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INTEGRAL SOLUTIONS OF THE EQUATION ξ3-{-V)2 = ζ2. 32; 

Integral solutions of the equation ς2Η-τ,2=ζ2 

in the quadratic realms of rationality ; 

BY HARRIS HANCOCK 

One of the simplest Diophantine équations is x2 +r2=-·. 
The solution of this equation gives the so called Pythagorean num-

bers χ — '2pqt, y = (ρ2—q2)t, z = (p2+-q2)l, vhere p, q, I arc 
rational integers such that p~> q> o, / > ο with the further condition 
that ρ and q arc relatively prime and both must not be odd. 

For exemple, 

Ρ = ·2, q-- ι, x — t\, .V~3, - — 5, 52 — 4*+3s, 
ρ — 5, 7 = 4, x — t\o, y — 9> - = 4·» 4>2 = 4<»2+9*, elc· 

A treatment of such problems in the realm of natural integrals is 
found in the second volume of Dickson's admirable History of the 
Theory of Numbers. As every problem, whose history is given by 
Dickson, admits a generalized treatment in the algebraic realms of 
the second, third and higher degrees, it is seen that a vast field of 
further investigation is open to Mathematicians. And by developing this 
algebraic number-theory new light may be thrown upon the theory 
of algebraic equations. 

By definition a quadratic algebraic integer is the root of the equa-
tion A/-h'B = o, where A and Β arc rational integers and the 
coefficient of lr is unity. 

Let 

ζ — -f- + Cf.,, Yj ~ b
t
 4- b\b

2)
 ζ rr C) y/c'j + Cj 
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be three quadratic algebraic integers, being respectively the roots of 

j?s—2 axcc— a2— o, —2 bxy— bo—ο, zi—2e, c — c., — 0, 

where a,, aix /;,, b
21

 c
n

 c., arc arbitrary rational integers, 
if then ξ2 η2 = ζ2, it follows thai 

(I) 2ax\ + aa4- 2-+■ b2 — 2<?,ζ -+- c2, 

or 

(la) 2rt·; -t- aj-h 2«,yUi'\ + es+ 2b'\ -+· bt -+- 2b{b'\ -+■ bo 
—· 2 6'^ -(- Cj H- 2 Cj y/tj —|- Cj. 

Our problem is to solve this latter equation in integral values of a
n 

tt;., b
x
, b2f

 c,, Cj. 
/♦Vrsi let a

K
 = o. It follows that 

(II) «J-+- 26] 4- b
x
 — 2C} -+- Cj, 

(III) b
x
 s/bl+b^Cxs/c^ + c,. 

Writing (HI) in the form 

(IV) b \ — c'|c ] t\> — b] &2, 

it is seen that b
n
 e,, may be taken at pleasure and c

a
, b.

2
 so chosen as 

to satisfy (IV). Then from (II) a
2
 is determined. 

For example let b
{
 = 4> ('\ = 3, then is b

2
 — — 700, c

2
 = — 122S 

and a
2
 = — 539· And that is, if η is a root of y- — 8jy -+- 70ο = ο and 

ζ a root ov ζ2 — 6 ζ -h 122Î), then η2 = ζ2 -h 539. See Diophanlus II, 
j ι ; Dickson II, p. 402. 

Next observe that from (1") follow the two equations 

(1) 2θ'
χ
 2 6 y 2 c'J -|- t'

2> 

(2) «»\/α'ί + αί + bx\jb\4- bi — c
t
\/cjj-+- c.,, 

That these equations admit solution is seen at once if we put 

al — b\ = Ci; Co —<2 a\-\-a2-\-b2. a*—bo-
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For it is evident that if ξ, η, ζ are respectively the roots of 

Xi— ICt^X Η — ο, y2 — "2 α,/ H—= Ο, 5s— 1dxZ—α\ — ο, 

that ξ8 -h η* = ζ8. 

Note that α, must be an even integer in order that ξ and η be alge-
braic integers. 

For example, 

a?2 — l\ χ 4-2 = 0, y'1— '\ y -1-2 = 0, ζ* — /j ζ 4 =o, 

have roots 
ξ = η = 2 4- y/2, ζ = 2 4- 2 \/î 

such that 
ξ«4-Υ38 = ζ8. 

A. solution of (ι) and (2) is had as follows : 
Put 

(3) V^t + ^Î— + 

where m is a rational integer to be determined. 
We have at once 

U) cx = α
Λ 4- mb

x
 and \Ja\ 4- #2 — \Jc\ 4-

In the latter expression put for c, its value so that 

sja\ 4- at— \/(«ι4- m6,)24- cs = \/a\ 4- 2axmbx 4- m26j 4- c2 

and regarding a.> fixed, make c
a satisfy the relation 

(5) a, =r 2 mb{ 4- m*b\ 4- c,. 

This expression may be simplified by observing from (1) that 

(6) α24- ib\ 4- 62= 4«i 4- 2ms6] 4- cs. 

From (5) and (6) it is seen that 

(7) ib]-\- b2 = at— câ, 

and also that 

(8) m* b\ 4- 2 at 6, m = 2 b\ 4- 62. 
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The latter equation in m may be satisfied in an infinité ijumher 
of ways. For let 2«, — thus making· a perfect square on 
the left hand side and put respectively b3= ib~r == i4^î> = 3/|Z>J, 
= 62b\, etc. 

It is seen that m may take the values 1, 2, 3, 4, ·.... 
For example let m — 2, so that at — 3Λ,, b.> = 1 Vq. From (3) it 

follows that b\ 4- b2
 = m-(a\ 4· α2)ι or — 21 b\ = 4a.,, an expression 

which offers an infinite number of values of a2 and ft,. Write ft, = 2, 

α
2
=—21, a

{
 = G, 7^o=56. From (4) and (5) it is seen that 

c, = 10 and c., = — 85. 
It is thus shoAv 11 that the roots of 

α:2 — 12x 4- 21 — <>, y2 — 4y — 6 = 0, .3? — 20 r- 4- 85 — o, 

arc 
; = 6 4- y/i5, γ] = 2 4- ay/i 5, ζ—104-;/15 

and that 
ξ*4-η2-ζ·-. 

A second, method. — Write as above 

.r2 — 2a,.r 4- a2= <>, r2—2ft,y — ft
2
=ro, s2— 2c, 5 — c

2
—ο 

with roots, the algebraic integers, 

£ =. a, 4- y/«i -t- «2, η = ft, 4-\/ft2 4-ft2, ζ = c, 4- \/c'î 4- c
2

. 
Put 

η — mi 4- /i, 
so that 

η2 = m2 ξ2 4- a m/ι i 4-η-. 

It follows that 

2 ft, Ό 4- ft2 = m- (2 α, ξ 4- «2
 ) 4- 2 m/ι t 4- μ 2, 

or 
2 ft, m£ 4- 2 ft, /? 4- ft2 =± 2 a, m2£ 4- as»i.2 4- 2 w/» £ 4- //2. 

II is clear from this last expression that 

(«) 
ft, = ma, 4- ηy 

(2) 2ft,« + ftj = m2a24- a2. 

If « is eliminated from these equation we have 

(0 ft2 4- ft2 = ηι*(α\ 4- α2). 



ISTKGHAL SOLUTIONS OF 'ΓΙΙΕ EQUATION ξ2 +· η2 = ζ2. 33 ι 

From equation (I), it follows that 

2«ιξ -+· rt24- ib{mi -h o.byii -4 b.x~ 20{ζ Λ- c.>. 

If tlie rational and irrational part of this expression arc equated, it 
is seen that 

(3) fl, + /)it|Z:C„ 

(/,) ia\ «ο +- 2 b{ 4- 2 b{n + b.>= 2c\ 4- c.>. 

Eliminate η from (4) by means of (i), we have equation (ii) above 

( ii) a., 4- a b\ 4- b.
x
 = ί\ a, mbx -t- a m3 b\ 4- c2. 

Noting' that the relation 

yVf -Η n.,= -+- c., = \/(α
Λ
 4- mb

l
 )- + c.> 

must be satisfied, it is seen that 

(">) a2 = /M&, 4- ///-4- c2. 

From (//) and (5) the quantities a
a
—e

a
 and m may be respectively 

eliminated, and the following equations take their places 

(4a) 2 4- b., = tn3 b\ 4- 2 rt, b{ m, 
(5e) 26J 4- ^2 — ai— Co· 

If as in the previous solution, we put in (4Λ) the values 2«, =. 3 b
{
 m, 

Λο = ι4/>;, we have 16/q ~ 4/»"^ί> or /λ = 2, 2«, = ΰδ,. From (1) 
w = —5/>, and from (2) — 21//{ = 4«3· Fut δ, = 2, α

2
 = - 21, 

«, — (), />a=5G. From (3) and (5Λ) it is seen that c, = 10 and 
ca= — 85. Observe, however, that equations (1), (2) et (4) may by 
eliminating η be replaced by 

b\ 4- b* = m3 ( rt'f 4- rt., ) 
and 

«,4- 2b\4- bt= [\a^mbi 4- 2/rt*j/>J 4- c, ; 

and it is seen that this solution is only a different form of the prece-
ding one. 

A more general solution. — Writing as in the preceding method 

Y1 rr m ζ 4- rt, 
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we liave 

(·) bx = nicx 4- η 

and 

(2) 9. bx η m* c.» -4- η-. 

Again note if η is eliminated from (i) and (2), that 

A* -t- bx— m2(cj 4- c.,). 

Further write % — ρζ-+- q and it follows that 

(3) ax pcx 4- 7 

and 

(4) 9ctxq ->r a* — p* ct 4- r/2. 

If <7 is eliminated from these latter equations, Ave have 

rt'j-f rt.2=:/)s(cj+ C4). 

The above values substituted in (1) cause that equation to become 

ιαχ (ρζ 4- q) 4- a. 4- ibx (ηιζ 4- η ) ·+- Λ
2
= ·ίϋ,ζ 4- c2. 

In this expression equate the real parts and also the imaginary 
parts and it is seen that 

(5) C| = j»ai + m&|, 

2pa-xcx 4- 2mbxcx-h 2*1,7 4- 2bxn + b*. — -4-2c21 

Due to (5) the last equation becomes 

(6) + +a2+b2=c2 

From (1), (3) and (5) it is seen that 

/ _ \
 r

 __ mn + pq . 

and from (2), (4) and (6) 

ζ — -f- + Cf.,, Yj ~ bt 4- b\b2) ζ rr C) y/c'j + Cj 
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A solution of (7) and (8) is had, if we put 

n — k( 1 — mi — pi) and q = £(1 — ml —- //2), 

where k and I arc arbitrary integers. 
It follows that 

(,·, = mk 4- pi, 
c.x -:= ( k* -4 /* ) Η, where II = 1 — ni1—ρ2. 

From (1) and (3) we have 

bx = k 4- ρ(mi — pk), 
//, = / -1- m(pk — ml) ; 

and from (2) and (4) 

b,= \(ml~pky - Λ1 ] 11. 
Oi-[(pk - miy—t*]II. 

Further note thai 

cj 4- /' 4- /1" — ( kp — On)1, 
(iΐ Η- ίί2 — /i2 (('j 4- (4 ), 4- bx — /it8(Cj 4- <4 )· 

For example, let I = 2, k — 3, ρ = 5, /// = 7. 
It is seen that 

cJ-HCa— 13, rt* 4-a2—: 54.12, b\ 4-^2= 7s. 12, 
C,— 3l, rt,— 9, -2, 

Ζ : - 3 4-2 v/3, ; =: // 4- ι υ v/3, YJ — — 2 4- 1 -i \^3, 

where 5a4-η2 = ζ®. 
Again put 

m — 3, / — 1, /> — /,· =: 5, 

and we have 

ς — 22, 4- 2ί\/23, η=9 4-3ί^/23, · ζ = 17 4-iV
a

^« 

£;>4-η8=ζ8. 

Finally make nj 4- Co a perfect square, and we have the Pythagorean 
numbers. For example, let 

m — 5, /rz: 3, ρ — 3, /. = 4, 
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and we have 

cf-hc2— 16, 6·,= <(>, ζ— ·.<(■)+ 4 = 3°, 
«7 -h as— 32.16, α,= 12, £ = 12+12 = 24, 
b\ -Η h» — 5'-. ι(). bx

 ——2, η— — 2 + 20 = 18, 
;2 4- r,s — t)t»0 — ζ*. 

The quadratic realms of rationality. 

We arc now in a position to express the above results in a more 
definite form, which is done through proof of the following theorem : 

In every quadratic realm there is an infinite number of solutions 
of the equation 

>*+*)» = ζ» 
through algebraic integers. 

It is well known that any quadratic integer may be expressed in 
the form α.ι + Α.ω, where a and b arc any two rational integers and 
where 1, ω form the basis of the realm, say R(v7), t any integer. 
If i™2(mod4) or /^=3(mod4), then is ω = \jt\ if, however, 

2L==I (mod4)> then is ω= —^—· The case where t contains 
a squared factor may he rcduqed to one or the other of the above 
cases, so that it is unnecessary to consider the case ΜΞΞΞo(mod4). 
As the present paper is concerned particularly with the existence of 
such solutions as have been indicated, it is seen that the solutions of 
the second case necessarily imply those of the first case; for if 

ζ — -f- + Cf.,, Yj ~ bt 
then necessarily 

W-H (**])'= («ζ)1. 

We may therefore consider here only the first ease : If 

\ — m
l
 4- m\/l. 

where m, and m arc any rational integers and if ξ satisfies the 
equation 

x2— 2 axœ — α.χ — ο, 
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where a
a
 arc arbitrary rational integers, we have 

m'f 4- amm
x
\/i 4· /h2 t — aa% w»i 4- art

(
 m\h· 4-a2+ 

It follows dial 

m1=a1and m*t = «î 4- «2. 

Similarly if η and ζ arc roots of the two equations 

y·—·>. bxy—/>2=0 and cd—at'iy — c
4
=o, 

we have 
; = «, 4- tnt*, 

\ 

η ■= />, t- /</', 

where η like m is an arbitrary integer, 

ζ — C| 4" pt*, 

ρ being likewise any rational integer; witk the conditions 

m2 / -- 4- «2, η*I — b\ 4- bi} ρ11 — e2 4- ca. 

Wi iting their values in equation (1) namely 

•2 α, ς + α2 4- a b{ Y) 4- bt = ac1 ζ 4- ciy 

it is seen that 

·>. a 2 4- », -h re, ni\!t -l- ·>. b\ 4- b
2
 -|- ·.», />, η \J~t = a e2 4- ct

 -I- a e, ρ\ L 

Equaling the rational and irrational terms in this expression, we 
have the following equations to solve 

(1) aaj 4· a>4- a b\ 4- bt = at·2 -|- cv 

(2) a
x
m 4- />1« = 6·,/>, 

(3) nt-l — al + a-i, 
(4) n%t = //f 4· />j, 

(5) [Pt —c) 4- cs. 

From (1), (3), (4) and (5) it follows that 

2 ( m'14- 'ia— ρ2 ) / = a2 4- />a — c\ ; 

Journ. de Muth. (8* série), tome IV. — Kasc. IV, IIJ'JI. 43 
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or, what is the same thing, 

(6) (/η24- η- — pi)t — c\ — of — bs
t

, 

Eliminate respectively a,, ft,, c,, between (i) and (2) after (■»') has 
been put in the form 

aj 4- 0'j 4- ( ms 4- /is)ί = c'j 4- ps t, 
and Ave have 

(7) ρ3 («ι' + η1 — ps)i ~(a{m + ΰ{ηΥ—ρ3 (af 4-//;·). 
(8) /ts (m3-\- η3 — p*)t = «â(cf— ai) — (ciP ~ "1m )"-
(\)) /ns(m3 4- ns — ps)t ·— /ns(e'f — b'j) — (e,/> — />,/*)"· 

Note that.if we put 
m2 4- η3~ ρ3, 

in these equations, we have 

ζ — -f- + Cf.,, Y 

If then Pythagorean numbers arc chosen for ///, a, the same arc 
had for α,, ft,, c,, and from (6) the number / is indeterminate. 

Observe that equations (2) arc satisfied if we put 

m —ka|, n~kbi, p~kt'i [k any rational integer) 

and choose fur a
n

 ft,, any Pythagorean numbers -,, τ:
2

,y3, 
π'·; 4- π; = "J. For example, in any realm of nationality H(\//)j it is 
evident that the algebraic integers 

; — 7T, 4- k -| \/7. η — π2 4- /.· 7Tâ \ΰ. ζ - : -3 -ι- k 7Τ;ι V Ι 

satisfy the equation 
ς24- Π- = ζ*. 

The theorem has resolved itself in the solution of the equation 

(6) {m3 4- ns— ps )t~c3 — « j — Ο3, 

subject to the condition 

4 2 > a1/># 4- />, —-c1p 
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One mclliod of procedure is the following : 
The integer / being fixed, give to m, n

f
 ρ fixed values and put 

/>*— tn% — ηα· — ky 
where /»· is constant. 

From ((>), it is seen that 

a- + b \ — c* -- / ./>·. 

If <·, is eliminated from this latter equation and (2), we have 

(in (/>*— ;«3)af — mnaxbx 4- {pi— n*) b\ = piti', 

which equation is a quadratic form in the two unknown quantities <7,, 
A,, whose discriminant D is — p-/,\ 

The problem has now resolved itself into the solution of the qua-
dratic form (II) with negative, zero or positive, discriminant. 

i° If A is positive the discriminant is negative. In this case mul-
tiply (II) by /\(p- — m'-) and put 

(0 ■.? ( p'1 — mi)ai — ·>. mnbx =s. 

It is seen that (II) becomes 

•V- 4- \p'· kh] =T 4 ( p% — m· ) tkp1, 
or 

( / i) .vs = 4 /φ9· [ ( ρ'1 — f> ι* )t~b'i]. 

Hence through a finite number of trials, we may determine w hither 
or not there is a value fur />, which makes the right hand side of (ii) a 
perfect square — a condition witch is evidently necessary for the 
solution of the problem. 

For example write ρ — 3, m = 2, η — ι, so that /c = 4· Take / = 5. 
From (ri) it is seen that, when 

(a) . b
x
 — o, .9 = 4.3.5; 

(b) bx — 3, λ· = 4·3·4; 

(c) bx = 4« .9 = 4-3.3; 

(d) bx = 5, .9 = 0. 



338 HAMIIS HANCOCK. 

Hence from (t) and (2), we have 

(«) a, = 6, £1 = 0, c,— 4; 

(6) «ι=6, />i=3, c,= 5; 

(c) no solution; 

(d) ax = a, />,= 5, cx = 3. 

It is also evident from (ii) that negative values may be given to bx 

and s so that, for example, b{ — — 3, s = — 4*3.4· 
In this case α, =— bn bx — — 3, c, = — 4· 
Hence in the realm R(^5) if values 2, i, 3 arc taken respectively 

for mj ft, />, it is seen that : 

(«) 

ξ — ± 6 h- av/5, 

η= ο-j- y/5, 

ζ = ± 4 ·+■ 3 ̂ 5 ; 

(ft) 

ζ = rb 6 +_a \/5. 

ϊι-±3+ \/5, 

ζ — ± 5 3 \/5 ; 

(c) 

ξ = ± a -+- a^/à, 

η —±5+ y/5, 

ζ — ± 3 -f- 3 \/5 ; 

arc solutions of the equation 
ζ — -f- + 

It is evident that if —2, — ι, — 3 had been chosen respectively at 
values of /ft, η, ρ, the same values of a

t
, 6,, r, as those above would 

have been derived. 
If we put /Λ = Ι, ft = 3, /J = 2, it is seen that k — — 6 and D = -+■ 2l\. 

Equation (II) becomes, if t is taken = 3, 

5 + 6 bx α, — 3 a J = 7?.. 

A solution is a, = 3, b
x
 = 3, e, = a'm^~ ft«M — β. The corresponding 

values of ξ, η, ζ arc 
ξ — 3 -h \/3, η =: 3 -+- 3 \/3, ζ — 6 a y 3 · 
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If t = ίο, the equation 

5b21-+- 6&,ίϊ,— ortjrzr 240) 

admits solution α, = 2, hK = 6, c, = 10. 
However if t = 5, the equation 

bb] 4- 66, α, — 3aj — 120 

does not admit solution, as is evident from elementary consideration. 
Having one solution it is possible by means of the Pell's equation to 

derive an infinity of others. 
In the first case, for example, where D = 24, the equation of Pell, 

namely Ta — 24Ua = 1, admits the solution Τ = 5, U = 1. 
Note that the equation 

5I>1 4- 66,«, — 3a^ = 72, 

may be written in the form 

(5/>, 4- 3«,)'·*— 2/4^?= 5.72. 
Hence writing 

5 bi 4- 3«,-+- = (24 -4- 3 \/a4) (5 4- y/24)\ 

we have the solutions corresponding to values of k = 1, 2, 3, 
If A = 1, it is seen that 

a1= 3l), />, — 1 «>, C, ~ 42> 
and 

c — 39 4- y/3, '(] — 15 Η— 3 y/3, ζ — 4 a 4· 2 y/3. 

In the two examples given above it is seen that a,, b
n

 c, have a 
common factor other than unity. 

Take, however, 
η 1 = 3, η — i, ρ — 1 

and let 
t. = 22. 

It is seen that A" = — 12, and the discriminant D = 4- 12. Equa-
tion (II) becomes 

Sa\ 4- 12a, bx 4- 3 b\ =* 12.22. 
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Note that 12 is a quadratic residue of 12.22, the congruence 

Ms == 1 a (mod 1 a. 22) 

admitting the solution η = 54; and observe that 

λ, = 3,/>, = 4 

is a proper solution of the quadratic form, that is, one in whicl 
a, and />, arc relativity prime. 

The corresponding Pell's equation 

T»-12U»=1 
admits the solution 

T = 7, U=a. 
Write 

8«? f-12«! b\ -+- 3Λ; — 12.22 
in the form 

(8«,·+· 66,)'—-126^ = 8.12.22, 

and it is seen that the general solution is 

8«
t
+ 66,4- \/12 6| = (48 -+- 4 \/12 ) ( 7 -+- 2 y/ 12/ (/«—ο, 1, 2, 3, ...). 

When 
A" I, rt,=— 39, />, ~ 127, C| — 131, 

A- = 2, (7, — -- 549, 1>1— 1732, C'i = 1817, 
A = 3, α, = — 7647, b

x
 — 24124, c, — 25307, 

· · · t 

The corresponding values of ξ, η, ζ arc 

k — ο, A- — τ, 
ξ= 3 -Η 3 \/·22, ξ:-— 39-t-3\/22, 

•fl— 4 -+- a YJ = 124 -Η 2 y/22, 

ζ =17+ y/32; ζ = ι3ι + y/22; 

A· = 2, λ—3, 

t =— 549-+-3 y/22, Ι—— 7*>473 y/22, 

γ)= 1732 Η-a y/22, 24124 -h 2 y/22, 

ζ = 1817+ y/22 ; ζ = 25307·+- y/22; 
• "1 » 
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Note that on the transition from a negative to a positive discriminant 
we must have 

D — o = — pH\ 

If A == o, whe have the Pythagorean numbers considered above. 
And if ρ = ο, the quadratic form (11) becomes 

a y ni -+· bx η = ο 

and the further solution is without difficulty. 


