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INSTABILITY AND TRANSITIVITY. 49  
Instability and transitivity ;

BY MAnerN MOBSE,
Harvard University (U. S. A.).

The question as to the general existence of topological or metric
transitivity has been much emphasized of late. One can refer to the
historicalsummaryby Birkhoffand Koopman,Birkhoff[ll].References
are here given to the contributions of various writers including the
recent important papers by Birkhoff, Hopf, Koopman, V. Neumann,
and P. A. Smith. Birkhoff’sErgodic Theorem and v. Neumann’s Mean
Ergodic Theorem stand out at basic conclusions. The importance of
these two theorems is however conditioned by the validity of the
hypothesis that metric transitivity exists in general. If the hypothesis
of metric transitivity fails in general, the theory will appear relatively
incomplete and complex, at least until further illuminating contri-
butions are made.

In non-analyticproblems one can show by simple geodesicproblems
that metric transitivity fails in many cases. It would seem however
that problems which include the analytic case offer a fairer test.
Metric transitivity fails in all cases among geodesics on closed surfaces
of revolution. Metric transitivity holds for a simple type of spiral-like
motion on the torus, as is easy to prove. Birkhoff conjectured that
geodesic motion on closed surfaces of constant negative curvature
would offer an example of metric transitivity, and a number of
mathematicians have been seeking to verify this opinion. Hedlund [I]
has recently announced a proof of the desired theorem.

The theorem of Hedlund while most interesting is by no means a
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50 MARSTON MORSE.

justification of the hypothesis of metric transitivity. The problem of
whether geodesics on closed surfaces of non-constant negative curva—
ture form a metrically transitive system has been reduced by the
author to the problem of determining whether a certain topological
transformation is absolutely continuous or not. This result can be
obtained by combining Hedlund’s theorem with the theorems of the
author in the paper Morse [II] cited below.

But even if it turns out that geodesics on closed surfaces of negative
curvature form a metrically transitive system, the hypothesis of
metric transitivity will not then be justified in general. For a casual
study of geodesics on surfaces of mixed curvature, partly positive and
partly negative, shows that surfaces of negative curvaturestand apart
as an extreme case of non-generalsimplicity.

Let M* be a non-singular r-dimensional manifold without boundary.
On M" suppose we have a system T of trajectories which includeson
and only one trajectory through each point of M”. We regard the
time t as the parameter along these trajectories and suppose each tra-
jcctory can be continued over the time interval —oo<t<oo. 50
continued a trajectory will be said to be complete. The system T will
be sa'id to be topologicallytransitive if there exists a complete trajectory
whose closure (the trajectory and its limit points) is the manifold M*.
Topological transitivity has been referred to as regional or geometric
transitivity as well as topological transitivity. Metric transitivity
implies topological transitivity as follows from the theorems of
v. Neumann and Birkhoff. In examples for which topological tran—
sitivity holds there is thus a possibility that metric transitivity holds.

It is one of the purposes of the present paper to show that among the
geodesics on closed surfaces R* of genus p > I uniform instability
implies topological transitivity.

Uniform instability, as it will be defined, is a property of the indi-
vidual geodesics holding uniformly for all geodesics. Birkhoff has
conjectured that the hypothesis of instability relative to the closed
geodesics of R* implies topological transitivity. The developments of
this paper do not tend to support this conjecture.

The surfaces admitted are Riemannian manifolds which are closed
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in a topological sense. Those whose geodesics possess uniform insta-
bility include all topologically closed surfaces of negative curvature,
as well as surfaces which possess regions of positive curvature. As
previously stated our principal theorem connects instability with
transitivity. Questions as to the distribution and number of transitive
geodesics are answered, and a theorem on the deferring of transitivity
is established.

From the point of view of the calculus of variations the hypothesis
of uniform instability may be roughly regarded as the hypothesis that
the first conjugate point of each finite point on a given surface lies
beyond the point at infinity.

A proof of the existence of topological transitivity has been indi-
cated by Birkhoff for a special surface of negative curvature of genus 2.
See Birkhoff [III], p. 248. The methods of the author are based on the
paper Morse [II] and are different from those of Birkhoff.

I. THE COVERING SURFACE R. — We suppose that we have a Fuchsian
group G of non—singular, fractional, linear transformations of the
plane 5 = u + iv carrying the interior S of the unit circle

u‘-’+ (12:1

into S. We suppose all members of the group are of hyperbolic type
with fixed points on the unit circle, and that the group has a finite
number of generators. We regard H as a hyperbolic plane of non-
Euclidean geometry with the circles orthogonal to the unit circle
representing the H-straight lines (H is written for hyperbolic). The
H-length of a curve of S may be given by the integral

du(“> fîuîr
where do is the differential of arc length in the (u, «))—plane.

We suppose that the fundamental domain for G consists ofa convex
region S0 on S bounded by a sequence,p > 1,

(1.2) a,blc,d,, agbgcgdg, ..., a,,b,,c,,d,,,

of segments of H-straight lines. The closure of S0 contains no points
on the unit circle. The successive H—lines in (1.2) shall form angles



52 MARSTON MORSE.

on S0 equal to %) The side a,; will be termed conjugate to ck and the
side bk conjugate to dk. There will be a transformation of the group
carrying each side of S0 into its conjugate side, carrying SO into an
adjacent region. Points which are images of each other under G are
termed congruent.

We make the usual convention that just one side of each pair of
conjugate sides of So shall be considered as belonging to S0 and just
one of So’s vertices. The application of the transformations of G to S0
will yield a set of regions covering S in a one-to-one manner, as is
well known.

Instead of assigning S the H-metric definedby (1 . 1)We can assign S
an R-metric (R is written for Riemannian) defined by a positive
definite form

(1.3) (/52:E(u, v)du‘2+ 2F(u, v)du (IV +G(u, ¢‘)(lV‘-’

with coefficients of class C3 for (u, v) on S. The form (1 .3) will define
a Riemannianmanifold R. We suppose that the form (1 .3) is invariant
under G. We then regard congruent points as identical. With this
understood S0 taken with the form (1 .3) defines a topologically closed
surface R*. The genus of R* will be the integer p. The manifold R is
the covering surface belonging to R‘.

The form

derived from (1.1) is a special instance of (1 .3) and defines a topo-
logically closed surface of constant negative curvature.

2. THE PHASE-SPACE M. -—— Let angles 0 in the (u, v)—p1ane be
measured in the usual way from the positive u axis. A point (u, v)
on S together with an angle 0 will define an element E at (u, v) on S.
Elements (u, v, 0) whose angles 0 differ by an integral multiple of 'n

will be regarded as identical. The set of all such elements E will define
the phase-space M corresponding .to S or B. The elements tangent to
a regularcurve g on R will make up a curve on M which we regard as

the representativeof g on M.
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To any two points on R we assign an R-distance equal to the mini—
mum length of R-geodesics joining the two points on R. If E’ and E”
are any two elements on M with directions representedby 6’ and 0”,
the R-angle between E’ and E” will be taken as the minimum of

|9”—6’+n7r|,

for all integers n positive, negative, or zero. Two elements E’ and E”
on M will be said to possess an R-distance which is the sum of the
R—angle and the R-distance between their initial points.

The set of elements with initial points on S0 will be said to define
the phase-space M* corresponding to R". The distance between two
elements E’ and E” on M* will be taken as the minimum of the R-dis—
tance between all pairs of elements respectively congruent to E’
and É” on R.

5. PREVIOUS THEOREMS. — The present paper is based on an earlier
paper Morse [II]. We recall a few definitions and theorems of the
earlier paper.

The hyperbolic plane H consists of the interior S of the unit circle.
Let y be a simple open arc lying on S. Let. Ÿ be the closure of y.
Suppose ? is a simple arc with end points P and Q. If P or Q lies on
the unit circle, P or Q respectively will be termed ideal end points
of y.

Let A and B be two point sets on R. Suppose there exists a number }
such that A is a subset of the points at most an R-distance X from B,
and that B is a subset of points at most an R-distance 1 from A. The
greatest lower bound of such numbers 1 will be termed the type-
distance between A and B. Two simple open arcs on R will be said to
be of the same type if they possess a finite type-distance.

An unending geodesic g on R will be said to be of class A if every
finite segment of g affords an absolute minimum to the R-length rela-
tive to all rectifiable curves which join its end points on R. We state
the following theorem.

THEOREM 3.1. — Every geodesic of class A on R is of the type of
some H-straight line. Conversely there is at least one geodesic of class A
of the type of each H-straight line on S.
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Moreover there exists a universal constantK dependent only on R such
that the type-distance between geodesics of class A of the same type or
between geodesics of class A and H—straight lines of the same type never
exceeds K.

The surfaces admitted in Morse [II] are somewhat less general than
the surfaces admitted here. Nevertheless the reader can readily see
that the proofs in the earlier paper hold here practically unchanged.
See Theorem 1 and Lemma 8, Morse [II].

If a curve h on S is invariant under a transformation T of the
group G, h will be termed periodic mod T. The curve h will then
define a closed curve on R*.

Corresponding to each H-straight line h there will either exist a
unique geodesic g of class A of the type of h, or else two non-inter—
secting geodesics gJ and g” of class A of the type of h between which
lie all other geodesics of class A of the type of h. The geodesics g,
and g” will be called the boundary geodesics of the type of h. We
apply this term even in the case where g’: g”.

We state the following theorem. Morse [II], Theorem ll.
THEOREM 3.2. — The boundary geodesics of the type of a periodic

H-straight line are themselvesperiodic and are invariant under the same
transformationsof G as h.

A geodesic on R which starts from a point P on R and is continued
indefinitely in one sense from P will be called a geodesic ray. An
H-straight line which emanates from P and is continued indefinitely
in one sense will be called an H-ray. Two geodesics rays or a geodesic
ray and an H-ray which emanate from a common point P on R and
possess a finite type-distancewill be said to be of the same type.

A geodesic ray g will be said to be of class A if every finite segment
of g affords an absolute minimum to the R-length relative to rectifiable
curves on R which join its end points.

With this understood we state the following theorem.

THEOREM 3. 3. — Correspondingto each H-ray issuing from a point P
on R there exists a geodesic ray of class A of the same type. Conversely
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every geodesic ray of class A issuing from P is of the type of some
H-ray. .

There exists a universal constant K dependent only on R such that the
type distance between two geodesic rays of class A of the same type ora
geodesic ray of classA and an H-rayof the same type never exceedsK.

Let k be an H-ray issuing from a fixed point P. There will either
exist a unique geodesic ray of class A of the type of k, or there will
exist two geodesic rays g’ and g” of class A of the type of lc between
which lie all other geodesic rays of class A of the type of lc. The
geodesicsg and g” will be termed boundary geodesic rays of the type
of k. We apply this term even in the case where g’=g”. The geodesic
rays g' and g” are either identical or else have at most the point P in
common.

We state the following theorem.
THEOREM 3 . 4 — Let b be a periodic H-strazght line and B one of its

ideal end points. Let g be a geodesic ray of class A whose initialpoint P
does not lie between or on the boundary geodesicsof the type of b and
whose ideal end point coincides with B. The geodesic ray g will be
asymptotic to one of the boundary geodesics of the type of b.

That g is asymptotic to a periodic geodesic lc of the type of b is
stated in Lemma W, Morse [11]. That I: must be a boundary geodesic
of the type of b follows from the affirmation in Lemma ll, Morse [II]
that g cannot cross any periodic geodesic of class A of the type of b.

A geodesic g will be said to be a limit geodesic of a set of geodesics L
not containing g if every element on g is a limit element of elements
on geodesics of the set L.

In Morse [II] on p. 32 we stated the followinglemma.
LEMMA A. —— There exists a transformation of the group G which

has fixedpoints arbitrarily near the endpoints of any preassigned arc
of the unit circle.

The following theorem is a consequence of this lemma. Cf. Theo-
rem 16, Morse [II].

THEOREM 3 .5. — The set of all boundary geodesics ofperiodic type
includes all of the boundary geodesics among its limit geodesics.
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This theorem has an immediate corollary.
COROLLARY. — The set of allgeodesic rays of classA through a fixed

point P asymptotic to periodic boundary geodesics includes all of the
boundary geodesics among its limit geodesics.

4. THE HYPO'I‘HESIS OF UNICITY. — We shall say that R satisfies the
hypothesis of unicity if there is but one boundary geodesic of class A of
the type of each H-straight line.

The hypothesis of unicity always holds if the surface is a surface of
negative curvature. For on surfaces of negative curvature it is impos-
sible to have two unending geodesics of the same type. See Hada-
mard [I]. More generally the hypothesis of unicity will hold if the
geodesics on R possess uniform instability, as we shall presentlyshow.

We shall prove the following theorem.

THEOREM 4.1. — If the hypothesis of unicity holds, there is but one
geodesic ray of class A of a given type issuing from a givenpoint P
of R.

Suppose the theorem is false and that g’ and g” are two geodesic
rays of class A of the same type issuing from a point P.

Exactly as in the proof of Theorem 6, Morse [11], so here it follows
that g’ and g” cannot be asymptotic. Let s be the arc length on g’
measured from P. Let a be any positive constant. Since the geodesicsg’
and g” are not asymptotic, the minimum R-distance from the point s

on g’ to g” must have a positive lower bound k for s > a.
Let

su 329

be a sequence of points s on g’ such that s,, becomes positively infinite
with n and let

Eu E2,

be the corresponding elements on g’. Let

em ez»

be a set of elements en on g” whose initial points on g” are respectively
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at most the R—distance K from the corresponding points sn on g’. The
constant K is the universal constant of Theorem 3 . 3.

Let E,l be carried by a transformation T,, of the group G into an
element E; with initial point on S.,. Under Tn, e" will be carried into
an element 6'". The pairs

(Ell, e;l)7

will have at least one cluster pair (E, e) on R since their initial points
lie on the domain consisting of the points on R at mostan R- distance K
from the points of So.

Let y’ and y” be the unending geodesics on R defined by the
elements E and e respectively. The type-distance between 7’ and y”
exists and cannot be less than I:. The geodesics 7’ and y” are thus ofthe
same type but not identical.

From this contradiction we infer the truth of the theorem.
When the hypothesis of unicity holds the correspondence between

elements at P which respectively define H—rays and geodesic rays of
the same type is readily seen to be continuous as well as one-to—one.

In such a case each geodesic ray through P is of class A.
Since P is an arbitrary point on R we can say more generally that

when the hypothesis of unicity holds each unending geodesic is of
class A.

5. TOPOLOGICAL TRANSITIVITY. —— The set of all elements on R" defines
the phase-space M*. The elements on a geodesicgdefine a curve on M",
the representative ofg on M‘. If a geodesic or geodesicray is represen-
ted by a curve on M* whose closure is M*, the geodesic or geodesic ray
is termed transitive.

We shall prove the following theorem.

THEOREM 5 . l. —-— Let P be an arbitrarypoint on R and X an arbitrary
open segmentof the unit circle. If the hypothesisof unicity holds, there
is at least one transitive geodesic ray issuing from P with an ideal end
point on )\.

Let
(5‘ l) 717 72, Y3)
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be a set of periodic geodesicson R which includes at least one geodesic
congruent to each periodic geodesic on R. From (5.1) we form the
sequence
(5-2) 71) 7172.— 717-273: 71727371., "'a
in which each geodesicy; occurs infinitely many times. We denote the
geodesics of the sequence (5 . 2) more simply by

i

(5-3)
.

g… g2, &…

Let
(5'4) en €.“ ear °°°,

be a sequence of positive numbers which tend to zéro as the subscript
becomes infinite.

We shall choose a sequence

(5.5) Ill, Il.“ h...») "'}
of geodesic rays emanating from P and terminating on 7.

The chozce ofh. —— Let 0 denote the arc length on A measured on7
from one end point of 7\. Let a point on X be denoted by the corres-
ponding value of 0. Let g’1 be an unending geodesic congruent to g.
with at least one end point 6. on 7… That such a geodesicexists follows
from LemmaA in § 5. For we have merely to choose a transformationT
of G with at least one fixed point on 1 and apply T or its inverse a
sufficient number of times to g, to obtain the required geodesic g].

It follows from Theorem 3.4 and the hypothesis of unicity that
there is a geodesic ray which issues from P, terminates at the point 0.
on 7L, and is asymptotic to g", . There will accordingly exist a positive
constant n,, so small that each geodesic ray which issues from P and
terminates on the segment of 7\ for which
(5.6) 01_n1<9<61+n1,

will possess at least one element within an R—distance e. of some
element on g". We choose Y]. so small that the closure of the segment
defined by (5.6) is interior to 1, and then choose h. as any geodesic
ray which issues from P and terminates on the segment (5.6) of k.
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The choice of h,… — Proceeding inductively we suppose that the

entities
911—1, 'Ûn—n [Ln—1,

have been defined. We let gl, be a periodic geodesic congruent to g”
with at least one end point 0,1 on the segment of X for which

(5 . 7) 911—1— nu—l< 9 < ell—1 + Yin—1-

There will then exist a positive constant m so small that the closure
of the segment
(5.8) 9Iz—Yln<6<0n_l‘.nln

of 1 is a subsegmentof (5 . 7) and is such that each geodesic ray which
issues from P and terminates at a point 0 on (5.8) will possess at least
one element within an R-distance en of some element on gil. We
choose hu as any such geodesic ray.

Let E" be the element on h” whose initial point lies at P. Let E be
a cluster element of the elements E,,, and g a geodesic ray issuing
from P with the direction of E. The geodesic ray g will terminate
on X. I say moreover that g will be transitive.

For 3' will possess at least one element within an R-distance e” of
some element on g,. Let y… be an arbitrary geodesic of the set (5. I).
By virtue of the choice of the sequence (5.2) the set of all elements
on g or on geodesic rays congruent to g will include at least one
element arbitrarily near some element on y…, and hence will include
an element arbitrarily near each element on y….

But according to Theorem 3. 5 each geodesic on R is a limit geodesic
of the set of all periodic geodesics on R. Thus each geodesic on B is a
limit geodesic of the set of geodesics congruent to g. Hence g is a
transitive ray, and the theorem is proved.

6. THE TRANSITIVITYFUNCTION og(e). — We shall prove the following
lemma.

LEMMA. — Let g be a transitive geodesic ray issuingfrom a point P.
Corresponding to eachpositive number oc there exists a number LAa) g 0
such that the segment0fgconsistingofpointsat most an R—distanceLg(a)
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from P defines a curve in the phase-space M* at most an R-distance a

from each element of M*.

Let q” be a segment of g with initial point at P and with an
R-length n. Let g; be the representative of q,, in the phase-spaceM".

Suppose the lemma fails to hold for a positive number oc. Corres-
ponding to each positive integer m there must then exist an element Em
on M* at an R—distance from q; greater than a. Let E be a cluster
element of the elements E…. The distance of E from the representative
ofg on M* will be at least oz, contrary to the fact that g is transitive.

The lemma is accordingly true.
Correspondingto a transitive geodesic ray g and a positivenumber oc

there will exist a greatest lower bound og(oc) of the numbers Lg(oc) of
the lemma.

We term cpg(oc) the transitivity function defined by g.

The transitivity function is monotonically decreasing. For large
values of on it is zero. For all positive values of oc less than a positive
constant ong it is positive. It become infinite as a tends to zero.
Cf. Birkholf’s Ergodic Function, Birkhoff [II].

We shall prove the following theorem on the deferring of transiti-
v1ty.

THEOREM 6.1. — Let “Ma) be an arbitrary positive function which
becomespositively infinite as oc tends to zero. If the hypothesisofunicity
holds, there exists a transitive geodesic ray g issuing from an arbitrary
point P of R such that the corresponding transitivity function cpg(oz)

satisfies the relation
‘9“ oz) > “M“ )—

for an infinite sequence ofpositive values of oc which tend to zero as a
limit.

We shall prove this theorem by suitably altering the proof of
Theorem 5.1.

We begin by choosing the sets (5.1) to (5.4) as in §5. We also
choose 0, and g; as in §5.

Let a, be a geodesic ray issuing from P with its ideal end point at
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the point 6. on 7.. The geodesic ray (1. will be asymptotic to g" . In the
phase-space M* the set A4 of elements determined by a. will have at
most the elements determined by g. as limit elements. There will
accordingly exist an element E. on M* and a positive constant a. < e.
such that
(6-1) D(E,,:\1)>o¢,,

where D(E., A.) denotes the R-distance on M" between the element E.
and the set A,. We choose a positive constant L. such that
(6.2) L1>‘l’(a1)y

and let H1 denote the set of elements on M* determined by an R—

length L, on a geodesic ray with initial end point at P and ideal end
point 0 on an interval of the form (5.6). We subject the constant n.
appearing in (_5 .6) to the restrictions imposed in§5, requiringfurther
that n. be so small that on M"

D(E.1, “1) > 011.

i

This is possible by virtue of (6. 1). With n, so restricted the geodesic
ray h, is chosen as any transitive geodesic ray which issues from P
and terminates on the segment of‘A definedby (5 . 6). We observe that

CP],'(OC1)> L1,
and hence that
(6.3) 9/,,(oc.)>+(a1).

We proceed inductively, supposing that

Oil—1; nil—|, hit—19 all—1) Ln—1

have already been defined. Let g; be a periodic geodesic congruent
to g,, with at least one idea] end point at the point O,, on the seg-
ment (5.7) of )… Let a” be a geodesic ray issuing from Pwith its ideal
end point at the point €,, on X. We continue exactly asin the preceding
paragraph, replacing all symbols with subscript I by the same symbol
with subscript n. For the geodesic ray h,, thereby defined we have

(6'3) ?/1n(an)>¢(an)o
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As in §5, so here it follows that the geodesic rays h,. possess a limit
geodesic ray g issuing from P, and that g is transitive. The geodesicg
is an admissible choice for each of the geodesics h” so that

<pg(ocn)>4»(an)-

The sequence can tends to zero as a limit as n becomes infinite, and
the theorem is satisfied as stated.

We continuewith the following theorem.

THEOREM 6.2. — If the hypothesis of unicity holds, the transitive
geodesic rays issuing from a given point P of R possess directions at P
which are everywheredense and non-denumerable.

That the directions of transitive geodesic rays issuing from P are
everywhere dense follows from the fact stated in Theorem 3.1 that
the ideal end points of transitive geodesic rays can be chosen on
arbitrary segments of the unit circle.

To complete the proof of the theorem let us suppose that the set of
transitive geodesics issuing from P are denumerable and can accor-
dingly be given by a sequence

(6.5) b., b.,

Let
(PM (Pas

be the transitivity functions corresponding to the respective geodesic
rays of the set (6. 5). Let

(11> a2>a.,>. ..

be a sequence of positive numbers which tend to zero as the subscript
becomes infinite. Let LPO?!) be a function which is. given by the sum

¢(a):cp1(oc) +. . .+ <p…(oz),

for a on the interval
all;a>all+1 ("=112vm)‘

and which is I for values of a > a..
According to the preceding theorem there will exist a transitive
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geodesic ray 3' issuing from P for which the corresponding transitivity
function will satisfy the relation

CP:?(Œ) > Kll(0€),

for an infinite sequence of positive values of oc tending to zero as the
enumerating subscript becomes infinite. Hence for a fixed m,

%(0‘)><Pm(0‘)

for some value of oc, so that g cannot be identical with bm. Thus g
cannot appear in the sequence (6. 5), contrary to our hypothesis.

We conclude that the theorem is true.
Recall that the set of elements on R determines the phase-space M.

The preceding theorem concerning the geodesic rays through a fixed
point P are special cases of a more general class of theorems. The set
of elements with a common initial point P determines a curve pon M.
This curve has the property that the geodesics determined by its
elements are not identical with a single geodesic. In general any arc
in the phase—space M whose elements define more than one geodesic
on R will be termed general.

We state the following theorem.

THEOREM 6.3. —— If the hypothesis of unicz'ty holds, the transitive
geodesics defined by elements on a general are p. in thephase—space M
are everywhere dense on

lUL
and non-denumerable.

As the element E ranges over a general arc y., the geodesicgdefined
by E will vary through a one—parameter family of geodesics. At least
one of the ideal end points of these geodesicsg will cover the whole of
a segment of the unit circle at least once. For otherwise the geodesicsg
would reduce to a single geodesic.

The proof of the theorem can be obtained by making obvious modi—
fications in the proofs of Theorems 5 . l, 6.1 and 6.2, in particular by
replacing the phrase « a geodesic issuing from P» by the phrase « a
geodesic defined by an element on p.». The geodesic rays it,, in the
present proof will not be uniquely determined by their ideal end
points on the unit circle, nor can these ideal end points in general be
chosen arbitrarily subject to the earlier restrictions. Each such ideal
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end point must here be chosen among the totality of ideal end points
which satisfy the earlier restrictions and are defined by elements on y..
Further details are unnecessary.

7. UNIFORM INSTABILITY. — If there is no conjugate point of a point P
on any geodesic ray issuing from P, the geodesic rays issuing from P
will form a field covering R in a one-to-one manner P alone excepted.
If there are no pairs of conjugate points on any geodesic on B, it
follows from the Weierstrass field theory of the calculus of variations
that each geodesic on B is of class A.

But the hypothesis of unicity is not necessarilyvalid even when each
geodesic on B is of class A as one can readily show by examples. To
insure the validity of the hypothesis of unicity we must introduce
more stringent restrictions on the geodesicsg.

Let g be an arbitrary geodesic. Let g be referred to normalgeodesic
coordinates (x, y). For such coordinates

(7.0) d32:C2(x,)/)d.r'-’+dy2,

Where y = o along g and C(x, 0) E I , while the curves a:: constant
are geodesics normal to g and y gives the R—distance along these
geodesic normals measured in an arbitrary sense from g. The equation
of normal variation from g takes the form

d2“)
(7.1)

(1'33?
+K(.§c)w:o, 

where a: is the arc length along g measured from an arbitrary point
of g and K(:v) is the curvature of the surface at the point a: on g.
Solutions w(.x) of (7 . I) will be said to be based on g. A solutionw(x)
of (7 . I) such that
(7.2) w‘-’(0) + (v’2(o) :1,
will be termed normal at x = 0.

We shall say that the geodesics g on R are uniformly unstable if
there are no pairs of conjugate points on g and if there exists a func-
tion M(æ) with the followingproperties :
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a. The function M<x> is positive and continuous for all values of a:
exceeding some positive constant 1, and becomes infinite with œ.

l). Any solution of (7. I) based on g and normal at a: = 0 satisfiesthe
relation
(7.3) zw<uc.>é+!w<xg>l>Mm,

for a: > 7x and — x. and :):2 greater than x.
c. The function M (ce) is independent of the choice of the point P

on g from which a: is measured and of the choice of g on R.

Geodesics on surfaces of negative curvature are uniformly unstable
as one can readily show. But one can clearly replace considerable
areas on surfaces of negative curvature by areas of positive curvature
and still retain the property of uniform instability for the geodesics
thereby defined.

The field F. — Let g’ and g” be two distinct boundary geodesics
of the same type. Under the assumption that there are no pairs of
conjugate points on any geodesic on R we shall construct a field F of
geodesics related to g" and g”.

Let A. and A2 be two points on g’. Let h.I and h2 be two sensed
geodesics.which join the points A, and A2 on g" to points B. and B2
respectively on g”. Suppose moreover that h. and le.) give paths from A4
and A._. to g” as short as possible. The R—lengths of h4 and [12 will be at
most the universal constant K of Theorem 3.1.

The points A ., A2, B., B.} are the vertices ofa geodesic quadrilateral
which we shall cover with a special field of geodesics. To that end we
regard points on hI and h.) which divide h. and h._, in the same ratio
with respecl to li-length as corresponding.

Let F be the family ofgeodesicswhichjoin correspondingpointsofh,
and h._,. We shall investigate the representation of this family.

We turn to an arbitrary geodesic g of the family F. Let or represent
the arc length on It.) measured along h2 from g. Let the neighborhood
of g be referred to normal geodesic coordinates (_œ,y) as in (7.0).
Let g“ be the geodesic of F which joins the point or on h._. to the cor-
responding point on h.. For a near zero the geodesics g“ can be

Journ. de Math., tome XIV. — Fasc. 1, 1935. 9
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represented in the form
’)’= 23(1', oz).v

The functions cp(x, a) will be of class C2 for 0: near 0 and œ on an
interval of the form

w<a>gægî<w

where the functions x(a) and 5(a) give the values of x as functions
of or at the respective intersectionsofg“ with h. and h.).

A. We shall show that
(7.1) <9.<.c,o>¢o

along g.
Turning to the final end point of g we have

(7-5) ?a[-T2(0)a (’lio'
For if he is represented in terms of the arc length y., for a near 0, in
the form

h)’:}(ot), .1':;‘(o!),
we obtain the identity _

3—(9‘) E <?[.L‘(o:). at],

from which it follows that
,. (11' (l…L'(1.6) dîcîcp'rtîâ +6.31.

If :?“ werezero at the intersectionofg and h2 it would follow from (7.6)
that ll2 and g would be tangent and hence be continuations ofidentical
geodesics. But this is impossible, since in passingfrom lz._, to h, {4' would
then intersect g’ or g” twice. Hence (7. 5) holds as stated.

We could prove in a similar manner that %(æ, 0) does not vanish
at the intersection of g and h. . Thus %(æ, o) vanishes at neither end
point of g.

We can now establish (7.4). For if %(æ, o) vanished at an inter-
mediate point of g the geodesics ofF neighboringgwouldcrossgnear
the zero of %(x, o) and hence cross g twice, which is impossible.
Thus(A) holds as stated.
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A second representationof thefield F. — It follows from (7 . 4) that

the trajectories orthogonal to the field F are well defined at each point
of F. In fact the equation

hr— <_J(.L', :z)=o,
can be solved for a as a function «(cv, y) of class C2 neighboring each
point on g. The differential equation of the trajectories orthogonal to
the geodesics of F can then be locally represented in the form

GW» J') !” + @.1-[1',a(x.3')ldy= 0-

These orthogonal trajectories are accordingly without singularity.
We shall obtain a new representation of the field F. Let Y be a

trajectory orthogonal to the geodesics of F issuing from a point p
on g" midway between A' and A2. Let (IQ), g”) be the R-distance
fromp to g”. We know that
(7.7) o<r/(p,g”)§l\',
where K is the universal constant. of Theorem 3.1. We shall admit
only those geodesic quadrilaterals whose sides A.A2 on g' have an
R-length greater than AK.

On an admissible quadrilateral Y can be continued on F over an
ll-length at least d(p, g”) without passing off from F. For during
such a continuation Y can at most reach g”, since the R-distancefromp
to g” is d(p, g”). Moreover during such a continuation Y cannot reach
either Il. or 122. For ifh., for example, were reached, AI and p could
be joined by a combination of arcs of h. and Y of R-length at most 2K
contrary to the choice of A| A2 on g". Thus Y can be continued on F
for an R-length at least d(p, 3'”).

Let p. be the R-length along Y measured from 1). Let {L0 be a value
of p on the interval
(7.8) ogpétflmg"),
and let g” be the geodesic of the field F which passes through the
point {1.0 on Y. Let the neighborhood of g0 be referred to normal
geodesic coordinates (av, y) with g" as the base. The geodesics of F
neighboring g“ can be represented in the form

«un yzw, In,
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Where the function £1433, lLL) is of class C2 in its arguments. The func-
tion
(7'10) CV(.Z‘):K!)P_(JS, PW)

will be a solution of the equation of variation
(l'-’n‘ ,

(7.11) Ê+h(æ)u_o
based on g0. Concerning W(.’L') we shall prove thefollowing statemenl.

B. The solution w(æ) of (7. l I) given by (7. Io) satisfies the initial
condition w(0): I .

For 9. near …, y can be given in the form
(7-12) 9:)”(M avzx’w),
and we have the identity

) *W) E MJC-W),- M-

From this identity we obtain a second identity
d)“ __ dx“(7.13) Œ=4LËÊ+$F

But
(“!’-”(1.7 #0) E O'

. . ' d '*
Moreover at the Intersection of g“ and y, Ü];

= I as follows from the
choice of y and of our coordinate system (x, y). Statement(B) follows
from (7 . 13 ).

We come to a basic theorem.

THEOREM 7.1. — Uniform instability of the geodesics on R implies
that the hypothesis of unicity holds on R.

We suppose that the theorem is false and that g’ and g” are two
different geodesics of the same type. We shall prove that g’=g”
thereby arriving at a contradiction.

We identif)r g’ and g” with the preceding geodesics g’ and g” and
construct a geodesic quadrilateral A,A2B,B2 and field F as before.
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Neighboring the geodesic g0 of F we make use of the second represen—
tation (7.9) of the field F. Let 5. and 52 be the arc lengths on k, and h2
respectively, measured from g’. Let gFL be the geodesic of the field F
which intersects the curve 7 at the point on y with parameter p.. Let

SK“).- &;(H)

be the respective values of the arc lengths on It. and h2, measured
from g”, at the points on k, and h._, at which the geodesic gFL meets h.
and h2. In the normal geodesic coordinate system (as, y) based on g0
suppose a: is measured from the point of intersection of g° and 7 in the
sense that leads from h. to h._,. Let

1':(P')æ )}(p).
be the coordinatesof the point of intersection of gu with h,. For pt: …
wehave

<ffi>2=e>2+<än>ë<e>ïn’pt dy dy _ dpt

2l‘l’JEJ-[ah P|>]=W(Û|)> 0

so that

where a. _= x. ( H0)-
Similarly let 502(9), y._,(p.) be the point ofintersectionof gPL with I22.

We can show as above that for p = p0

ds.,_: >
dpa

=w(a2) > o,

where a._,_— .2:._,(;L0). We thus find that for p. = {1.0

(7.1.1) fin.…)+s=<u>igw<al>+w<m
Let the R-distance between A. and A2 on g’ be 2 5. We have denoted

the intersection of g’ and Y by p. The segment Agp of g’ has the
R-length a. It can be joined by a broken geodesic arc consisting of a
segment of h2 of R-length at most K, a segment of g0 of R-length a2,
and a segment of \; of R-length at most K. From the minimizingpro—
perty of the segment A21) of g’ we see that

a<K+a:+K.
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A similar relation holds upon replacing a2 by — a. . Thus
a._,>a—2K, —a1>a _ 2K.

According to (B), w(o)=1. Hence w(w) will be « normal » atx=o
if multiplied by a suitable positive constant at most 1. It follows from
the hypothesis of uniform instability that
(7.15) w(a.1)+w(a2)>M(a—2K),

if a is sufficiently large. If a is sufficiently large, the right member
of (7. 15) will be arbitrarily large according to the nature of M(æ),
and in particular will be greater than 3% where

a=d(p, g”).

For such a choice of a, (7. 15) gives the relation
(7.16) a[w(a.1)+w(a2)]>2K.

By virtue of (7. 14) and (7. 16) the sum of the R-lengths of h, and h._,

will be greater than 2K. From this contradictionweinfer that g’=g”.
The proof of the theorem is complete.
Theorems 6.2 and 7. 1 combine into the following theorem.

THEoREM 7.2. — If the geodesics on R are uniformly unstable the
transitive geodesic rays issuing from an arbitrary fixed point P on B
have directions at P which are everywhere dense and non-denumerable.
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