive an infinity of others.

In the first case, for example, where D = 24, the equation of Pell,
namely T? — 24 U? = 1, admits the solution T =5, U=1.

Note that the equation

50} +6b,a,— 3a}==73,
may be written in the form

(56 +3ay ) —abat=>5.72.
Hence writing

30+ 3ay-+ V2hay = (26 +3ya5) (5 + Va4,

we have the solutions corresponding to values of k =1, 2, 3, .
If & =1, it is seen that

a, = 39, by =1, ¢ = 42,
and

5:39-{-\/;—5, 'q=l5+3\/§, §:[;2+‘2\/§.

In the two examples given above it is seen that a,, b,, ¢, have a
common factor other than unity.
Take, however,

m =3, n=a, p=i
and let
(=1
It is seen that k = — 12, and the discriminant D = + (2. Equa-

tion (1I) becomes :
8a} + 12a,0,+ 30} =12.22,
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Note that 12 is a quadratic residue of 12.22, the congruence

nt=1a (mod 12.22)

admitting the solution #» = 54; and observe that
a = 3, bl :':_‘_’|
is a proper solution of the quadratic form, that is, one in which

a, and b, arc relativily prime.
" The corresponding Pell’s equation

Tt—12Ut=1 .
admits the solution

Write

T=5, U =a,

8a} +12a,0,+ 303 =12.22
in the form
(8a,+6b,)*— 125 =8.19.99,

and it is seen that the general solution is
8a,+6b,+Viab,=(48+4v12)(7+ayia) (k=o0,1,,3,...)
When

k=1, ay=— 3g, b= 127, o= 131,
k=2, ay=-- 549, b= 1932, ;= 1817,
k=3, a, = — 7647, by = 24124, ¢, == 25307,

The corresponding values of £, n, L arc

k= o, ‘/\':l,

£ = 3+ 3\, E=m— 39+ 3\/a3,
n= 4+aya, n= 13§+ ay/an,
=17+ \/an; = 131+ \a

.

2, k=3,

=— 549+ 322, E =— 7647 + 3\/aa,
n= 1732 4223, n= 241324 + a\/22,
= 1817+ Var; L= 23307+ yan;

EALSN N
Il
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Note that on the transition from a negative Lo a positive discriminant

we must have
. D=0o=— pih.

If A =0, whe have the Pythagorean numbers considercd above.
And if p = o, the quadratic form (1) becomes

am—+bnrn=o

and the further solution is without difficulty.



