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SONE EXPAXNSIONS IX YECTOR SPACE. GQ

Some expansions in vector space:

Br A. D. MICHAL axs R. S, MARTIN ().

L. Ixtroocemion. — The general theory of linear vector spaces has
been studied by several authors (*). The present paper is mainly
concerited with the study of the properties of two expansions B(T)
and U T) iu a special linear vector space S, closed under multiplica-
tion by numbersof a real or complex system A, and having additional
properties abstracted from those of a space of linear transforma-
tions. The functions B(T) and D(T)Yare on S to S and S to A
vespectively. D(TY 1= analogous to the Fredholm determinant
and B{T) tothe first Fredholm minor. A simple derivation of some
results on genervalized rotations is incidentally given in Seetion 5.

2. Postoiates axo Dervinions. — Let A denote the system of real
or the svstem of complex numbers.

We consider a space S consisting of a set [ T.U, ...} of ele-
ments T, U, ... and five opérations

P N N FOUS N PN

satisfving the following postulates.
1. The set (T, U, ...} forms a complete linear vector space with

1) National Researvh Fellow in Wathematios at California Instituie of
Tevhnology.

(71 See. for example. 3. Buxaon. Fundamenta Wathematicre. vol. 3. 1g23.
e 133, and M. Fréoner. Espuaces abstraits. Paris. 1928, See also Fréchet's
Jundumental papers on abstract spaces in. Rend. Cire. Mat. Palermo.

vol. 22 ygois. po =40 and in Jonrnal de Mathematigues, wpg. p. Tr-a2.
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respect to addition. (O). multiplication. (O). by numbers . b. . ..
of A and thenorm | ... .

H. Theset; T.U. ... :formsa ring with respect to () and compo-
sition, (O having a unique two-sided unit 1, that is

1{??1‘:1\;”:]‘ calt e,
UL 1= N N
V. The product T U is a bilinear operation of wmodulus unity
on the space 3* to 3.
V.. ..]is 2 homogeneous linear continuous operation on X to the
number system A having the propevty that

R WINGT SRS} SR N T N

i
- ~—— - -

That the five postulates are consistent i1s shown by tahing 3 to
be AL the operations

- - -
SR N ISR P N DU
- S— - N

to be ondinary addition. multiplication, and modulus respectively.
aud [a] to be u.

\With A the veal namber svstem and with the following interpreta-
tion of the elements and operations, the set of ordered pairs of

functions (Tﬁjmx v '\Fmﬂ) form a non-trivial instance of a space S,
Lot

T - "J;T&c..r. v, Tiest, Uz Uy v Uier s

l:\u‘ 1§

where Ty, »Yand Uga, »Vare continuous on the square a2 v~ b,
and Ty and U () are continuous on the interval (. &), Take

e S :QiT(,r. Wy~ U, v, Toor = Lird )

- ~ - ~ Y
awi « 31 :{ﬂa Uiaw. vy, o Tiey i
~— AN = R

4

T — q )‘ Tz iz ndeds + Tiaws Uee vy — U v T o) Tied l‘(\r})‘,‘

TP ud —araman | Tear, 33— mand T,
N oM L]
M= Tee orde

-~
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\We may akso take

where ¢ is a constant and 2, 1sa tixed number i (a0, &).

Unless ambiguity arises we shall write(Oas simply < and omit te
write () and . As imwmediate consequences of postulate (§) we
have

- N7 (Wu -\n'l‘\] ol = T fﬂ TR T :;Q'i‘« ot ‘}
and
V2.0 Jreou]sgriaun

For purposes of exposition 1t is convenient to make several delimi-
tions, some of whose farther unpheations have been studied else-
where (')

hictiniteon . — By a polynomal pia) of degree n on a vector
space V,(AD to a vector space V.(A) we shall mean a continuous
function p.) such that p( -+ 2.¥) is a polynomial of degree nin 2. of
the number svstem A, with coeflicients in V(A If further

PR T Ay TR IN

pLr) is sad to be hemogeneous of degree n. It is convenient to con-
sider a null poly nomial as having any degree whatever.

ticfintron H. — By the modulus of a homogeneous polvnomial of

degree # we shall mean
Bpvast

MR ——
R R

and shall denote it by mp.

Definition M. — We shall say that a function f(x) on V(A
to V.(A)is analytic at a point.r, if there exists a sequence | &, (x)!
of homogeneous polynomials (4.} of degree ) such that X2 mh,

has a positive radius of convergence r. and such that for]o —r < r.
Zhax —a,) converges {in the norw} to f). We shall call r the

1V RS0 Marns. California Institute thesis, wdn



72 A, D MICHAL AXND R. 5. MARTIN.

radins of analyticity of f{a) at ., and shall often refer to such
au f{@)as analvtic (r) at 0 =,

a. Tae Povvyomais B.(T)Yand a,{T). — Let T be in S, Let a, =1
and B, =0 where o is the zero element of S. Deline a sequence of
numbers } w, T)! and a sequence of elements { B, (T)! of S by means
of the recurrence rvelations

(3.3 BTy —w _TYT ~ B i TT,

T — YR

(3.2) u.\,qﬂdn_"il‘.,{li”.

\We have

(3.3) BT :E (— " e (T) T
m=h

N

(3.5 i T :E (— O e (T TN

r=t

Solving (3. 1) (whose determinant is n!) we have

[TV [T o o T
e [ry .o . T

(3.3) @y {Ty= 0 o w— . L 1T tn>a).
I e s
0 o e R | T}
Furthermaore
1 I . [t
n—1 1T] eo (T
1
o S, ‘o )
Iy BTy = ——— "— . e n > ),
(o N) A T’ {l@—l)w: w ﬁ E ( E
(1] [1] . ]

as can be seen by expanding (3.6) in its first row and using (3.3)
and (3.3).

Tueoren 3.1, — B, (T) 15 « homogencous polynomial of degree non
the space S 1o the space S. The modulus of B, (T) satisfies the tnequa-
lity

(3.7) PR ) kL PR bl

s { >0,
(o — 1)yl
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where v ts the modulus of the operation | . . .| Stmilarly «,(T) &5 a
homogeneous polynonial of degree non S to \ and
vy (v —a)

(3.2 WS .~ (> ),

Proof : The polynomial property of «,(T) and B, (T) is evident
for n=1. for then «(T)=|T] and B,(TY)="T. Assuming the
theorem lrue for n — 1, the continuity of B,(T) follows from the
inequality
BRTY — B Uy Shetuny (YT — @y (U T} 2 Jetamy (UIT — ane (L) U]

o Bl UYT — B (TYTY| =+ B (VDU — By (U7
St UT) = et (U = BB (D) = B (VDT
< T (O = Ry (DM T — 1Y

and that of «,(T) from the fact that [...] is a linear continuous
aperation.

Observing that a,_,( T+ 2U)and B,_ (T +aU) are polynomials
in 2 on A to A and A to S respectively we see at once from (3.1)
that B, (T 4+ 2U) is a polynomial in % on A to S, say XX'K,. Then

(T 2y = & M v }."h,;ﬁ =\ ,F]
n| e ; amd Ln

is a polvnomial in % on A to A. The homogeneity is obvious
from (3.1) and (3. 2).

The proof of the inequalities (3.7) and (3.8) is by induction and
the use of the postulates.

£. Tur Exeaxsions B(TY axo D(T). — Turorew 4.1 :

B(T)=N Bu(T)  and T _E an(T)

L] LY

are functions on S to S and S to \ respectively analvtic at T = o,
Thetr radit of analyticity are not less than unity.
Proof :
XivmB, and Xivmua,

Jowrn, de Math.. tome XL — Fase. L, 1934 10
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are dominated respectively by

G (Y1) oo 0y -0 —1) 00— Byt <

P A = A —_ & i (A (§]

) = (1—2) (1R]< 1)
1

and
‘ oot b L e — ) «. N .

j“‘ W a ! i 3 — 1 Y.

S{I ™= =it — 1) {{a] <)
[

Tueoren 4. 1. — 1121 <1 then

oy IMEDy = (v = )
and
(k) B = h
where

f=111.

Proof : From the homogeneity of u,(T) we have
iy =21 a, (I

and from (3.4)

i&.3) na, = Iv (— vt 1y,
i :

[=nd]

The recursion formula (1.3) together with the condition «,=1
determine the successive coefficients b, in the expansion of (14 1Y,
for differentiating

(%0 (v 2 =X,
we obtain

A= — fiy o Y= — ?‘v - ! JE— v‘ Joe v (Y
Euh"m = {2 _I(Hb,,l.' —_— _I(‘,_‘I),M \]_,"( LA,

LI 4

Equating coefficients of 2" we see that 4, =1 and that &, satisfies the
recursion formulz (4.3) for a.(I). Hence

b=, (1),
Furthermore from (3.3) we see that

B.i1)=38,1
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where

o

L]
:E {(— 0 Vet Y (Bu=o0)
[ k=]

Since 3, = o and since
- \

YT h“‘—':( 2 e, (L )(E {— l)"l’“"')
L 0 o

-
it follows that 3, is precisely the coefficient of 4" in the expansion of

YL A Sl
CoroLrary 1. — There exist spaces S in which the radii of analyti-
city about T =0 of B{T) and D(T) are unity.

By a proper choice of the constant ¢ in the instance of a space S
given in section (2) we may secure that /is not a positive integer or
zero.

Since {1} =1 we have that

moa, iy

and )
m B, 13,10

Hence the radii of convergence of the power series Xma, " and Zmn B, "
are respectively at most equal to the radii of convergence of X}, (1) | 2"
and X7 3,127, The latter two series, however, have the same radius of
convergence as Xa,(1)2" and X3, namely unity. Combining this
result with Theorem % .1. we have the corollary.

CoroLtary 2. — If the real part of | 1] is posttive then D{—1)=o.

We have

w f— Ly = {— 14,
- ~ . -~ L

where 4, 1s given by (4.4).

If the real part of /1s positive then the series &(—1)"4, is known to

converge. Hence using \bel’s theorem on convergence up to the unit
circle we have

2a,— = lim E2b,0*= lim (1+d)Y=o.
- A" )
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CoroLLary 3. — If the real part of [1]is negative then the series
Ya.(— 1) representing D(— 1) is divergent.

CoroLary 4. — If[I]=o, then D(— 1) =1.

\We observe that for fixed T, B(%T) and D(%T) are analytic func-
tions of 2 near A =o0 on A to S and A to A vespectively and that their

I, Lo s ‘ 1
radii of analyticity are not less than -

it
Treoren 4. 1. — If YE, ! &5 a sequence of elements of S such that
E=ZE, converges in the nornmn, then ETE, and ZE,T converge tn the
norm and are equal to TE and ET respectively.
Proof : Let

he

‘:ﬂm :z JI‘:M .
then

"
" N TE, —TE ” = T(Co— BN TN Con— E
Since by hypothesis {(,, — E] approaches zero with —, the first part
w v m

of the theorem is proved. The proof of the second part is similar.

Tueoren 1.1V, — I/ E(TY=XE,(T), where E.(T) is a homoge-
neous polynomial of degree nis a functionon Sto S analytic at T=o,
then TE(T) and E(T)T are analytic on S to S and their radii of ana-
Iyticity are at least as large as that of E(T).

Proof : That TE,(T)is a homogeneous polynomial of degree 241
is shown by a similar argument to that emploved in the proof of
Theorem 3.1 From the inequality

ITE(D . [Tl 1E(T)
T ST T

<mlk,

and Theorem 4. 11l the rest of Theorem 4.1V follows The proof is
similar for E(T)T.

5. Dxverses axp rRorations. — In this section we shall not make use
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of postulate 5 for the space S. Hence throughout this section S will
denote a space that satisfies the first four postulates.

Definition. — By aleft-hand (right hand) inverse to an element T
of S we shall understand an element T, such that

T,)T=1 (T()T,=1).
A two-sided inverse T—' we shall call an inverse of T.

Tuaeoren 5. 1. — [f T of S has at least one right hand inverse and at
least one left hand inverse then vt has unique right and leyt hand
inverses and they are identical.

Proof : Let T, be any left hand inverse and T, any right hand
mverse of T, I'rom
T(x)T.=1,

we have

To=10)T=T, ) T(x)T.=T, () L="T,.

ConoLrary 1. — If'T has an inverse, then it is unique.

Cororvawvy 2. — If T\, Ty, ..., T, of S have tncerses, then

Ty (5) Ta (3) -+ () T
has ar inverse, namely
T (TN (<) ... () T

Corotrary 3. — If T has an inverse T—' then T—' has an inverse,

namely T.

Treoren 3. 1. — 1/ T
namely

L1, thea | +'T has an (unique) tnverse,
1 —1‘—2 (— 1) Tn,

n=1
Proof : By successive applications of (2.2) we have

(=TT g
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It follows from the completeness of S that 2‘(-— )" T*is in S, By an

. ; I e | ' . .
evident calculation and the use of Theorem 4. 11, it is seen that

| -rvf— .1:."%
L )
w=
is an inverse ol 1 4+ T, which by Corollary 1 of the preceding theorem
is unque. :
Suppose now there exist an operation [, wich we shall call trans-
position, with the following three properties :

{et) T s a hoear operadion on S o S,
" TU ="(UT)
(e TTy="T.

It follows immediately from the properties (&) and () that 1=—=1.
From (&) and this result it follows that if T has an inverse then the
transposed of T has an inverse given hx the transposed of the inverse

of T.

Definition. — W 1— 1T has an mverse 14~ 2 1'(2), then () will
be called the resolvent of #T.

Tueorem 5.1, — Suppose | — &1 and 1 — 0.+ VT have inverses,
then ¢f T'(R) is the resoleent of 1.’V it follows that Uy - ) ix the
resolvent of u.T'(L).

Proof : By hypothesis
TN FTLEES YRR EE N
From this relation we obtain
(5.1) (h—2T iy =T.
Consider an element J defined hy
(D.2) 3= i\n —n l‘ﬂ:y'}g\l ST NP ,up:,l,
On applying (5.1) Lwice successively to (1 —2.T)J we obtain

(L= 2T =1 — 2+ 2T) (1 - 2T =)} =1—1T.
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Since | — 2T has an inverse it follows that J =1 and hence the theorem
is proved.

Definition of a rotation. — If 1 + T has an inverse given by 14-"T
then T will be called a rotation.

Tigosen 5.1V, — If T is a rotation and if (A —1)T has a resolvent
F'(x—1) thea — LT has a resolvent and

(3.3 (2 — 0 =— T{—%).
Proof : Since T is a rotation

5.0 T — P{—

By hypothesis and the previous theorem we have

(3.3) (120G — 3l =2 Ty=1

Applying the properties of transposition, the transposed of (5.5)
becomes

[H.61 il +1'I!‘)w(l-i—l'll‘l_‘l—-:u):lh
Hence the inverse of | —(— »)T exists and we have
ﬁs.."l (M—-{—MT}(I*i.ﬁ‘l‘—l)):;L
By Corollary | to Theorem 5.1

T(h— = — Ui— 1)

From this result (3.3) follows immediately.

Corollary. — 1T is a rotation and 1 + -: T has an inverse then

i :I‘(- l‘)

is defined and

Tugoren 5. V. — If T &s a rotation such that 1 4 % T has an inverse,
[ N y . o ; . g ; -
then T ts the résoleent of 5 H where H satisfies the relation

"NW=— I
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~ ; - [ SR . "
Proof : Take A= - in (3.7) and apply the previous corollary.

~ - _ ¥ - .
Tusosen 5. V1. — If L — =T has an tnverse and if

(3.8) T=—7T
then the resolvent \ H- ): of 1‘ T & a rotation.
a0

Proof : By hypothesis we have

; i 3 L

(5.9) M.ﬁ, 1\(\_{\\) (u_ ;m:)‘_l.
Transposing and making use of (. 8) we obtain
A i) (L)) =

(3.10) (13 I)U - ;\‘(\a}g\_m

o 1 f ~ [ | R~ -~ - 1 U gy
Since by hypothesis 1 — -T has an imerse and smee L+ U s

. U s g ‘ 1 ‘ -
the transposed of 1 —- T it follows that [+ ~T has an inverse,

namely,

lence from { 2. 10) we have
. Uy U
(3.11) ‘M(;; ‘_,__M(_ N )u

3 e F w v . ; ‘ =
Since A.(‘-l\h and .\(—- —l) exist we can apply Theorem 5. U and
Y S

&

With the aid of (3. 11) we can write this relation in the form

(- @) ()=

This proves the theorem.

obtain
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6. A Lewwa ox Ssovexces or Rea. Nvssses Derixee v Recceresy
Iseoraies. — The results of the following lemma are necessary for
the development of the succecding sections.

Lewwa. — Let ir, ! be a sequence of non-regative real numbers such
that Zr, converges. Let o sequences of non-negative real numbers e,
and .} satisfv the recurvent tnequalities

N L I R N [ e LS
'l_ﬁyl ] ‘W\‘_.,\\ ATy~ ,@‘;r—l b Py
<, :f; o,

where 2o, Then Of o cv Ze,wtand I fa" have radit of conver-
gence at least aney. 1 furthermore 0 1. <1, Xe, and L f, converge
aad theer sumy tend to sero with Xr,.

Proaf : Siee e,y f,, r. ave nou-negative it is clearly sufficient to
prove the lemma for the case wheve the inegualities (6.1) and (B.2)
are veplaced by the corresponding equalities.

Assume fiest that 2> 0, o<y 1. From the hypotheses on | o) il s
clear that Xr,o” converge uniformly and absolutely for (i 31 and
heunce definies an analytic function R{x) of & in the interior of the
umit eircle.

Consider the dillerential equation

N « e 8 PN N
B3 = —“\—‘(k ) — Ry b
’ T — A ‘
Let Byri==ZK, 2 be the unique analyviic solution satisfving the
imtial condition Eyo) = o, Let

E
B .

_ - e
L Vi) ;_z‘} [ S

e have al once

. By .o ..
8.2 ::“' :I‘.{h{ &)=k wqir:!) = Riry,
- ey g . .
ib.5) = l‘.(’hld‘) - F N?}} + Ry

Equatg the coeflicients of &' and observing that F{o)=E@i=0o

Jowre, de Matk.., tome NI — Fase. 1, 1g3. 11
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we hare

i n t,._ AT S N

. — o

] Tl 3‘ Fo=tfb, i — Fap o — #uese
F=F—=w

Since the coefficients of differential equation (6.3) ave aunalvuw
within the unit cirele it follows that the solution Eiaxy, and hence
Fya s analvtic within the unit eirele. For "’ <1 we may write
the solution Eq.e in the form

s

Ny Fowry oy — a3 " o8 — £ 82 Wi 8 v edfi.

*

Furthermore for o> s < 1 the sums of the coefficients of &~ w il
expansions of (1 — 2 v ® and (1 — k¥ are absolutely convergent.
Since the result of Canchy mmmihplmnlmm of twe power sevies the
sums of whese coefficients are abselutely convergent i a powner sevies
having the same properiy. and since the pmw’-rlv is preserved under
tevm l:n termt integration, it follows fram { 6.8 that Xk, 1= convergent.

Un dllﬂ'eremhmwr (6.8) and applving a similar argoment we see
that IF, 1s convergent.

Appiving \bel’s theorem on continuity on the circle of conver-
wence we have that R(.rvand E¢a) are continuous on theleft atw=1.

Heace

N I Y BRI R Tl T IO A

st -
e
H!M?"\:“*(!!‘ swx >~ Sy
SR Maal v Ries oo Mok, 2o X,
N> K .

By a simiiar argument we prove that
Y SN YT N YT

Assume now that w=o. The reccurence relations (4.7 hecome

Nﬁ.i‘ i -
* A D S

We sumply obseive that the coeflicients m the poner series
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cxpansion of
xR
V— A

Foay

are given ba (GogY. The vest of the argument is sumilar to that

tor w > o

7. Faeceer Dwrerezxtasnny oF BeD) ase DT W — If the awmber
svstem A of a vector space V() is the complex number svstem

~
£

vant be shown by a general avgument that a function ) 22 b (Y

analybic v at w==ovon Vi VYo a complete Vo W has forjaj<r

=

a Fréchet ditferential 'y s /ey given by _“'fm 2 ywhich. as a fune-

toen of 20 s abse anabitic (M at w=u. l’or the special azaivtic
functions By Pyand DTt w possible 1o give a diveet proof of thewe
term by tormy ditferventiabadity fm‘ an unrestreeted naiber svsiem A

Tusonen 7. 1. — The functions D{ Vy= X { Dund lu\'l Y=XB T
fwive Frécher disfercntials 2D and <B given jer | T roapechvely
by e Uy wnd X3B,T\ Tlose last tva sorfes define analvtie fune-
srens of U wéhave radiv of analviedty are i ledast oy,

Prood : By Thearem 3.1 and by a theorem on the ditferentiais of
pnlvnomml\ pmred elsewheve () it tollows that «.T and B T
possess differentials forall Tan 3

From the detinition ol a Frdchet \hﬂen‘nlml we have that £ T. 2
aind 2 (VL 2T detined by

) (ST s
THE .
(2l = oy
- vol o
ey e
: {a¥ ==z
where
A[RT =T —=sTy— {0
§' Prioner. Lo soiion o diffdreaticife dans F Anebve séndrafe { dan. B

Norse, supo. WAL Wl pl2ad 330
{3 Maems, oo i
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are continuous functions of 5T at sT =o. Incorder to show Fréchet
differentiability for [Tj<1 1t 1s clearly sufticient to prove that
for]Tj< 12sa,(T) and X2B,(T) converge and that

ST, AT) = X (T, 3T
and

ST AT = XaTL aT)
converge for

AT+ {sTi <

and represent continuous functions of T at ¢T = o.
From the recurrence formule (3.1) and (3.2), and from the
evident identily
ATV =7 AUT VT = LU= aTh AN Ty
we have
(T R ] n l [T :]1\ W= ‘:_1 (Lo | T W\:} i‘l‘ 1 LL ey § T = naT ) i ﬁ'[.‘i

~— [{ AR TNT — B (7 — 5T 3T

(7.5 ARUT) = (Qay i TT + (T = 4Ty 4T
— (A B (TNT — B (T 8T) 5T

Taking normsof (7.3) and (v.3) we obtain

AN @A THET T A e T = AR DT
= (Gt t T — STV B (T —STH ) 5T
BABG TS T N (T — A BT ) TR

o T AT BB T s T 8T

where v 1s the modulus of the opervation] ... J. By Theorem 3.1 the
quantities
ot T 8T = B (T = 3T ) T
are for | Tj<sT] <1 the terms of an absolutely couvergent series.
Hence from the preceding Lemma taking

ea=]da(T), fu={AB(T). 2=|Th p=y

and r, as defined above we have that Xi A« (T)| and XfAB,(T)] con-
verge and tend to zevo with Xr, and hence with §=T1.
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Making use of the formul. valid when a. U, V are differentiable
G(tl \3} U) ={da} [En L.
(U (g..\):l‘al‘.gg.\‘ U xSy
S[UT=T[3L1

we have again from (3. 1) and (3.2)

- . -y~ s -~ -y s -y~ ~an
(7.5 "ot Ty ={ 9 ae ] VT — i T AT}
— [{3 Batt T T = B i ThaT
- T 2y o N JRT.
VT80 ql%nul;:-\q:rw_!a!”l——':u_,tl!ml

A B T T - By T AT
. ,

Substracting 7.3) from 7.3 and P e 7. 1) weoblain, using
ti.Dand (720

- - - Y] R
iT.7 niqThs, — {lu_,‘_,n‘li,;{'il}
¢ L X
- STAR, T -:'r!
N Fd
anud
TN ST = ST e U - { der e T ST - 28T RE T — { ARy (V) ST

Taking norms of (7. 7)Y and (7 .8) we obtain the inequahities

T wa Sy s T Aty Fo T = AR )
(.00 Ayl s T = T Ay — Ha I TH = AB .

Again Applying the Lewima to (7.9)and (7.10) and using what we
have just proved for X; A, ! and £{AB, jwe obtain the result that s, |
and X}z, ] converge and tend to zero with 2 iTy.

Taking norms of { (7.3) and (7.6), dividing by | T{"' and taking
the maximum of hoth sides qui T we have

(T nim 8@V Sy (o, b — (o ) = (e, — m B, Y laTH

(T.1vy (e 6B S ey )~ (M GB, v — (e, — m B joT |

Let v, be a positive number less than unity. Muluply beth sides of
(7.1 (7.12) by 1" and apply the Lemma taking

_ N -
e == TNV I Bl Fo v m ok, L=, T
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anc

Py G ey o+ e B e T |
Since by Theorem 4.1, Ir, converges it follows at once that

St (i gay )
and
Xyt timali)

have radii of convergence not less thau uuity. Thus Xza, and X3B,
represent functions analytic (r21)at T=o.

Finally from the convergence of X'z, | and Xj< |, and the comple-
teness of the space S we have that Xz, and Xg

. , converge i the
"
T |

norm, aud that { Xz, | and }Z: § tend to zevo with jsT{ Summing
(7. and (7.2)we have for J T+ 1Tl <

S,
¢

AD(T) - X et DY == | 6T jf s T 8T,
ABRITY - XoR (T =FaT |l T, 8T

This completes the proof of the theorem.

8. Tue wvesse oF | + Tron i T r, Turonen S L — 71T then

L b
TR
s an inverse to | =T,
Proof : We have for { Tj<
. VT - By - - BTyl

for from the defimtions of D(TY and B(T). the recurrence formule
(3.0 and (3,2, Theorem 4. UL and the vanishing of B,(T) we have

VT BT T e L T B T 2 W, P e T
dr, - sl X

By a simple calculation we sce from (8.1) that the thearem is
proved for those values of T for which D{TY= 0. For all T for
which { T{< v and D(T) = o we have by Theovem 3. 11

, Bl -
(8. P N e,
L T S-S5}

1
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Let T, be any chosen T such that {'T, 1< 1. From the remark pre-
ceding Theorem 4. Il we have that

DT, :2 (T,
L]

is an analvtic function on A to A for

I o &

RN

FFrom the vecursion formula (3. 2) we have

e N ~ . - t\ e
(8.3 b DORT, g:E i Ty ;:2 R (1))
L1} W

= IRTH] =[BT

For all % in A such that i A { < —x—and D{(AT, =<0 we have using
) . .‘ ‘. . F ]| 1@ E by
(8. 3)and (8. 2) with T=RT,

=
E R, (T
w

= =N T =

il ) L

2 LTI B w
"

Since we clearly have
- \ —— ”n ' 'w:-a-l !‘ ‘;’ V" T! “u«kl
it follows that
v f— vy, | T
J—
N e N “ ~ g ~ ]
definies an analytic function of 4 for : 4. < T
E 18
The left hand side of (8.4) regarded as a function of a general
~ . T e e . . 1
complex variable 2 is analytic in the region | A ! <C T ¢Xcept pos-
]

sibly for poles, and vanishes for 4 in A and in the above region except
at the zevos of D(XT,), that is, it has zeros which are not isolated. It
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follows (') that (8. {) iz an identity for complex 2 in the region

(i< E'im—:f - Let C be a cirele of radius ;w( 1< BT.MHE-)“‘huse center

is at the origin and whose circumference passes trough none of the

zeros (if any) of E #"a, (T ). Integrating (8_4) around C we have

» =
o f A\
Ly . A L | ‘
rh.(“ e l))
L] ra F
ol =

E a0y

v

LS

It follows immediately from a well known theorem that z wra Ty

L]
-~

has no zeros inside C. Placing %=1 we see that D{ T} =2 o. But T,
is any T in the region | T§ < 1. The argument of the first part of the
proof is therefore valid for all Tin§T]< 1.

. ~ LS R [ R
Corollary |. — For any chosen T, tf ' 1" <L N then DT Vs not
1 b
sero.
Corollary 2. — For§T{<n
[ N
RARSE lag ﬂx'l"\:?(—~ SRR il
) ) el N

Proof : Integrate (8. ) from o to 1.

9. Tue Propuct Tueorem For D T). Turoren 9. 1. — The différential
of the polvnonwal a, T\ s given by

(9.0 STy == e, (DY [GT] — | By (T aT} fa T~ ok,

Proof : We first establish by induction the formula, évident
for m =1,

g1
-l
R P w i Th :\' b T ek i b; [ | E.

LUl

(1) K. Goresar, Cours d_{nalvse mathématique. 3 édition, 1. H. p. o¥.
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Difterentiation of (3. 1) gives
n—1
(9.3 noa, (Ty= 2 (— t¥ (Botp—jy ) | T )

f=uo

net

—1-2 (— OV j == D ] T73T).

f=o
Assuming (9.2) for (1, 2, ..., r-1), substituting the result in the

first sum on the right hand side of (9.3), reversing the summations
and making use of (3.4), we have

n—1

narT)= E (-0 — - 1),y | T aT]

=

n—1
;_2 (- -0 F ey o [T
i-n
which gives (). 2)
IFrom (3.3) we have

=1
(9.1) By (T)STL= 3, (107 Y ety | 179,

The theorem follows by adding (4. 2) and (9. 1).

With the aid of Theorems 7.1 and 9.1 we obtain the covollary.

Corotrany. — Fhe differential sD(TY is given for{ T < by
AD{T)I= D{T) [T — [B{T)5T].

T)<5, U<y and if foroln<a

Tueorem 9. U, — 7£] <
RO U - 22T <<

then
(9.5 DT U Ty = DTy DU,

Proof : By successive use of a theorem (') (proved elsewhere) on
the differentials of a function of a function in vector spaces, by the

r

(') M. Frecugr, Annales sc. de UFEeole Normale supéricure. vol. 42, 1
Sre also B S, NarTin, loc. cit.

e
¥

Jaurn, de Math., towme XTI, — Fase, 1, 3. 12
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corollary to Theorem 4.1 and by Corollary 1 to Theorem 8.1 we
have for | 2 {1

ol - BT
— o [  — e | o————
g leshon =1 I D T]

which may be written in the convenient form

(9.6 A eznaTy = |TanT).
ol :
where
TaTY 1 Byl

is the inverse of | + 2. T. Similarly
(9.2 Lo patr=|T20)U ]
T . T N : '

Let W 2) be delined by means of

(9.%) P Wiad= (1= 2T el 2L,
Then
! - YA\ EIR\RNIAL A\
(9 ~¢‘1n2] (V= — | - o —— | = —_ -
(%0}l DWW T ! tnm; :h;J I“ it I

where W is the inverse of 1 4- W (7). By Corollary 2to Theorem 5. 1
Diffeventiating (4. 8) we have

aWW e . -
-‘T_u--uu L LS BN

Placing the last two results in (¥.4) and making spécial use of
postulate 5 for thespace S. we have

Los DEW Y = [ FT] | TU .
Ik ) . = )
Hence by ($.6) and (4 -

i ) _l’ o ‘\——i! v )“h__’_i it
{ 9.10) d},ln“l {\\ W)= m\lo_‘l (2T = 7 log Dialia
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Since the derivatives in (9. 10) are in the ordinary sense we may
integrate from O to 1 and take exponentials. This gives (1.3).

Cororrsry. — IFTI< o — 1 and | i< \2 —t then the conclu-
stons (4.5 hold.

10. Concluding Remarks. — If the elements T of the space S are
matrices (¢7) of a finite ovder s and if

then a, is precisely the coefficient of 27 in the determinant

Do="g;-241] (')

and B, is given by a1 — A, where .\, is the coeflicient of 4" in the
adjoint of Dso that forr >> s, B, = v. The equation (3.3 ) for n =1y
with the condition B, , = v is equivalent to the theorem that T satis-
fies its characteristic equation. In the case of a general space S,af T
. - e e ~ 1
is such a point that D(T) and B(T» converge, then|B.{-~ o with -
and one may, if he so chooses, regard the limiting form of (:3.3) as the
generalization of the algebraic theorem.
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