JOURNAL

DR

MATHEMATIQUES
 PURES ET APPLIQUÉES
 FONDÉ EN 1836 ET PUBLIE JUSQU'EN 1874
 Par Joseph LIOUVille

P. DIENES
 E.T. Davies
 On the infinitesimal deformations of tensor submanifolds

Journal de mathématiques pures et appliquées 9^{e} série, tome 16, nº 1-4 (1937), p. 111150.
http://www.numdam.org/item?id=JMPA_1937_9_16_1-4_111_0
gallica $\quad \operatorname{NumDAM}$
Article numérisé dans le cadre du programme Gallica de la Bibliothèque nationale de France http://gallica.bnf.fr/

On the infinitesimal deformations of tensor submanifolds;

By P. Dienes and E. T. Davies.

General conventions. - I. The summation symbol Σ is suppressed if it applies to terms with identical suffixes.
II. The first letters of Latin and Greek alphabets as suffixes vary from i to n, the middle letters i, j, k, \ldots, from I to $m(<n)$, and the end letters p, q, \ldots from $m+1$ to n.

Part I. - Definitions, General Properties.

1. The deformation of a tensor manifold. - A general n-dimensional linearly connected tensor manifold or space \mathbf{A}_{n} is determined by two independent sets of functions:
(i) the metric parameters $a_{x, 3}$ which assign a measure $d s$ to the distance between the neighbouring points $\mathbf{P}(x)$ and $\mathrm{Q}(x+d x)$ by the formula

$$
\begin{equation*}
d s^{2}=a_{\alpha \beta} d x^{\alpha} d x^{\beta} . \tag{I}
\end{equation*}
$$

(ii) the connexion parameters $\Gamma_{\beta_{\gamma}}^{\alpha}$ which define parallelism (equipollence) between vectors and tensors at neighbouring points by the formulae
(2) $\quad \nu^{x}(\mathrm{Q} \| \mathrm{P})=\nu^{\alpha}(\mathrm{Q})+\Gamma_{\beta \gamma}^{\alpha}{ }^{\gamma^{\beta}} d x \gamma, \quad \varphi_{\beta}(\mathrm{Q} \| \mathrm{P})=\nu_{\beta}(\mathrm{Q})-\Gamma_{\beta \gamma}^{\alpha} \nu_{\alpha} d x \gamma$.

The substitution of $v^{x}(\mathrm{Q} \| \mathrm{P})$ at P for $v^{x}(\mathrm{Q})$ at Q is called the "parallel transport" of $\nu^{x}(Q)$ from Q to P.

Special spaces are defined by special sets of metric and connexion parameters, or else by relations between these two sets. For example, a Riemann space V_{n} is specified by the two conditions

$$
\begin{align*}
& \Gamma_{3 y}^{\alpha}=\Gamma_{\gamma j,}^{\alpha}, \tag{3}
\end{align*}
$$

in which case the functions $\Gamma_{\beta \%}^{x}$ reduce to the three-index symbols $\left\{\begin{array}{l}x ; \gamma\end{array}\right\}$ of Christoffel (').

A space in which (4) is satisfied will be called a metric space (${ }^{2}$), (or a Riemann space with torsion), since in such a case length of a vector and angle between two vectors are unchanged by parallel transport. In the classification of spaces given by Schouten (1924 , p. 75) such a space would be of the type III A γ.

In order to define the deformation of A_{n} we remark that a change of variables

$$
\begin{equation*}
' x^{a}=f^{a}\left(x^{\prime}, \ldots x^{n}\right) \equiv f^{a}\left(x^{x}\right) \equiv f^{a}(x) . \tag{5}
\end{equation*}
$$

admits two different geometrical interpretations. It can be regarded either (i) as a mapping of the x-space upon the ' x-space, i. e. as a straightforward transformation of the x-space into the ' x-space, or (ii) as a mapping of the x-space upon itself, in which case the point of coordinates ' $x^{\boldsymbol{x}}$ is regarded as the point of coordinates ' x in the x-space. In this second interpretation the same change of variables will be called a displacement, and to indicate the fact that the new points are also in the \boldsymbol{x}-space we shall replace the Latin suffix a by a Greek one (${ }^{3}$).

A change of variables of the particular form

$$
\begin{equation*}
' x^{a}=x^{n}+\epsilon \xi^{a}(x), \tag{6}
\end{equation*}
$$

where ϵ is a small constant, is called an infinitesimal transformation, or an infinitesimal displacement of the x-space according to the interpretation chosen.

[^0]For an infinitesimal transformation, we have

$$
\begin{equation*}
' d x^{a}=d x^{a}+\epsilon \partial_{\alpha} \xi^{a} \cdot d x^{\alpha}=\mathrm{A}_{\alpha}^{a} d x^{x} \quad\left(\partial_{\alpha}=\frac{\partial}{\partial x^{\alpha}}\right), \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{A}_{\alpha}^{a}=\partial_{\alpha}^{a}+\epsilon \partial_{\alpha} \xi^{\prime \prime} . \tag{8}
\end{equation*}
$$

The reciprocals A_{b}^{3} are defined as usual by

$$
\begin{equation*}
\mathbf{A}_{b}^{\beta} \mathbf{A}_{\beta}^{a}=\delta_{b}^{a} \quad \text { or } \quad \mathbf{A}_{b}^{\beta} \mathbf{A}_{\alpha}^{b}=\partial_{\alpha}^{3}, \tag{9}
\end{equation*}
$$

giving

$$
\begin{equation*}
\mathrm{A}_{b}^{\beta}=\delta_{b}^{3}-\epsilon \boldsymbol{\partial}_{b} \xi^{\beta} \quad\left(d_{b}=\frac{\partial}{\boldsymbol{\partial}^{\prime} x^{\prime \prime}}\right) . \tag{Io}
\end{equation*}
$$

Hence, to first order quantities in ϵ, vectors and tensors are transformed by the rules

$$
\begin{align*}
& v^{a}=v^{\boldsymbol{x}} \mathrm{A}_{\alpha}^{a}, \quad v_{b}=\nu_{\beta} \mathrm{A}_{b}^{\beta}, \tag{II}\\
& \text { (12) } \left.\mathrm{T}_{b_{1} \ldots b_{\eta}}^{a_{1} \ldots u_{p}}{ }^{\prime} x\right)=\mathrm{T}_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1}, \ldots \alpha_{p}}(x) \mathrm{A}_{\alpha_{1} \ldots \alpha_{p}}^{a_{1} \ldots a_{p}} \mathrm{~A}_{l_{1} \ldots b_{q}}^{3, \ldots \beta_{q}}
\end{align*}
$$

Metric and connexion parameters are transformed by the usual formulae

$$
\begin{gather*}
a_{a b}=a_{\alpha \beta} \mathrm{A}_{a b}^{\alpha \beta}, \tag{I3}\\
\boldsymbol{\Gamma}_{b c}^{a}=\boldsymbol{\Gamma}_{\beta \gamma}^{\alpha} \mathrm{A}_{\alpha}^{a} \mathrm{~A}_{b c}^{\beta \gamma}+\mathrm{A}_{\alpha}^{a} \boldsymbol{\partial}_{c} \mathrm{~A}_{b}^{\alpha} . \tag{14}
\end{gather*}
$$

The tensor space so constructed will be referred to as the transform ${ }^{\prime} \mathbf{A}_{n}$ of \mathbf{A}_{n}. Like every transform it represents, to first approximation, the same geometry \mathbf{A}_{n} in new variables, since corresponding vectors have the same lengths, and since parallelism is preserved in the transformation.

In the second interpretation of the change of variables the point x is displaced in the original space \mathbf{A}_{n} to ' \boldsymbol{x}. Thus in the displaced \mathbf{A}_{n} vectors and tensors at ' x are just the vectors and tensors of A_{n} at ' \boldsymbol{x}, and the metric and connexion parameters are $a_{\alpha \beta}\left({ }^{\prime} x\right)$ and $\Gamma_{\beta \gamma}^{\alpha}\left({ }^{\prime} x\right)$. This displaced space will also be referred to as the deform of A_{n}.

If we introduce the notations ' $a_{\alpha \beta}\left({ }^{\prime} x\right)$ and ${ }^{\prime} \Gamma_{\beta \gamma}^{\alpha}\left({ }^{\prime} x\right)$ for the metric and connexion parameters of the transformed A_{n} at ' \boldsymbol{x}, since the ${ }^{\prime} A_{n}$ is the same geometry as the A_{n} (except that it is attached to different points), we can consider ${ }^{\prime} a_{\alpha \beta}\left({ }^{\prime} x\right)$ and ${ }^{\prime} \Gamma_{\beta \gamma}^{\alpha}\left({ }^{\prime} x\right)$ as the representatives of A_{n} at the point ' x.

A measure for the deformation of A_{n} is therefore obtained by comparing the metric and connexion parameters of the new Geometry (the deform of \mathbf{A}_{n}) at ' x, with the representatives of A_{n} at ' \boldsymbol{x}.

And since in this way we are going to consider the transform of A_{n} as being at the points of X_{n}, we shall replace the Latin suffixes of ' A_{n} by Greek ones in order to avoid a formal clash of suffixes. Thus we shall denote A_{α}^{a} and A_{a}^{α} by A_{α}^{β} and \bar{A}_{β}^{α} respectively, and similarly v^{α}, v_{a}, etc., will be replaced by ' ν^{α} and ${ }^{\prime} v_{\alpha}$, etc.

Thus the deformation of metric and connexion parameters will be measured by

$$
\begin{equation*}
\delta a_{\alpha \beta} \equiv a_{\alpha \beta}\left({ }^{\prime} x\right)-{ }^{\prime} a_{\alpha \beta}\left({ }^{\prime} x\right)=\epsilon\left[\xi \xi^{\gamma} \partial_{\gamma} a_{\alpha \beta}+a_{\alpha \gamma} \partial_{\beta} \xi^{\gamma}+a_{\gamma \beta} \partial_{\alpha} \xi^{\xi}\right], \tag{15}
\end{equation*}
$$

which can be thrown into the tensor form

$$
\begin{equation*}
\delta a_{\alpha \beta}=\epsilon\left[\nabla_{\gamma} a_{\alpha \beta}+a_{\alpha \gamma} \nabla_{\beta} \xi^{\gamma}+a_{\gamma \beta} \nabla_{\alpha} \xi^{\gamma}+2 \mathrm{~S}_{\alpha \gamma} a^{\dot{\jmath}} a_{\delta \beta} \xi^{\gamma}+2 \mathrm{~S}_{j \gamma \gamma}{ }^{i} a_{\alpha \delta} \bar{\delta}^{\dot{\delta}}\right] . \tag{16}
\end{equation*}
$$

Similarly

$$
\begin{align*}
& \left.\left.\delta \mathbf{\Gamma}_{\beta \gamma}^{\alpha} \equiv \mathbf{\Gamma}_{\beta \gamma}^{\alpha}{ }^{\prime}{ }^{\prime} x\right)-{ }^{\prime} \mathbf{T}_{\beta \gamma}^{\alpha}{ }^{\alpha}{ }^{\prime} \boldsymbol{x}\right) \tag{17}
\end{align*}
$$

or, in tensor form

$$
\begin{equation*}
\partial \Gamma_{\beta \gamma}^{\alpha}=\epsilon\left[\nabla_{Y} \nabla_{\beta} \xi^{\alpha}+R_{a j ; \delta}^{\alpha} \xi^{\delta}+2 \nabla_{Y}\left(S_{\beta \dot{j}}^{\alpha} \xi^{\delta}\right)\right] . \tag{18}
\end{equation*}
$$

In the sequel we shall frequently meet with a special kind of covariant derivation, in which the lower suffixes of the connexion parameters have been interchanged. We can call it the conjugate covariant derivation, and denote it by $\dot{\nabla}$, where for an arbitrary contravariant vector v^{α}, we have

$$
\begin{equation*}
\dot{\nabla}_{\gamma} \nu^{\alpha}=\partial_{\gamma} \nu^{\alpha}+\Gamma_{\gamma \beta}^{\alpha} \nu^{\beta} . \tag{19}
\end{equation*}
$$

Expressed in terms of ordinary covariant derivation, we evidently
have
(zo)

$$
\dot{\nabla}_{\gamma}^{\prime, \alpha}=\nabla_{\gamma}^{\prime},{ }^{\prime \alpha}+2 \mathbf{S}_{\gamma \beta}^{\alpha} v^{\beta},
$$

so that when the connexion parameters are symmetrical, the two operators coincide.

In consequence of (19), we can write (16) and (18) in the shorter forms
(22)

$$
\begin{gather*}
\delta a_{\alpha \beta}=\epsilon\left[\xi \gamma \nabla_{\gamma} a_{\alpha \beta}+a_{\alpha \gamma} \dot{\nabla}_{\beta} \xi^{\gamma}+a_{\gamma \beta} \dot{\nabla}_{\gamma} \xi \gamma\right], \tag{21}\\
\delta \Gamma_{\beta \gamma}^{\alpha}=\epsilon\left[\nabla_{\gamma} \dot{\nabla}_{\beta} \xi_{\zeta}^{\alpha}+\mathbf{R}_{\beta \gamma \gamma \delta}^{\alpha} \xi_{\zeta}^{z}\right] .
\end{gather*}
$$

For a Reimann space V_{n}, these reduce to

$$
\begin{gathered}
\dot{\partial} a_{\alpha \beta}=\epsilon\left[\nabla_{\alpha} \xi_{\beta}+\nabla_{\beta} \check{\varsigma} x_{x}\right], \\
\dot{\delta}\left\{\beta_{\beta \gamma}^{\alpha}\right\}=\epsilon\left[\nabla_{\gamma} \nabla_{\beta} \xi^{\alpha}+\mathbf{R}_{. \beta \gamma \delta}^{\alpha} \xi^{\delta}\right] .
\end{gathered}
$$

It is easily proved that the $\delta \Gamma_{\beta \gamma}^{x}$ in the case of a V_{n} is equal to the difference of the three-index symbols of Christoffel for the metric parameters $\bar{a}_{\alpha \beta}=a_{\alpha \beta}+\delta a_{\alpha \beta}$, and for the original ones. Moreover, in this case, since the whole Geometry is determined by the metric parameters, the deformation of a structure (${ }^{1}$) tensor of V_{n} can be determined by merely calculating the tensor using the new metric parameters $\bar{a}_{\alpha \beta}$ (and consequently the new connexion parameters $\bar{\Gamma}_{\beta \gamma}^{\alpha}$), and subtracting the old tensor from the result. That the deformed space is also Reimannian is therefore immediately evident. By a definition of parallelism given in Dienes [1933, (iii)] however, it is seen that the deformed space shall always be of the same nature as the original space, so that any special properties possessed by the space will be preserved in deformation.
2. The definition of the deformation of individual vectors and tensors implies a comparison of vectors and tensors of the deform of A_{n} with those of ' A_{n} both at ' x. Since however we usually attribute the deformation to the vectors and tensors of A_{n} at x, this implies a comparison between the pencils of tensors of A_{n} attached to \boldsymbol{x} and ' \boldsymbol{x} respectively. The simplest kind of correspondence is by

[^1]parallelism, by which we mean that in the displacement of het point \boldsymbol{x} to ' \boldsymbol{x}, the vectors and tensors at \boldsymbol{x} are carried along to ' \boldsymbol{x} by parallel transport.
Thus, starting with a ${ }^{\prime}$ say at x, its deformation due to the displacement (6) will be conveniently measured by
and this is called the direct deformation (').
In the case of a vector field $v^{x}(x)$ we may also take $v^{x}\left({ }^{\prime} x\right)$ as the vector corresponding to $v^{x}(x)$. This leads to the field deformation

which, in virtue of (1), can also be written
\[

$$
\begin{equation*}
\partial \nu^{x}=\epsilon \check{c}_{\square}^{r} \nabla_{\gamma} v^{x}+\Delta r^{\prime x} . \tag{3}
\end{equation*}
$$

\]

If we have an individual vector v^{x} at x, a field can be defined between x and ' x along $x^{x}+\epsilon \xi^{x}$ by putting $\xi^{Y} \Gamma_{\gamma} \boldsymbol{}^{\boldsymbol{x}}=0$, i. e. a field can be created by parallel transport. In this way, from a purely mathematical point of view, the measuring process Δ appears as a special case of the δ process. We notice, however that the δ measure depends upon the existence of a field but not upon a definition of parallel transport in the space, whereas Δ implies parallelism but no field.

The definitions are readily extended to general tensors, so that

$$
\begin{align*}
& \left.\Delta \mathbf{T}_{j_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}} \equiv \mathbf{T}_{j_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}}\left(\left.x\right|^{\prime} x\right)-{ }^{\prime} \mathbf{T}_{\left.j_{1} \ldots\right\}_{q}}^{\alpha_{1} \ldots \alpha_{p}}{ }^{\prime} x\right) \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& \left.+\xi^{\hat{o}}\left(\sum_{s=1}^{q} T_{\beta_{1} \ldots \gamma \ldots \beta_{q}}^{\alpha_{1}, \ldots \alpha_{\beta_{s}}} \Gamma_{s=1}^{\gamma}-\sum_{s=1}^{p} T_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \% \alpha_{\rho}} \Gamma_{\gamma_{\delta}^{\delta}}^{\alpha_{\dot{\delta}}}\right)\right]
\end{aligned}
$$

${ }^{(1)}$) This difference Δ has been used by Hayden (1931) in his study of curves in a Riemand space.
and
which can also be written

On comparing (4) and (5) we have

$$
\begin{equation*}
\delta T_{\beta_{1} \ldots \beta_{q}}^{\alpha_{1} \ldots \alpha_{p}}=\Delta T_{\left.\beta_{1} \ldots\right\}_{q}}^{\alpha_{1} \ldots \alpha_{\rho}}+\epsilon \underline{\xi} r \nabla_{\gamma} T_{\left.\beta_{1} \ldots\right\}_{q}}^{\alpha_{1}, \ldots \alpha_{\mu}} . \tag{6}
\end{equation*}
$$

In particular, the δ measure for the deformation of $a_{\alpha \beta}$ as a tensor field coincides with (1.16), and in a metric space $\stackrel{\star}{\nabla}_{n}$, we have

$$
\begin{equation*}
\Delta a_{\alpha \beta}=\delta a_{\alpha \beta}=\epsilon\left[\dot{\nabla}_{\alpha} \Sigma_{\beta}+\dot{\nabla}_{\beta}^{\xi_{x}}\right] . \tag{7}
\end{equation*}
$$

For structure tensors like $\mathrm{S}_{\beta_{\gamma}^{\alpha}}^{\alpha}$ and $\mathrm{R}_{\cdot \beta \gamma \gamma}^{\alpha}$ formed of the metric and connexion parameters, also $\left.\mathrm{S}_{\bar{\beta} \gamma}{ }^{\alpha}{ }^{\prime} \boldsymbol{\prime} \boldsymbol{x}\right)$ and $\left.\mathrm{R}_{\cdot \beta \gamma \delta}^{\alpha}{ }^{\alpha}{ }^{\prime} \boldsymbol{x}\right)$ might be taken as the representatives at ' x [instead of ${ }^{\prime} \mathrm{S}_{\dot{\beta}_{\gamma}}^{\alpha}{ }^{\alpha}\left({ }^{\prime} x\right)$ and $\left.{ }^{\prime} \mathrm{R}_{. \beta \gamma \mathrm{y}}^{\alpha}\left({ }^{\prime} x\right)\right]$. In this way we can define the structural deformations :

$$
\begin{equation*}
\left.\mathrm{DS}_{\beta \gamma}^{\cdot \alpha} \equiv \mathrm{S}_{\beta \gamma}^{\cdot \alpha}\left(x \|^{\prime} x\right)-\mathrm{S}_{\beta \gamma} \ddot{\beta}^{\alpha}{ }^{\prime} x\right)=-\epsilon \xi^{\delta} \nabla_{\delta} \mathrm{S}_{\dot{\beta} \gamma} \ddot{\alpha}^{\alpha} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\mathrm{DR}_{\cdot \beta \gamma \delta}^{\alpha} \equiv \mathrm{R}_{. \beta \gamma j}^{\alpha}\left(x \|^{\prime} x\right)-\mathrm{R}_{\cdot \beta \gamma j}^{\alpha}{ }^{\prime} x\right)=-\epsilon \epsilon_{j}^{\gamma} \nabla_{\eta} \mathrm{R}_{. \beta \gamma \delta \dot{\partial}}^{\alpha} . \tag{9}
\end{equation*}
$$

We notice that
(10$) \quad \Delta \mathbf{T}-\mathrm{DT} \equiv\left[\mathbf{T}\left(x \rrbracket^{\prime} x\right)-{ }^{\prime} \mathbf{T}\left({ }^{\prime} x\right)\right]-\left[\mathbf{T}\left(x \|^{\prime} x\right)-\mathbf{T}\left({ }^{\prime} x\right)\right]=\delta \mathbf{T}$.
These deformation operators δ, Δ, and D satisfy such formal rules of manipulation as the following

$$
\begin{gather*}
\delta\left(\mathbf{T}+\mathbf{T}^{\prime}\right)=\delta \mathbf{T}+\delta \mathbf{T}^{\prime}, \tag{II}\\
\delta\left(\mathbf{T} \mathbf{T}^{\prime}\right)=(\delta \mathbf{T}) \mathbf{T}^{\prime}+\mathbf{T}\left(\delta \mathbf{T}^{\prime}\right) . \tag{12}
\end{gather*}
$$

If we take the product $\boldsymbol{r}^{\alpha} \alpha_{\beta}$ for example, we have

$$
\begin{aligned}
& \partial\left(v^{\alpha}, w_{\beta}\right)=v^{x}\left({ }^{\prime} x\right)\left(w \beta\left({ }^{\prime} x\right)-v \gamma w_{0} \Lambda_{\gamma}^{\alpha} T_{\beta}^{i}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \partial\left(\nu^{x} w_{\beta}\right)=\left(\partial^{x}\right) \omega \beta+\nu^{x}\left(\nu_{\omega} w_{\beta}\right) .
\end{aligned}
$$

or

Similar results hold for Δ and D.
If we consider the permutability of the operator $\grave{\text { o }}$ with covariant derivation, we have, for a contravariant vector

$$
\begin{equation*}
\partial\left(\nabla_{\alpha} v^{\beta}\right)-\nabla_{x}\left(\partial \nu^{s}\right)=\left(\partial \Gamma_{\gamma \alpha}^{3}\right) \nu \gamma \tag{13}
\end{equation*}
$$

and for a covariant vector

$$
\begin{equation*}
\dot{\partial}\left(\Gamma_{x}(; y) \cdot \Gamma_{x}(\hat{j}) \beta\right)=\cdots\left(\hat{j} \Gamma_{j x}^{\prime \prime}\right) . \tag{14}
\end{equation*}
$$

the extension to general tensors being obvious. The operators δ and covariant derivation will therefore be permutable for all tensors provided the equation

$$
\begin{equation*}
\dot{\partial} \Gamma_{y ;}^{x}=0, \tag{15}
\end{equation*}
$$

is satisfied. This is the condition that the transformation (1.6) should define an isomorphic transformation of the space, as proved by Slebodzinski (1932, equs. 1).
3. The Geometry A_{m} on a point submanifold X_{m} given by

$$
\begin{equation*}
x^{x}=f^{x}\left(u^{\prime}, \ldots, u^{m}\right) \quad(m<n) \tag{I}
\end{equation*}
$$

is usually determined by " projection " in the following manner. From $d x^{\alpha}=\partial_{i} f^{x} \cdot d u^{i}$ we put $v^{\alpha}=v^{\prime} d_{i} f^{x}$ expressing $v^{\dot{\prime}}$ in the A_{n} frame. Hence

$$
\begin{equation*}
\mathbf{B}_{i,}^{\alpha}=\partial_{i}, f^{x}, \tag{2}
\end{equation*}
$$

are the first set of projection factors forming, as λ varies from ito m, the m contravariant, base vectors for the tangent plane. We complete it into an n-dimensional split frame \mathbf{A}_{a}^{α} by taking $n-m$ vectors $\mathrm{C}_{p}^{\alpha}\left(u^{\prime}, \ldots, u^{m}\right)$ subject to the only condition

$$
\begin{equation*}
\left\|\mathrm{A}_{a}^{\alpha}\right\| \neq \mathbf{o}, \tag{3}
\end{equation*}
$$

where $A_{a}^{\alpha} \equiv\left(B_{\lambda}^{\alpha}, C_{p}^{\alpha}\right)$. The facet determined by the pseudo-normals $\mathrm{C}_{\rho}^{\alpha}$ will be called the "span" of the submanifold at the point in question. The reciprocals are determined in the usual way by putting $\mathrm{A}_{\alpha}^{a} \equiv\left(\mathrm{~B}_{\wedge}^{\alpha}, \mathrm{C}_{\rho}^{\alpha}\right)$ and by requiring that

$$
\begin{equation*}
\mathrm{A}_{\alpha}^{a} \mathrm{~A}_{b}^{\alpha}=\delta_{b}^{a} \quad \text { or } \quad \mathrm{A}_{\alpha}^{a} \mathrm{~A}_{a}^{\beta}=\delta_{\alpha}^{\beta} . \tag{4}
\end{equation*}
$$

The quantities

$$
\mathbf{B}_{\beta}^{\alpha}=\mathrm{B}_{\mu}^{\alpha} \mathrm{B}_{\beta}^{\mu}, \quad \mathrm{C}_{\beta}^{\alpha}=\mathrm{C}_{\rho}^{\alpha} \mathrm{C}_{\beta}^{\rho},
$$

with

$$
\begin{equation*}
\mathbf{B}_{\beta}^{\alpha}+\mathbf{C}_{\beta}^{\alpha}=\delta_{\beta}^{\alpha}, \tag{5}
\end{equation*}
$$

have been used extensively by Schouten (1924) instead of the projection factors $B_{\lambda}^{\alpha}, C_{\rho}^{\alpha}$. We remark that $B_{\beta}^{\alpha} v^{\beta}$ is the A_{n}-component of the projection of $r^{, \alpha}$ on A_{m}. Since

$$
\vartheta^{\alpha}=\rho^{\beta} \delta_{\beta}^{\alpha}=\vartheta^{\beta}\left(\mathrm{B}_{\beta}^{\alpha}+\mathrm{C}_{\beta}^{\alpha}\right),
$$

the conditions $v^{\alpha}=\mathrm{B}_{\beta}^{\alpha} \gamma^{3}$, or $\mathrm{C}_{\beta}^{\alpha} \nu^{3}=0$ express the fact that $\dot{\varepsilon}^{\alpha}$ lies in A_{m}, and $\nu^{\alpha}=\mathrm{C}_{\beta}^{\alpha} \nu^{\beta}$ or $\mathrm{B}_{\beta}^{\alpha} \nu^{\beta}=0$ that $\boldsymbol{\nu}^{\alpha}$ is pseudo-normal to A_{m}, or lies in the "span» of A_{m}.

The projected metrics in \mathbf{A}_{m} and in its span A_{m}^{p} are given by

$$
\begin{equation*}
b_{i \lambda \mu}=a_{\alpha \beta} B_{i \mu \mu}^{\alpha \beta} \quad \text { and } \quad c_{\rho \sigma}=a_{\alpha \beta} \mathrm{C}_{\rho \sigma}^{\alpha \beta} . \tag{6}
\end{equation*}
$$

A system of split frames of the kind just defined leads to a fourfold connexion with the following projected connexion parameters (${ }^{1}$),
(7) $\begin{cases}\text { (i) } \quad l_{\mu \nu}^{\lambda}=\mathrm{B}_{\alpha}^{\lambda} \nabla_{\nu} \mathrm{B}_{(\mu)}^{\alpha}=-\pi_{\mu i, v}, & \text { (ii) } \lambda_{\rho \nu}^{\pi}=\mathrm{C}_{\alpha}^{\pi} \nabla_{\nu} \mathrm{C}_{(\rho)}^{\alpha}=-\pi_{\rho \pi v}, \\ \text { (iii) } \quad s_{\mu, \sigma}^{\lambda}=\mathrm{B}_{\alpha}^{\lambda} \nabla_{\sigma} \mathrm{B}_{(\mu)}^{\alpha}=-\pi_{\mu i, \sigma}, & \text { (iv) } \sigma_{\rho \sigma}^{\pi}=\mathrm{C}_{\alpha}^{\pi} \nabla_{\sigma} \mathrm{C}_{(\rho)}^{\alpha}=-\pi_{\rho \pi \sigma},\end{cases}$
where for orthogonal frames the π functions reduce to the corresponding γ functions of Ricci [Dienes, 1933 (ii)]. In this paper we
(1) The quantites $\lambda_{\rho v}^{\pi}$ have only recently been used as connexion parameters [see Bortolotti (193 r , form. 24) and Dienes (1932, form. 19)]. They have appeared in literature on the subject for many years however, and they appear for the Riemannian case as $\mu_{\pi \rho \mid v}$ in Ricci (1902, p. 357); $\mathrm{C}_{\pi \rho}^{\nu}$ in Kühne (rgo3), $\mathrm{A}_{\nu}^{\pi \rho}$ in Bortoloti (1928, form. 119), $\boldsymbol{v}_{\gamma}^{\pi \rho}$ in Schouten (1924, p. 2oo), and $\mathrm{R}_{\mathrm{pv}}^{\pi}$ in Lagrange (1926, p. 32).
shall only deal with projected connexion, in which case Table I in Dienes (1932, p. 268) simplifies, since $D=0, E=o, H=o$, and $I=0$. The equations of Gauss; Codazzi, and Kühne have consequently a simplified form, which we shall indicate in the next article.
4. Relations between the fundamental tensors of A_{m} and A_{n}. - Having defined the connexion parameters in A_{m} and in A_{m}^{p}, we shall introduce the first and second tensors of Eulerian Curvature $\mathrm{F}_{\mathrm{p}, \mathrm{y}}^{\rho}$ and $\mathbf{G}_{\rho_{v}}^{\mu}\left({ }^{1}\right)$ of A_{m} in A_{n} as follows :

From the definitions of $l_{\mu \nu}^{\hat{\nu}}$ and $\lambda_{\rho \nu}^{\sigma}$, we have

$$
\mathrm{B}_{\alpha}^{\grave{\alpha}} \nabla_{\nu} \mathrm{B}_{\mu}^{\alpha}=0 \quad \text { and } \quad \mathrm{C}_{\alpha}^{\sigma} \nabla_{\nu} \mathrm{C}_{\mathrm{p}}^{\alpha}=0
$$

so that we can write

$$
\begin{equation*}
\nabla_{\nu} B_{\mu}^{\alpha}=C_{\beta}^{\alpha} \nabla_{\nu} B_{\mu}^{3}=F_{\mu \nu}^{\alpha}=C_{\phi}^{\alpha} F_{\mu \nu}^{\alpha} \tag{I}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{\nu} \mathrm{C}_{\rho}^{\alpha}=\mathrm{B}_{\rho}^{\alpha} \nabla_{\nu} \mathrm{C}_{f}^{\alpha}=\mathrm{G}_{p_{\nu}^{\alpha}}^{\alpha}=\mathrm{B}_{\mu}^{\alpha} \mathrm{G}_{\rho_{\nu \nu}^{\mu}}^{\mu} . \tag{2}
\end{equation*}
$$

We also define corresponding quantities $J_{\mu \sigma}^{\rho}$ and $K_{\dot{\sigma} \sigma}^{\mu}$ by the equations

$$
\begin{equation*}
\nabla_{\sigma} B_{\mu}^{\alpha}=C_{\beta}^{\alpha} \nabla_{\sigma} B_{\mu}^{3}=J_{\mu,}^{x}=C_{\beta}^{\alpha} J_{\mu \sigma}^{\rho} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{\sigma} C_{f}^{\alpha}=B_{\beta}^{\alpha} \nabla_{\sigma} C_{f}^{y}=K_{\rho \sigma}^{\alpha}=B_{\mu}^{\alpha} K_{\rho \sigma}^{\mu} . \tag{4}
\end{equation*}
$$

The fundamental equations connecting A_{m} and A_{n} are now the following

$$
\begin{align*}
& \overline{\mathbf{R}}_{\cdot}^{\rho}{ }_{\sigma \mu \nu} \equiv \mathbf{R}_{\beta \cdot \beta \gamma \delta}^{\alpha} \mathrm{C}_{\alpha \sigma}^{\rho \beta} \mathrm{B}_{\mu \nu}^{\gamma \delta}=\mathbf{R}_{\cdot \sigma \mu \nu}^{\rho}(\lambda)+{ }_{2} \mathrm{G}_{\sigma[\mu}^{k} \mathbf{F}_{k \mid 1 \nu]}^{\rho}, \tag{6}
\end{align*}
$$

${ }^{(1)}$ These quantites correspond to $H_{\beta \gamma}{ }_{\gamma}^{\alpha}$ and $L_{\dot{\beta}, \gamma}^{\alpha}$ in Schouten's theory (1924, p. 159).

Actually $H_{3}^{4}{ }_{\gamma}^{\alpha} B_{\mu \nu}^{\beta \gamma}=F_{\mu \nu}^{\alpha}=C_{\rho}^{\alpha} F_{\mu \nu}^{\rho}$ and $L_{\beta . \gamma}^{\alpha} B_{\alpha}^{\mu} C_{\rho}^{\beta}=-G_{\rho \gamma}^{\mu}=-B_{\gamma}^{\nu} G_{\rho \nu \nu}^{\mu}$,

Equations (6) and (7) are the generalizations of the equations of Gauss and Kühne, while (8) and (9) are the generalizations of the equations of Codazzi.

In the latter part of the paper we shall need the following tensors, which we can call the conjugate Eulerian Curvature tensors
(10)

$$
\begin{aligned}
& \text { (ii) } \dot{\mathrm{G}}_{\rho^{\prime}}^{\mu}=\mathrm{B}_{x}^{\mu} \dot{\nabla}_{v,} \mathrm{C}_{(\rho)}^{\alpha}=\mathrm{G}_{\rho^{\prime},}^{\mu}-2 \overline{\mathrm{~S}}_{\rho ; \prime \prime}^{\mu} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (iv) } \dot{K}_{\rho \sigma}^{\mu}=B_{\alpha}^{\mu} \dot{\nabla}_{\sigma} B_{\rho \rho}^{\alpha}=K_{\rho \sigma}^{\mu}-{ }_{2} \overline{\mathbf{S}}_{\rho \sigma} \cdot{ }^{\mu} \text {. }
\end{aligned}
$$

with their corresponding A_{n} components, such as $\stackrel{*}{F}_{\beta \gamma}^{\alpha}=\stackrel{\rightharpoonup}{F}_{\mu \nu}^{\mu} C_{\rho}^{\alpha} B_{\beta \gamma}^{\mu \nu}$. We also give the conjugates of formulae given by Dienes (1932, p. 270) :
(iI)

$$
\left\{\begin{array}{l}
\text { (i) } \quad \dot{\nabla}_{\beta} B_{\mu}^{\alpha}=\dot{F}_{\mu \beta}^{\alpha}+\dot{J}_{\mu \beta}^{\alpha}, \\
\text { (iii) } \quad \dot{\nabla}_{\beta} C_{\rho}^{\alpha}=\dot{G}_{\rho \beta}^{\alpha}+\dot{K}_{\rho \beta}^{\alpha},
\end{array}\right.
$$

(ii) $\stackrel{*}{\nabla}_{\beta} B_{\alpha}^{\mu}=-\stackrel{*}{G}_{\alpha \beta}^{\mu}-\dot{K}_{\alpha \beta}^{\mu}$.
(iv) $\dot{\nabla}_{\beta} \mathrm{C}_{\alpha}^{\rho}=-\stackrel{\rightharpoonup}{\mathbf{F}}_{\alpha \beta}^{\rho}-\dot{\mathbf{J}}_{\alpha \beta}^{\rho}$.
5. The Deformation of tensor submanifolds. - Consider now a neighbouring submanifold X_{m} given by

$$
\begin{equation*}
' x^{x}=f^{x}\left(u^{1}, \ldots, u^{m}\right)+\epsilon \xi^{x}\left(u^{1}, \ldots, u^{m}\right) \tag{I}
\end{equation*}
$$

and repeat the construction given in Art. 3 in order to obtain the geometry ${ }^{\prime} \mathbf{A}_{m}$.

From

$$
' d x^{x}=\left(B_{i}^{\alpha}+\epsilon \partial_{i,} \xi^{x}\right) d u^{\lambda}
$$

we have
(2)

$$
\mathbf{B}_{\lambda}^{\alpha}=\mathrm{B}_{\Lambda}^{\alpha}+\epsilon \boldsymbol{\partial}_{\lambda} \xi^{\alpha}
$$

The simplest way of assigning a span to ${ }^{\prime} \mathbf{X}_{m}$ is to complete (1) into

$$
\begin{equation*}
' x^{x}=\mathrm{F}^{\alpha}\left(u^{1}, \ldots, u^{n}\right)+\epsilon \Xi^{x}\left(u^{1}, \ldots, u^{n}\right) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{F}^{\alpha}\left(u^{1}, \ldots, u^{m}, o, \ldots, 0\right)=f^{\alpha}\left(u^{1}, \ldots, u^{m}\right) \tag{4}
\end{equation*}
$$

${ }^{(1)}$ The significance of the bar for the other cases will be sufficiently ${ }^{\text {ºb }}$ obvious from this example.
and

$$
\Xi^{\alpha}\left(u^{\prime}, \ldots, u^{m}, o, \ldots, o\right)=\xi^{\alpha}\left(u^{1}, \ldots, u^{m_{c}}\right)
$$

and by putting

$$
\begin{equation*}
\prime \mathrm{C}_{\rho}^{\alpha}=\mathrm{C}_{\rho}^{\alpha}+\boldsymbol{\epsilon} \boldsymbol{\partial}_{\rho} \xi^{\alpha}, \tag{5}
\end{equation*}
$$

where, for convenience, we write

$$
\begin{equation*}
\partial_{\rho} \xi^{\alpha}=\left(\partial_{\rho} \bar{Z}^{\alpha}\right)_{u^{\sigma}=0} \tag{6}
\end{equation*}
$$

The reciprocal system is

$$
\begin{equation*}
' \mathbf{B}_{\alpha}^{\lambda}=\mathbf{B}_{\alpha}^{\grave{\lambda}}-\epsilon \mathrm{B}_{\beta}^{\lambda} \partial_{\alpha} \xi^{\beta}, \quad \prime \mathrm{C}_{\alpha}^{\rho}=\mathrm{C}_{\alpha}^{\rho}-\epsilon \mathrm{C}_{\beta}^{\rho} \partial_{\alpha} \xi^{\beta} . \tag{7}
\end{equation*}
$$

where

$$
\partial_{\alpha} \xi^{\alpha}=\mathrm{B}_{\alpha}^{\alpha} \partial_{k} \xi^{\beta}+\mathrm{C}_{\alpha}^{\sigma} \partial_{\tau} \xi \beta
$$

We also have

$$
\left\{\begin{array}{l}
\prime \mathbf{B}_{\beta}^{\alpha} \equiv{ }^{\prime} \mathbf{B}_{\alpha}^{\dot{\alpha}} \mathbf{B}_{\beta}^{\lambda}=B_{\beta}^{\alpha}+\epsilon \mathbf{B}_{\beta}^{\gamma} \partial_{\gamma} \xi^{\alpha}-\epsilon \mathrm{B}_{\gamma}^{\alpha} \partial_{\beta} \xi^{\Upsilon}, \tag{8}\\
{ }^{\prime} \mathrm{C}_{\beta}^{\alpha} \equiv{ }^{\prime} \mathrm{C}_{\rho}^{\alpha \prime} \mathrm{C}_{\beta}^{\alpha}=\mathrm{C}_{\beta}^{\alpha}+\epsilon \mathrm{C}_{\beta}^{\gamma} \partial_{\gamma} \zeta^{\alpha}-\ldots \in \mathrm{C}_{\curlyvee}^{\alpha} \partial_{\beta} \xi^{Y} .
\end{array}\right.
$$

We notice that the projection factors ${ }^{\prime} \mathrm{B}_{\mu}^{\alpha},{ }^{\prime} \mathrm{C}_{\rho}^{\alpha},{ }^{\prime} \mathrm{B}_{\alpha}^{\lambda},{ }^{\prime} \mathrm{C}_{\alpha}^{\rho},{ }^{\prime} \mathrm{B}_{\beta}^{\alpha},{ }^{\prime} \mathrm{C}_{\beta}^{\alpha}$ are the formal transforms of the corresponding factors treated as vectors and tensors of A_{n}, i. e. submanifold and span suffixes being ignored.

The displaced manifold ${ }^{\prime} A_{m}$, i. e. the deform of A_{n} will now be constructed by the following metric and connexion parameters
(i) ${ }^{\prime} b_{\lambda \mu}=a_{\alpha \beta}\left({ }^{\prime} x\right)^{\prime} \mathbf{B}_{\lambda \mu}^{\alpha \beta}, \quad$ (ii) $\left.\quad{ }^{\prime} c_{\rho \sigma}=a_{\alpha \beta}{ }^{\prime} x\right)^{\prime} \mathrm{C}_{\rho \sigma}^{\alpha \beta}$,

To obtain an image or representative of $\mathrm{A}_{\boldsymbol{m}}$ at the points of ' $\mathrm{A}_{\boldsymbol{m}}$, we notice that the point correspondence ' $x \rightarrow x$ is established by identical values $u^{\prime}, \ldots, u^{m}$ in (5.1) and (3.1). Therefore the simplest representative of A_{m} in ${ }^{\prime} A_{m}$ is obtained by taking vectors and tensors with identical components in the u-frames at x and ' x respectively
as corresponding to each other, and by attaching the same metric (') and connexion parameters to the u-frames at x and ' \boldsymbol{x}. This is possiblesince from the point of view of the variables $u^{\prime}, \ldots u_{m}$, x and $^{\prime} x$ are identical.

This method leads to
(II)

6. The deformation of vectors and tensors of A_{m}. - To study the deformation of tensors of A_{m}, we remark that the deformation of A_{m} is due to a displacement of A_{n}, so that to measure the deformation we have to express the tensors in their A_{n}-components and then apply the methods of the preceding articles.

For example, if we denote by a bar the A_{n}-component of a tensor of \mathbf{A}_{m}, then a vector v^{λ} at x will appear as the vector $\overline{v^{\alpha}}=v^{\prime} \mathbf{B}_{\lambda}^{\alpha}$ of \mathbf{A}_{n}, and the displacement will carry it to ' x by parallel transport. On the other hand, the representative of v^{\prime} at the point ' x expressed in A_{n} components is ' $\overline{v^{\alpha}}=v^{\dot{\lambda}} \mathrm{B}_{\wedge}^{\alpha}$. Thus the deformation of $\boldsymbol{v}^{\dot{\lambda}}$ is

$$
\text { (1) } \bar{\nu}^{x}\left(x \|^{\prime} x\right)-\bar{v}^{x}=-\epsilon\left(\Gamma_{\beta \gamma}^{\alpha} v^{\gamma} B_{\lambda}^{\beta} \xi \Upsilon+v^{\lambda} \partial_{\lambda} \xi^{x}\right)=-\epsilon v^{\lambda} B_{\lambda}^{\beta} \dot{\nabla}_{\beta}^{\beta} \zeta^{x}=\Delta \bar{\nu}^{x} .
$$

For A_{m} however, only the projection on A_{m} is significant, so that we also have to introduce the deform $\bar{\varphi}^{\alpha}\left(x \|^{\prime} x\right)^{\prime} \mathrm{B}_{\alpha}^{\dot{\alpha}}$ of $v^{\dot{\alpha}}$ in \mathbf{A}_{m} with the corresponding measure

$$
\begin{equation*}
\Delta v^{\lambda} \equiv \bar{v}^{\alpha}\left(x \|^{\prime} x\right)^{\prime} \mathbf{B}_{\alpha}^{\lambda}-\varphi^{\lambda}=\mathbf{B}_{\alpha}^{i} \Delta \bar{\nu}^{\alpha}=\mathbf{B}_{\alpha}^{i} \Delta \bar{\nu}^{\alpha} . \tag{2}
\end{equation*}
$$

In the case of a vector field $\overline{v^{\alpha}}$ defined in X_{n} or at least in an n-dimensional neighbourhood $\left(\mathrm{X}_{m}\right)_{n}$ of X_{m}, we can also take $\boldsymbol{q}^{\alpha}\left({ }^{\prime} \boldsymbol{x}\right)^{\prime} \mathbf{B}_{\alpha}^{\wedge}$ as the
(1) Taking $b_{\lambda \mu}$ as the representative of $b_{\lambda \mu}$ at ${ }^{\prime} x$ is further justified by the fact that the simple transform of $a_{\alpha \beta} B_{\lambda, \mu}^{\alpha \beta}$ is ' $a_{\alpha \beta}{ }^{\prime} B_{\gamma, \mu}^{\alpha \beta}=a_{\alpha \beta} B_{\eta, 4}^{\alpha \beta}=b_{\lambda \mu}$.
displaced vector at ' x, so that subtracting the representative of v^{\prime} at ' x (i. e. v^{λ} itself), we have

$$
\begin{equation*}
\delta v^{\lambda} \equiv v^{x}\left({ }^{\prime} x\right)^{\prime} \mathrm{B}_{\alpha}^{\grave{\lambda}}-v^{i}=\mathrm{B}_{\alpha}^{\grave{j}} \bar{v}^{x} \tag{3}
\end{equation*}
$$

Both processes readily extend to covariant vectors and general tensors, leading to formulae like
(i) $\Delta v_{\mu}=B_{\mu}^{\alpha} \Delta \overline{v_{\alpha}}, \quad$ (ii) $\delta v_{\mu}=B_{\mu}^{\alpha} \bar{\partial} \bar{v}_{\alpha}$;

$$
\left\{\begin{array}{l}
\text { (i) } \quad \Delta v_{\mu \nu}^{\rho} \equiv \bar{v}_{\beta \gamma}^{\alpha}\left(x \|^{\prime} x\right)^{\prime} \mathrm{C}_{\alpha}^{\rho} \mathrm{B}_{\mu \nu}^{\beta \gamma}-v_{\mu \nu}^{\rho}=\mathrm{C}_{\alpha}^{\rho} \mathrm{B}_{\mu \nu}^{\beta \gamma} \Delta \bar{\nu}_{\beta \gamma}^{\alpha}, \tag{4}\\
\text { (ii) } \quad \partial \nu_{\mu \nu}^{\rho} \equiv \bar{v}_{\beta \gamma}^{\alpha}\left({ }^{\prime} x\right) \quad{ }^{\prime} \mathrm{C}_{\alpha}^{\rho} \mathrm{B}_{\mu \nu}^{\beta \gamma}-\nu_{\mu \nu}^{\rho}=\mathrm{C}_{\alpha}^{\rho} \mathrm{B}_{\mu \nu}^{\beta \gamma} \partial_{\psi \nu \nu}^{\alpha},
\end{array}\right.
$$

and, in general

We can write (3) in the form

$$
\begin{equation*}
\delta\left(B_{\alpha}^{\hat{\lambda} \bar{v}^{x}}\right)=B_{\alpha}^{\lambda} \bar{\partial} \overline{\nu^{x}}, \tag{7}
\end{equation*}
$$

i. e. with respect to the operator \vdots, the projection factors behave as constants. This is due to the fact that the change resulting from replacing B by ' B has been accounted for in the construction of $\delta \bar{v}^{-\alpha}$.

Applying the δ process to $b_{\mu \mu}$ and $c_{\rho \sigma}$ we obtain (5.it). In a
 Schouten (1928, form. i). In order to obtain the $\delta g_{\gamma_{i}^{\prime}}^{\prime}$ of Schouten, we notice that, in a V_{n},

$$
\begin{equation*}
a_{\alpha \beta}\left({ }^{\prime} x\right)^{\prime} \mathrm{B}_{\gamma}^{\alpha \prime} \mathrm{C}_{\delta}^{\beta}-a_{\alpha \beta} \mathrm{B}_{\gamma}^{\alpha} \mathrm{C}_{\delta}^{\beta}=\mathrm{B}_{\gamma}^{\alpha} \mathrm{C}_{\delta}^{\beta} \delta a_{\alpha \beta}=\epsilon \mathrm{B}_{\gamma}^{\alpha} \mathrm{C}_{\delta}^{\beta}\left(\nabla_{\alpha} \xi_{\beta}+\nabla_{\beta} \xi_{\alpha}\right) \tag{8}
\end{equation*}
$$

which is Schouten's $\delta g_{\gamma \delta}^{\prime}$
For mixed tensors of the type ψ_{μ}^{α}, the measure for direct deformation is given by

so that

$$
\begin{equation*}
\Delta r_{\mu}^{\alpha}=B_{\mu}^{\gamma} \Delta r_{\beta}^{\alpha} \tag{10}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\partial v_{\mu}^{\alpha}=B_{\mu}^{3} \partial \bar{v}_{\beta}^{\alpha} \tag{II}
\end{equation*}
$$

The rules of manipulation for sums and products readily extend to the deformation of a submanifold and its span. For example

$$
\Delta\left(v^{\mathscr{P}} w_{\mu}\right)=\mathrm{C}_{\alpha}^{\rho} \mathrm{B}_{\mu}^{3} \Delta\left(\bar{v}^{\alpha} \overline{w_{\beta}}\right),
$$

and from $\Delta v^{\prime}=\mathrm{C}_{\alpha}^{\rho} \Delta \overline{v^{\alpha}}$ and $\Delta w_{\mu}=\mathrm{B}_{\mu}^{\beta} \Delta \bar{w}_{\beta}$, we have

$$
w_{\mu} \Delta v v^{\rho}+v \rho \Delta w_{\mu}=\mathrm{C}_{\alpha}^{\rho} \mathrm{B}_{\mu}^{\beta}\left(\bar{w}_{\beta} \Delta \bar{v}^{\alpha}+\bar{v}^{\alpha} \Delta \bar{w}_{\beta}\right)=\mathrm{C}_{\alpha}^{\rho} \mathrm{B}_{\mu}^{\beta} \Delta\left(\bar{v}^{\alpha} \bar{w}_{\beta}\right),
$$

by the rules for sums and products in the general space. Hence

$$
\begin{equation*}
\Delta\left(\varphi \rho w_{\mu}\right)=\nu \varphi \Delta w_{\mu}+w_{\mu} \Delta v^{\nu} . \tag{12}
\end{equation*}
$$

The same rules apply to contracted products. For example, if $u^{\circ}=v_{\mu}^{\rho} w^{\mu}$, then
and from
and

$$
\Delta_{w}^{\mu}=-\in \mathrm{B}_{\alpha}^{\mu}-\bar{w}^{\mu} \dot{\nabla}_{\beta} \xi^{\alpha} ;
$$

we have
where the first and last terms in the bracket cancel one another, and thus

$$
\Delta v_{\mu}^{\rho} w^{\mu}+v_{\mu .}^{\rho} \Delta w^{\mu}=-\in \mathrm{C}_{\alpha}^{\rho} \mathrm{C}_{\sigma}^{\gamma} v_{\mu}^{\rho} w^{\mu} \dot{\nabla}_{\gamma} \tilde{\sigma}^{\alpha}=-\epsilon \mathrm{C}_{\alpha}^{\rho} u^{\sigma} \dot{\nabla}_{\sigma} \dot{\xi}^{\alpha},
$$

so that

$$
\begin{equation*}
\Delta \|^{\rho}=\Delta\left(v_{\mu}^{\rho} \omega^{\mu}\right)=\Delta v_{\mu .}^{\rho} w^{\mu}+v_{\mu .}^{p} \Delta_{w^{\prime}}{ }^{\mu} \tag{.33}
\end{equation*}
$$

and in the case of vector fields which can be defined in a small neighbourhood $\left(X_{m}\right)_{n}$ of X_{m}, the same result holds for δ.

Let us now consider a contravariant vector field v^{α} of the general space A_{n}. Since at every point of the submanifold the projection factors are defined, the field v^{α} will have components $\bar{v}^{k}=\mathrm{B}_{\alpha}^{k} \nu^{\alpha}$ tangent to \mathbf{A}_{m}. Hence treating $\overline{v^{k}}$ as a vector of the submanifold and remembering the property of the δ operation of leaving the projection factors unaltered, we have for the deformation

$$
\begin{equation*}
\bar{\delta}_{v^{k}}=\mathrm{B}_{\alpha}^{k} \delta \nu^{\alpha} \quad \text { or } \quad \Delta \overline{r^{k}}=\mathrm{B}_{\alpha}^{k} \Delta \nu^{\prime}{ }^{\alpha}, \tag{14}
\end{equation*}
$$

with corresponding results for the submanifold and span components of any tensor field of A_{n}, so that for instance

$$
\begin{equation*}
\delta \bar{v}_{\mu \nu}^{\rho}=\mathrm{C}_{\alpha}^{f} \mathrm{~B}_{\mu \nu}^{\beta \gamma}\left(\delta \nu_{\beta_{\gamma}^{\alpha}}^{\alpha}\right) \quad \text { and } \quad \Delta \bar{\nu}_{\mu \nu}^{\rho}=\mathrm{C}_{\alpha}^{\rho} \mathrm{B}_{\mu \nu}^{\beta \gamma}\left(\Delta \nu_{\beta_{\gamma}}^{\alpha}\right) . \tag{15}
\end{equation*}
$$

Particular cases of this result are [5.11, (i) and (ii)]. Since the torsion tensors corresponding to the various connexion parameters, such as $S_{j \mu \nu}=l_{[\mu \nu]}^{\lambda}$ or $S_{\rho \sigma}^{\pi}=\sigma_{[\rho \sigma]}^{\pi}$ are all obtained from the torsion $S_{\beta_{\gamma}}^{\alpha}=\Gamma_{[\beta \gamma]}^{\alpha}$ by projection, we can apply the deformation operators to them directly, and obtain either
with corresponding results for the other torsion tensors.
 coincide with the corresponding intrinsic tensors $R_{. i \mu \nu}^{k}$ and $R^{\rho}{ }_{.}{ }_{\text {op }}$, . It is still true, however, that

Part II. -- Deformation of the fundamental tensors of the Submanifold.

7. Deformation of the eulehian curvature tensors. - Let us now apply the preceding results to the first tensor of Eulerian curvature $F_{\mu \nu}{ }_{\mu \nu}$. Expressing this in A_{n}-components, we have (on omitting the bar) $F_{\beta \gamma}^{\alpha}=F_{\mu \nu}^{\rho} C_{\rho}^{\alpha} B_{\beta \gamma}^{\mu \nu}$. The $F_{\beta \gamma}^{\alpha}$ is now a tensor field defined only at the points of $\mathrm{A}_{\boldsymbol{m}}$, so that the of operation is not applicable. We can however form the difference

$$
\begin{equation*}
\Delta \mathbf{F}_{\beta \gamma}^{\alpha} \equiv \mathbf{F}_{\beta \gamma}^{\alpha}(x \mid x)-\mathbf{F}_{\beta \gamma}^{\alpha}, \tag{I}
\end{equation*}
$$

where ${ }^{\prime} \mathbf{F}_{\beta_{\gamma}}^{\alpha}=\mathbf{F}_{\mu,}^{\rho}{ }^{\prime} \mathrm{C}_{\rho}^{\alpha \prime} \mathbf{B}_{\beta \gamma}^{\mu \prime \prime}$ is the representative of $\mathbf{F}_{\mu \nu}^{\rho}$ at the new point ' x-expressed in \mathbf{A}_{n}-components. This difference gives

$$
\begin{equation*}
\Delta \mathbf{F}_{\xi \gamma}^{\alpha}=\epsilon\left[\mathbf{F}_{i \gamma}^{\alpha} \dot{\nabla}_{\beta} \xi^{\delta}+-\mathbf{F}_{\beta ; i}^{\alpha} \dot{\nabla}_{\gamma} \xi^{\hat{\alpha}}-\ldots \mathbf{F}_{\beta \gamma}^{\hat{j}} \dot{\nabla}_{\delta} \xi^{\alpha}\right] . \tag{2}
\end{equation*}
$$

We might, however, proceed otherwise in the case of a structure tensor like $F_{\mu \nu}^{\rho}$. Since the ' A_{m} is a submanifold of A_{n}, it will have. a first tensor of Eulerian curvature in A_{n}, which we shall denote by ${ }^{\prime} \mathbf{F}_{\mu \nu}^{\rho}$, where

$$
\begin{equation*}
' \mathbf{F}_{\mu \nu}^{\rho}={ }^{\prime} \mathrm{C}_{\alpha}^{\ell}\left[\partial_{\nu}^{\prime} \mathbf{B}_{\mu}^{\alpha}+\Gamma_{\beta \gamma}^{\alpha}\left({ }^{\prime} x\right)^{\prime} \mathbf{B}_{\mu \nu}^{3 \gamma}\right] . \tag{3}
\end{equation*}
$$

On expansion
so that from

$$
\partial_{\nu} \partial_{\mu} \xi^{\prime x}=\partial_{\nu} \mathrm{B}_{\mu,}^{\dot{\partial}} \partial_{\delta} \xi^{x}+\mathrm{B}_{\mu \nu}^{3 \gamma} \partial_{\gamma} \partial_{\beta} \xi^{x}
$$

we obtain
i. e.

$$
\begin{equation*}
\mathbf{F}_{\mu \nu}^{\rho}=\mathbf{F}_{\mu \nu}^{\rho}+\mathbf{C}_{\alpha}^{\rho} \mathbf{B}_{\mu \nu}^{\beta \gamma} \delta \Gamma_{\beta \gamma \gamma}^{\alpha} . \tag{4}
\end{equation*}
$$

Now this ${ }^{\prime} F_{\mu \nu}^{\rho}$ can be taken as the representative, at the point ' x, of the original $F_{\mu \nu}^{\rho}$ at x. So that, expressed in A_{n}-components, we take ${ }^{\prime} \mathrm{F}_{\mu \nu}{ }^{\prime}{ }^{\prime} \mathrm{C}_{\rho}^{\alpha \prime} \mathrm{B}_{\beta \gamma}^{\mu \nu}$ instead of $\mathbf{F}_{\mu \nu}{ }^{\prime} \mathrm{C}_{\beta}^{\alpha} \mathrm{B}_{\beta_{\gamma}}^{\nu \nu}$ as the term of comparison, and thus obtain what we call the total structural deformation

$$
\begin{equation*}
\mathrm{DF}_{\beta \gamma}^{\alpha} \equiv \mathrm{F}_{\beta \gamma \gamma}^{\alpha}\left(x \|^{\prime} x\right)-\mathbf{F}_{\mu \nu}^{\rho}{ }^{\prime} \mathrm{C}_{\rho}^{\alpha} \mathbf{B}_{3 \gamma}^{\mu \nu}=\Delta \mathrm{F}_{\beta \gamma}^{\alpha}-\mathrm{C}_{\grave{\delta}}^{\alpha} \mathrm{B}_{\beta \gamma}^{n \xi}\left(\partial \Gamma_{\eta \xi}^{\delta}\right) . \tag{5}
\end{equation*}
$$

We shall now prove that this expression for $\mathrm{DF}_{\beta \gamma}^{\alpha}$ is equal to what Schouten (1928, p. 211 , form. III) calls $\delta \mathrm{H}_{3}{ }_{\gamma}^{\alpha}$ provided we assume (i) that A_{n} is a Riemann space V_{n}, and (ii) that in A_{m} (i. e. V_{m}) the pseudo-normals (or span base-vectors), are all perpendicular to the tangential base vectors.

It follows from (i) that, on replacing $R_{\beta \beta \gamma o \gamma}^{\alpha}$ for the V_{n} by $K_{. \beta \gamma o ̀}^{\alpha}$,

$$
\delta \mathbf{\Gamma}_{\beta \gamma}^{\alpha}=\boldsymbol{\nabla}_{\gamma} \boldsymbol{\nabla}_{\boldsymbol{\beta}} \xi^{\alpha}+\mathbf{K}_{. \beta \gamma \delta}^{\alpha} \xi^{\delta}
$$

and from (ii) that $\mathrm{B}_{\alpha}^{\eta} \mathrm{C}_{\dot{j}}^{\sim} a_{r_{i}^{\prime}}=0$, so that the δ operation applied to this gives

$$
\begin{equation*}
B_{\alpha}^{\tau} C_{j}^{\prime} \partial a_{\alpha \beta}=0 . \tag{6}
\end{equation*}
$$

Schouten's formula, with the indices changed in accordance with the conventions here adopted, is
and this can be reduced, by re-arranging terms, to

The last three terms can easily be proved to vanish in virtue of (6), so that, since $H_{\beta \gamma}=F_{\beta \gamma}^{\alpha}$, the $\delta H_{\beta \gamma}^{\alpha}=D F_{\beta \gamma}^{\alpha}$.

As we have already pointed out the δ operation is not applicable to tensors of the submanifold, since when the new point ' x is no longer in the submanifold, there is no value defined for the displaced tensor $\mathrm{T}\left({ }^{\prime} x\right)$. When dealing with a structure tensor, however, we can define the displaced tensor $T\left({ }^{\prime} x\right)$ as being the reconstructed tensor at ' x. For the $\mathbf{F}_{\mu \nu}^{\rho}$ for example, this would amount to taking ${ }^{\prime} F_{\mu \nu}^{\rho}$ as being $F_{\mu \nu}^{\rho}\left({ }^{\prime} x\right)$ and since the representative (i. e. the tensor with identical components in the u-frame) of $F_{\mu \nu}^{\rho}$ at ' x is $F_{\mu \nu}^{\rho}$ itself, we can write

$$
\begin{equation*}
\delta \mathbf{F}_{\mu \nu}^{\rho} \equiv \mathbf{F}_{\mu \nu}^{\rho}-\mathbf{F}_{\mu \nu}^{\rho}=\mathrm{C}_{\alpha}^{\rho} \mathrm{B}_{\mu \nu}^{\beta \gamma}\left(\partial \mathbf{I}_{\beta \gamma}^{\alpha}\right) \tag{7}
\end{equation*}
$$

and similarly

We remark that the o here differs in one fundamental respect from the corresponding symbol for tensors of the general space. Whereas for the general space δ only requires a tensor field for its definition, here the connexion of the space is involved. This extension of the operator δ will, however, be found of use later.

The corresponding Δ and D deformations are measured by the dif-
ference between (i) the projection of the displaced tensor and its representative at ' x; and (ii) the projection of the displaced tensor and the corresponding structure tensor of \mathbf{A}_{m} at ' \boldsymbol{x}. Thus

$$
\begin{equation*}
\Delta \mathrm{F}_{\mu \nu}^{\rho} \equiv \mathrm{F}_{\beta \gamma}^{\alpha}\left(x \|^{\prime} x\right)^{\prime} \mathrm{C}_{\alpha}^{\rho}{ }^{\prime} \mathrm{B}_{\mu \nu}^{\beta \gamma}-\mathrm{F}_{\mu \nu}^{\rho}=\mathrm{C}_{\alpha}^{\rho} \mathrm{B}_{\mu \nu \nu}^{\beta \gamma} \Delta \mathrm{F}_{\beta \gamma}^{\alpha}, \tag{9}
\end{equation*}
$$

(10) $\quad D F_{\mu \nu}^{\rho} \equiv \mathbf{F}_{\beta \gamma}^{\alpha}\left(x \|^{\prime} x\right)-{ }^{\prime} \mathbf{F}_{\mu \nu}^{\rho}=\Delta \mathrm{F}_{\mu \nu}^{\rho}-\mathrm{C}_{\alpha}^{\rho} \mathrm{B}_{\mu \nu}^{\beta \gamma} \partial \mathbf{F}_{\beta \gamma}^{\alpha}=\mathrm{C}_{\alpha}^{\rho} \mathrm{B}_{\mu \nu}^{\beta \gamma} \mathrm{DF}_{\beta \gamma}^{\alpha}$.

Taking now the mixed tensor $F_{\mu \nu}^{\alpha}=F_{\mu \nu}^{\rho} C_{f}^{\alpha}=\partial_{\nu} B_{\mu}^{\alpha}+\Gamma_{\mu \gamma}^{\alpha} B_{\mu \nu}^{\beta \gamma}$, we form the corresponding expression for ${ }^{\prime} \mathrm{A}_{m}$,

The difference ${ }^{\prime} F_{\mu \nu}^{\alpha}-F_{\mu \nu}^{\alpha}$, which coincides with Schouten's expression for $d H_{\mu \nu}^{\mu x}$ (1928, p. 211), is evidently not a tensor. If, however, we take the representative of $F_{\mu \nu}^{\alpha}$ at ${ }^{\prime} x$, namely $F_{\mu \nu}^{\rho}{ }^{\prime} C_{\rho}^{\alpha}$ and form the difference ${ }^{\prime} \mathrm{F}_{\mu \nu}^{\alpha}-\mathrm{F}_{\mu \nu}^{\rho}{ }^{\prime} \mathrm{C}_{\rho}^{\alpha}$, we get a tensor

$$
\begin{equation*}
{ }^{\prime} \mathbf{F}_{\mu \nu}^{\alpha}-\mathbf{F}_{\mu \nu}^{\rho}{ }^{\prime} \mathrm{C}_{\rho}^{\alpha}=\mathbf{B}_{\mu \nu}^{\beta \gamma} \partial \Gamma_{\beta \gamma}^{\alpha}, \tag{12}
\end{equation*}
$$

which we call $\delta \mathrm{F}_{\mu \nu}^{\alpha}$.
We can also define the deformations:

$$
\begin{equation*}
\Delta \mathbf{F}_{\mu \nu}^{\alpha} \equiv \mathbf{F}_{\mu \nu}^{\alpha}\left(x \|^{\prime} x\right)--\mathbf{F}_{\mu \nu}^{\rho} \mathrm{C}^{\alpha}=-\epsilon \mathbf{F}_{\mu,}^{\grave{\delta}} \stackrel{\star}{\nabla}_{\delta} \xi^{\alpha} \tag{t3}
\end{equation*}
$$

(where $\mathrm{F}_{\mu \nu}^{\alpha}$ is transported as a simple contravariant vector of A_{n}), and

$$
\begin{equation*}
\left.\mathrm{DF}_{\mu \nu}^{\alpha} \equiv \mathbf{F}_{\mu \nu}^{\alpha}\left(x \|^{\prime} x\right)-{ }^{\prime} \mathbf{F}_{\mu \nu}^{\alpha}=-\epsilon \mathbf{F}_{\mu \nu}^{\delta} \dot{\mathbf{V}}_{\delta} \xi^{x}-\mathbf{B}_{\mu \nu}^{\beta \gamma}\right\rangle \mathbf{I}_{j \gamma}^{\alpha}=\Delta \mathbf{F}_{\mu \nu}^{\alpha}-\mathbf{B}_{\mu \nu}^{\beta \gamma} \partial \Gamma_{\beta \gamma}^{\alpha} . \tag{14}
\end{equation*}
$$

To extend the δ operator to the tensor $F_{\beta \gamma}^{x}$, which coincides with $H_{\beta \gamma}^{3}\left(=B_{j \gamma}^{\eta \zeta} \nabla_{\eta} B_{p}^{\alpha}\right)$ appearing in the works of Schouten, we remark that we can deal explicitly with this tensor in the form

$$
\begin{equation*}
\mathrm{F}_{\beta \gamma}^{\alpha}=\mathrm{F}_{\mu \nu}^{\rho} \mathrm{C}_{\rho}^{\alpha} \mathrm{B}_{\beta \gamma}^{\mu \nu}=\mathrm{C}_{\delta}^{\alpha} \mathrm{B}_{\gamma}^{\zeta}\left(\partial_{\zeta} \mathrm{B}_{\beta}^{\delta}+\mathbf{\Gamma}_{\eta \xi}^{\delta} \mathrm{B}_{\beta}^{\eta}\right) . \tag{.5}
\end{equation*}
$$

lts representative at ' x will be its simple transform, which is
which coincides with $\mathbf{F}_{\mu \nu}{ }^{\prime} \mathrm{C}_{\rho}^{\alpha \prime} \mathbf{B}_{\beta \gamma}^{\mu \nu}$.
Its structural representative, however, the $\mathrm{F}_{\beta \gamma}^{\alpha}$ reconstructed for ${ }^{\prime} \mathrm{A}_{m}$
at ' x, is

which coincides with ${ }^{\prime} \mathbf{F}_{\mu \nu}{ }^{\prime} \mathrm{C}_{\rho}^{\alpha}{ }^{\alpha} \mathrm{B}_{\beta \gamma}^{\mu \nu}$.
The obvious extension of the operator δ is therefore given by

In a similar manner we can give the corresponding results for the other tensors, such as $G_{\rho v}^{\lambda}, J_{\mu \sigma}^{\rho}$ and $K_{\rho \sigma}^{\lambda}$. We have for instance

In this paper we assume throughout that in A_{m}, the connexion has been obtained by projection, so that

$$
\begin{equation*}
\mathbf{D}_{\mu \nu}^{\dot{\mu}}=0, \quad \mathbf{E}_{\rho k}^{\pi}=0, \quad \dot{H_{\mu \rho}^{\prime}}=0 \quad \text { and } \quad \mathbf{l}_{\rho \sigma}^{\pi}=0 . \tag{20}
\end{equation*}
$$

A straighforward calculation shows however that
so that in general ' $D_{\mu \nu}^{\dot{\mu}}$ is different from zero. This happens becausse the connexion parameters $l_{\mu,}^{\dot{\mu}}$, for ${ }^{\prime} A_{m}$ have not been obtained by projection. It follows that $\Delta D_{\mu \nu}^{\lambda}=0$, but $D . D_{\mu \nu}^{\lambda}=-B_{\alpha \mu \nu}^{\lambda \beta \gamma} \delta \Gamma_{\beta \gamma}^{\alpha}$ is in general not zero. The same remark applies to the tensors $\mathrm{E}_{\rho k}^{\pi}, \mathrm{H}_{\mu \sigma}^{\lambda}$ and $\mathrm{I}_{\rho \sigma}^{\pi}$ with corresponding formulae.
8. If we define $\bar{b}_{\lambda \mu}=b_{\lambda \mu}+\grave{j} b_{i \mu}$, where $\dot{o} b_{\lambda \mu}=\left(\dot{c} a_{\alpha \beta}\right) B_{\gamma \mu}^{\alpha \beta}$ and the corresponding three index symbols $\overline{\bar{l}_{\mu \nu}}=\left\{\begin{array}{l}\bar{\pi} \\ \mu \nu\end{array}\right\}$, then
so that, in order to study the oे operator as applied to tensors occurring in the theory of a V_{m} in a V_{n}, we could, from the point of view of the formal results, disregard the point transformation altogether, and consider the V_{m} (consisting of the same points as V_{m}, but with the
metric parameters $\bar{b}_{i, \mid \mu}$) as immersed in the corresponding \mathbf{V}_{n}. We could then introduce the operator $\bar{\nabla}$, where the $\bar{\nabla}$ would indicate covariant derivation using the barred connexion parameters $\bar{\Gamma}_{\beta \gamma}^{\alpha}, \bar{l}_{\mu \nu}^{\alpha}$, $\bar{\lambda}_{\sigma \mu}^{\rho}$, etc., so that for instance

$$
\begin{aligned}
& \bar{\nabla}_{v} v_{\mu}^{\alpha}=\nabla_{v} v_{\mu}^{\alpha}+\left(\delta \Gamma_{\beta \gamma}^{\alpha}\right) v_{\mu}^{3} \mathrm{~B}_{j}^{\gamma}-\left(\delta l_{\mu v}^{\mu}\right) v_{\lambda}^{\alpha}, \\
& \bar{\nabla}_{v} v_{\rho}^{\mu}=\nabla_{v} v_{\rho}^{\mu}+\left(\delta l_{\lambda \nu}^{\mu}\right) v_{\rho}^{\dot{\lambda}}-\left(\partial \lambda_{\rho v}^{\sigma}\right) v_{\sigma}^{\lambda} .
\end{aligned}
$$

This artifice, of considering a new space with a different set of metric coefficients $\bar{a}_{\alpha \beta}$, has been used by Bortolotti (1928) in his study of minimal submanifolds. It is a particular case of the theory of a point manifold to which has been assigned different metrics, and it has been developed systematically by Levi-Civita (1927, Ch. VIII) and Weitzenböck (1923, p. 352).

These remarks can be extended to general linearly connected spaces, in which the point manifolds are assigned two different sets of connexion parameters instead of two sets of metric parameters. If we calculate the projected connexion parameters and the various structure tensors for an A_{m} in an A_{n}, the differences between the quantities thus obtained and the original ones are equal to what we have already defined as the δ deformation of the quantities in question.

We have for example

$$
\bar{l}_{\mu \nu}^{\lambda}-l_{\mu \nu}^{\lambda}=B_{\alpha}^{\dot{\lambda}} \bar{\nabla}_{\nu} B_{(\mu)}^{\alpha}-B_{\alpha}^{\dot{\alpha}} \nabla_{\nu} B_{(\mu)}^{\alpha}=B_{\alpha \mu \nu}^{\dot{\lambda}, \gamma \gamma} \partial \Gamma_{\beta \gamma}^{\alpha}=\partial l_{\mu \nu}^{\dot{\prime}},
$$

and

$$
\overline{\mathbf{F}}_{\mu \nu}^{\rho}-\mathbf{F}_{\mu \nu}^{\rho}=\mathrm{C}_{\alpha}^{\rho} \nabla_{\nu} \mathrm{B}_{(\mu)}^{\alpha}-\mathrm{C}_{\alpha}^{\rho} \nabla_{\nu} \mathrm{B}_{(\mu)}^{\alpha}=\mathrm{C}_{\alpha}^{\rho} \mathrm{B}_{\mu \nu}^{\xi \gamma}\left(\partial \Gamma_{\beta \gamma}^{\alpha}\right)=\partial \mathbf{F}_{\mu \nu}^{\rho} .
$$

This is also true for the extensions of δ to mixed tensors like $F_{\mu \nu}^{\alpha}$ and $F_{3 \gamma}^{\alpha}$, so that

$$
\begin{aligned}
& \bar{F}_{\mu \nu}^{\alpha}-\mathbf{F}_{\mu \nu}^{\alpha}=\bar{\nabla}_{\nu} B_{(\mu)}^{\alpha}-\nabla_{\nu} B_{\left(\mu_{1}\right.}^{\alpha}=B_{\mu \nu}^{\beta \gamma}\left(\partial \mathbf{F}_{\beta \gamma}^{\alpha}\right),
\end{aligned}
$$

9. Deformation of Ribmannian Curvature Tensors. - To study structure tensors like $R_{. \mu \mu \nu}^{k}$ or $R^{\rho}{ }_{\sigma \mu \nu}$ we can proceed in the following manner. Since they are expressible in terms of $R_{\beta \gamma j}^{a}$ and of the first and second tensors of Eulerian Curvature $\mathrm{F}_{\mu \nu}$ and $\mathrm{G}_{\rho \nu}^{\mu}$ by means of the Gauss and
the Kühne equations, we can reconstruct these tensors at the points of ' A_{m}, and then use the same artifice as we did in the case of $\mathrm{F}_{\mu \nu}^{\prime}$, namely of defining the reconstructed tensor ${ }^{\prime} \mathrm{R}_{i, i \mu,}^{k}$, as being the displaced tensor $\left.\mathbf{R}_{, \ldots \mu \nu}^{k},{ }^{\prime} x\right)$. The representative of $\mathrm{R}_{., \mu \nu}^{k}$, at the points of A_{m} will be the tensor with identical components in the u-coordinates, i.e. $R_{., \mu \nu}^{k}$. Hence we have
(1) $\partial \mathbf{R}_{i, \mu \nu}^{k} \equiv{ }^{\prime} \mathbf{R}_{i, j \mu \nu}^{k}-R_{i, i \mu,}^{k}$

Let us now consider the curvature tensor $\overline{\mathbf{K}_{i, j, k}^{k}}$ (where we introduce
 By definition we have
which, on replacing $\bar{l}_{\alpha \mu}^{k}$ by its value and on putting $\dot{l}_{\mu \nu}^{j}=\epsilon \mathrm{L}_{\mu \nu}^{\dot{\lambda},}$ $\delta \Gamma_{3 \gamma}^{x}=\epsilon \Lambda_{3 y}^{x}$ can be written

$$
\begin{equation*}
\bar{K}_{: i, \mu \nu}^{k}=\mathbf{R}_{: i \mu \nu}^{k}+\epsilon\left[\mathbf{V}_{v} \mathbf{L}_{i, \mu}^{k}-\nabla_{\mu} \mathbf{L}_{\hat{i v}}^{k}+{ }_{2} \mathbf{S}_{\mu \nu}^{\prime} \mathbf{L}_{k, t}^{k}\right] . \tag{3}
\end{equation*}
$$

On observing that $L_{\beta \mu}^{k}=\Lambda_{\beta \gamma \gamma}^{\alpha} B_{\alpha, \mu}^{\alpha \beta \gamma}$ and that $S_{j \mu,}=S_{\beta \gamma}^{\alpha \alpha} B_{\alpha \mu,}^{\beta \beta \gamma}$ we have
and since by Dienes (1932, p. 269)

$$
\begin{equation*}
\nabla_{v} \mathrm{~B}_{x}^{k}=-\mathrm{G}_{x_{y}}^{k}=-\mathrm{C}_{x}^{k} \mathrm{G}_{p_{v}}^{k} \tag{5}
\end{equation*}
$$

the right hand side of (4) can be reduced to the form

so that the right hand side coincides exactly with that of (1), and is therefore $\partial \mathbf{R}_{. \dot{\text { i v }}}^{k}$.

The same procedure applied to the tensor $\mathbf{R}_{\cdot \sigma \mu \nu}^{\rho}$, would give us

The results given in equations (1) and (7) of this article show that for
structure tensors of A_{m} which are connected with the corresponding tensors of the general space by means of the Gauss and Kühne equations, all we have to do is to apply the δ operation to the whole equation, as if it were an ordinary symbol of derivation except that the projection factors are to be regarded as constants with respect to δ. The extension of the operator o to Eulerian Curvature tensors as introduced in Article 7 therefore proves a convenient one.

If we apply the direct deformation method, we have

$$
\begin{align*}
& =B_{\alpha \lambda \mu \nu}^{k \beta \gamma}\left(\Delta \overline{\mathbf{R}}_{. \beta \gamma \hat{o}}^{\alpha}\right), \tag{8}
\end{align*}
$$

and it can be written explicitly in terms of $\mathrm{R}_{. i_{\mu \nu}}^{k}$ itself in the form

Similarly
(io)

$$
\Delta \mathbf{R}_{\sigma \mu \nu}^{f}=\mathrm{C}_{\alpha \sigma}^{f,} \mathrm{~B}_{\mu \nu}^{\gamma \grave{\jmath}} \Delta \overline{\mathrm{R}}_{\cdot \beta \gamma \bar{\gamma}}^{\alpha},
$$

which can be written explicitly as
10. Let us consider the first of the Codazzi equations in the form

In view of our extensions of the operator δ, its application to the right hand side of this equation would give us
(2)

$$
\left(\partial R_{\cdot \beta \gamma \dot{\theta}}^{\alpha}\right) C_{\alpha \alpha}^{\rho} B_{\lambda \mu \nu}^{\beta \gamma \partial}-2\left(S_{\mu \nu}^{j} \dot{k} \partial F_{i, k}^{\rho}+F_{j, k}^{\rho} \partial S_{\mu \nu}^{\mu k}\right) .
$$

In order to prove that the δ applied to the left hand side will lead to the same result, let us remark first that

$$
\begin{equation*}
\nabla_{\nu} \mathrm{F}_{\hat{\alpha} \mu}^{\rho}=\mathrm{C}_{\alpha}^{\rho} \mathrm{B}_{\mu \mu \nu}^{\beta \gamma} \nabla_{\delta}^{\hat{\delta}} \mathrm{F}_{\beta \gamma}^{\alpha}, \tag{3}
\end{equation*}
$$

a fact which can easily be verified. Consequenly, remembering that the δ operator leaves the projection factors unaltered, we have

Further, on applying the formula $(\mathbf{2}, 13)$ for the interchangeability of δ and covariant dérivation, we have

Finally, on putting $\delta \Gamma_{\beta_{\gamma}}^{\alpha}=\epsilon \Lambda_{\beta \gamma}^{\alpha}$ and $\partial F_{\beta \gamma}^{\alpha}=\epsilon\left(\Lambda_{\eta \gamma}^{\delta}\right) C_{b}^{\alpha} B_{\gamma \gamma}^{\gamma}{ }_{\gamma}^{\gamma}$ we get on simplification
 $-\partial l_{i v}^{l} . F_{i \mu}^{p}-\partial l_{\mu \mu}^{i} F_{i v}^{p}-\partial l_{\mu \nu}^{p} F_{k,}^{p}$.

On interchanging μ and ν and subtracting the result from (6), we get
 can be written
the right hand side of which coincides with (2).
We have therefore proved that we can apply the δ operator to both sides of the Codazzi equations just as we have done for the Gauss and the Kühne equations.

It can easily be verified that the expression (2) is equal to $2 \bar{\nabla}_{[y} \bar{F}_{[\mu \mu]}$ where, to first order
and
11. Let us now 'consider the curvature tensor $R_{, ., \mu \nu}^{k}$, for a Riemann space. In this case, since $\mathrm{B}_{\alpha}^{k}=b^{\text {/N }} a_{\alpha \beta} \mathrm{B}_{j}^{\beta}$ we have

$$
\nabla_{\mu} \mathrm{B}_{\alpha}^{k}=b^{\mu \nu} a_{\alpha \beta} \nabla_{\mu} \mathrm{B}_{i}^{3}=b^{\mu \nu} \nu_{\alpha \beta} \mathrm{F} \mathrm{~F}_{, j}^{3}
$$

and since $\nabla_{v} B_{\alpha}^{\lambda}=-G_{a v}^{\lambda}$, we can write

$$
\begin{equation*}
\mathrm{G}_{\alpha \nu}^{\lambda}=-b^{\dot{\lambda}{ }_{\alpha} a_{\alpha \beta} F_{\nu \mu}^{\beta} .} \tag{i}
\end{equation*}
$$

Further, on recalling that a term of the form $F_{\lambda \mu}^{\sigma} G_{\sigma \nu}^{k}$ occurring in the Gauss equation can be written as $F_{k \mu}^{\alpha} G_{\alpha v}^{k}$, and therefore, in virtue of (1) as - $b^{k t} a_{\alpha, 9} F_{i, \mu}^{\alpha} F_{i, j}^{\beta}$ we can write the Gauss equation in the form

On contracting this with $\boldsymbol{b}_{k_{0}}$, and changing indices, we get

$$
\begin{equation*}
\mathbf{R}_{k ; i \mu \nu}=\mathbf{R}_{\alpha \beta \gamma \bar{\delta}} \mathbf{B}_{k i \mu \nu}^{\alpha \beta} \bar{\theta}+a_{\alpha \beta}\left(\mathbf{F}_{i \mu \nu}^{\alpha} \mathbf{F}_{k, y}^{3}-\mathbf{F}_{i, \nu}^{\alpha} \mathbf{F}_{k \mu}^{\beta}\right) . \tag{3}
\end{equation*}
$$

To find the $\delta R_{k i, u,}$ we have only to apply the operator δ to the whole equation (3) as it stands, taking account of the extension of δ to $\mathrm{F}_{;, \mu}^{\alpha}$. This gives
which is equivalent to the expression obtained by Schouten (1928).
We could also have obtained the same result by applying the operator δ to the equation $R_{k \lambda \mu \nu}=R_{\cdot i \mu \nu}^{i} b_{k t}$ giving

$$
\begin{equation*}
\delta \mathbf{R}_{k i \mu \nu}=b_{k t} \delta \mathbf{K}_{;, \mu \nu}^{\prime}+\mathbf{R}_{. j \mu \nu}^{\prime} \partial b_{k t}, \tag{5}
\end{equation*}
$$

where $\delta \mathrm{R}_{i, \dot{\prime},}^{j_{\nu}}$ and $\partial b_{k t}$ are to have values already given for them.
Since the δ operator can be applied to products and contracted products, we can use it directly to obtain the contractions of the $\mathrm{R}_{. i \mathrm{ju},}^{k}$, tensor. Let us take first the so-called Ricci tensor (${ }^{1}$) given by

$$
\begin{equation*}
\mathbf{R}_{i, \nu}=\mathbf{R}_{k i \mu \nu} \nu^{k \mu}=\mathbf{R}_{; i, \mu \nu}^{k} \tag{6}
\end{equation*}
$$

From this we have

$$
\begin{equation*}
\delta \mathbf{R}_{i, v}=\mathbf{R}_{k i, \mu \nu} \delta b^{k \mu}+b^{k \mu} \delta \mathbf{R}_{k i \mu \nu}, \tag{7}
\end{equation*}
$$

so that, on putting in the value of $\delta R_{i / i, \mu \nu}$ from (4), and putting $\delta b^{\mu_{i}}$ in the form

$$
\begin{equation*}
\delta b^{\mu k}=-b^{\mu \mathrm{L}} b^{v k} \mathbf{B}_{v i}^{\alpha \beta} \delta a_{\alpha \beta}, \tag{8}
\end{equation*}
$$

(1) In view of the difference in notation, since $R_{i, j \nu \nu}^{i}$ is $R_{\mu \nu i \lambda}^{k i}$ in Schouten's notation, the corresponding Ricci tensor would appear as R_{y}, with the indices interchanged.
we have

$$
\begin{align*}
& +b^{k \mu} a_{\alpha, 9}\left[F_{k, \mu}^{x} \partial F_{k \nu}^{3}+F_{k y}^{3} \partial F_{k \mu}^{x}-F_{k y}^{\alpha} \partial F_{k \mu}^{3}-F_{k \mu}^{3} \delta F_{k, y}^{\alpha}\right] \tag{9}\\
& -\mathbf{R}_{k i \mu \nu} b^{\mu \nu} b^{k \nu} B_{i v}^{\alpha \beta} \delta a_{\alpha \beta},
\end{align*}
$$

to which Schouten's expression for the corresponding tensor can be reduced.

If on the other hand we take the $\partial R_{i, \mu \nu}^{k}$, as given in $(4,1)$ and contract it with respect to the indices k and μ. we obtain
(10) $\partial R_{i \lambda \mu \nu}^{\mu}=\left(\delta R_{\beta \gamma \hat{\sigma}}^{\alpha}\right) B_{\alpha}^{\gamma} B_{i, \nu}^{3 \bar{j}}-F_{i \mu \nu}^{\sigma} \delta G_{\sigma \nu}^{\mu}-G_{\sigma \nu}^{\mu} \partial F_{i, \mu}^{\sigma}+F_{i, \nu}^{\sigma} \partial G_{\sigma \mu}^{\mu}+G_{\sigma \mu}^{\mu} \partial F_{i \nu}^{\sigma}$
which appears to differ materially from the right hand side of (9). If however, we make systematic use of equation (i) of this article, of the Gauss equation, and of
it is not difficult to prove that the right hand side of (10) does in effect coincide with that of (9). Hence we can write $\delta \mathrm{K}_{i v}$ for $\delta \mathrm{R}_{. j \mu \nu}^{\mu}$ and (10) gives the $\grave{\delta}$ deformation of the Ricci tensor independently of any use of the metric parameters.

If finally ,we wish to determine the deformation of the invariant R of the submanifold for the infinitesimal deformation, we have only to apply the operator δ to the equation

$$
\begin{equation*}
\mathrm{R}=\mathrm{R}_{i v v} b^{i v}, \tag{II}
\end{equation*}
$$

giving

$$
\begin{align*}
\partial \mathrm{R} & =b^{i v} \partial \mathrm{R}_{i v}+\mathrm{R}_{i v} \partial b^{i v} \tag{12}\\
& =b^{i v} \delta \mathrm{R}_{i v v}-b^{i v} b^{v k} \mathrm{~B}_{i k}^{\alpha \beta} \delta a_{\alpha \beta} \cdot \mathrm{R}_{i v},
\end{align*}
$$

where we imagine $\delta R_{i, v}$ replaced by its value from (9).
12. Geodesic and mininal submanifolds. - A submanifold is geodesic when the first tensor of Eulerian Curvature vanishes, i.e. when $F_{\mu,}^{\rho}=0$.

The condition that, as a result of the infinitesimal deformation,
the resulting submanifold ${ }^{\prime} \mathrm{A}_{m}$ should also be geodesic is therefore that

$$
\begin{equation*}
\partial \mathbf{F}_{\mu \nu}^{\rho}=\mathbf{o}, \tag{I}
\end{equation*}
$$

or that
(2)

$$
\left(\partial \mathbf{I}_{\beta \gamma}^{\alpha}\right) \mathrm{C}_{\alpha}^{\rho} \mathrm{B}_{\mu \nu}^{\beta \gamma}=\mathbf{o} .
$$

Since $\mathrm{F}_{\mu \nu}^{\rho}=0$ this can be written at length in the form
which for a Riemann space becomes

$$
\begin{equation*}
C_{\alpha}^{\rho}\left[\nabla_{\nu} \nabla_{\mu \xi^{\alpha}}^{\alpha}+K_{\beta \gamma \gamma \delta}^{\alpha} B_{\mu \nu \xi^{i}}^{\beta \gamma}\right]=0, \tag{4}
\end{equation*}
$$

where $K_{. \beta \gamma \delta}^{\alpha}$ is the expression for $R_{. \beta \gamma o}^{\alpha}$ when the space is $a V_{n}$. This generalization is already given by Schouten (1928, p. 213) for LeviCivita's equations of geodesic deviation.

Let us consider again the minimal submanifolds immersed in a metric space in which autoparallels are lines of extremal length, so that the minimal submanifolds of this space coincide with those of the Riemann space determined by the metric parameters.

The condition for a minimal submanifold is that

$$
\begin{equation*}
b^{\mu \nu} F_{\mu \nu}^{\rho}=o, \tag{5}
\end{equation*}
$$

so that the deformed submanifold is also minimal provided

$$
\begin{equation*}
\mathrm{F}_{\mu \nu}^{\rho} \delta b^{\mu \nu}+b^{\mu \nu} \partial \mathrm{F}_{\mu \nu}^{\rho}=\mathbf{o}, \tag{6}
\end{equation*}
$$

i. e. provided
(7) $b^{\mu \nu} \mathrm{C}_{\alpha}^{\gamma}\left[\nabla_{\nu} \nabla_{\mu} \xi^{\alpha}+\mathrm{R}_{\dot{\beta} \gamma \delta}^{\alpha} \mathrm{B}_{\mu \nu}^{\beta \gamma} \xi^{\hat{o}}+2 \mathrm{~B}_{\mu}^{\beta} \nabla_{\nu}\left(\mathrm{S}_{\dot{\beta} \delta}^{\alpha} \xi^{\hat{\prime}}\right)-2 b^{\mu \mu} b^{\nu \grave{\lambda}} \mathrm{B}_{i ;}^{\alpha \beta} \mathrm{F}_{\mu \nu}^{\rho} \nabla_{\alpha} \xi_{\beta}=0\right.$.

But in this case the relation

$$
\Gamma_{\beta \gamma}^{\alpha}=\{\stackrel{\alpha}{\beta \gamma}\}+S_{\beta \beta \gamma}^{\alpha}-a^{\alpha \delta}\left(S_{\beta \gamma \delta}+S_{\beta \delta \gamma}\right),
$$

between the connexion parameters and the three-index symbols of Christoffel takes the simple form

$$
\begin{equation*}
\boldsymbol{\Gamma}_{\beta \gamma}^{\alpha}=\left\{\left\{_{\beta \gamma}^{\alpha}\right\}+\mathbf{S}_{\ddot{\beta}_{\gamma}^{\alpha}}^{\alpha},\right. \tag{8}
\end{equation*}
$$

and consequently
so that using (8) and (9) and replacing covariant derivation with $\Gamma_{\beta_{\gamma}}^{\alpha}$ as connexion parameters by derivation with $\left\{\begin{array}{l}\alpha \\ \beta \gamma \gamma\end{array}\right\}$ as parameters, we get the equation which Bortolotti (1928, p. 176, form. 95) has given for the Riemann case.

Part III - Tangential and "Span" Deformations.
13. From this point onwards we shall consider the two special cases in which the infinitesimal displacement $\epsilon \xi^{\alpha}(u)$ undergone by the points of the submanifold, is either definitely in the tangent plane to A_{m} at every point, or else in the pseudo-normal "plane» (which can in our terminology be described as being «in the span»). In the case of a tangential deformation, where ξ^{α} can be written in the form $B_{\lambda}^{\alpha} \eta^{\lambda}$, since the new point P^{\prime} will now be in the tangent plane of A_{m} at P, it will also, to first order terms in ϵ, be in the A_{m} itself. Hence P^{\prime} will have coordinates in the u-system, and, from the point of view of the submanifold, we could regard the infinitesimal displacement as producing an intrinsic deformation of the A_{m}, expressed by

$$
\begin{equation*}
\prime^{\prime}=u^{i}+\epsilon n^{k} . \tag{1}
\end{equation*}
$$

The fundamental tensors of A_{m} (considered independently of the surrounding space A_{n}) will undergo changes due to the transformation (1), corresponding to the changes undergone by the fundamental tensors of $\mathbf{A}_{\boldsymbol{n}}$ due to an infinitesimal transformation (${ }^{\prime} \boldsymbol{x}^{\alpha}=\boldsymbol{x}^{\alpha}+\boldsymbol{\xi} \epsilon^{\alpha}$) of the $\mathrm{A}_{\boldsymbol{n}}$.

When, however, the tensors (or more precisely the tensor fields) of the submanifold are related to those of A_{n} by laws, such as projection (in the case of the metric and the torsion tensors) or the Gauss and Kühne equations (in the case of the curvature tensors), then there is usually a discrepancy between the results obtained by considering the tensors of $\mathbf{A}_{\boldsymbol{m}}$ as undergoing an intrinsic deformation determined by (1), - and those obtained by finding the particular form
taken by the results of the preceding articles on putting $\xi^{\alpha}=B_{\lambda}^{\alpha} \eta^{i}$.
We shall now consider this discrepancy, denoting by δ_{s} the symbol corresponding to the intrinsic deformation which a fundamental tensor of A_{m} would undergo in virtue of the transformation (1).

We shall also obtain the results of the preceding sections in the case where ξ^{α} is in the span, i. e. where $\xi^{\alpha}=C_{\rho}^{\alpha} \zeta^{\rho}$. We cannot in this case introduce an intrinsic point deformation corresponding to (1), although certain results have a form suggesting the use of an operation δ_{n} for the «span» deformation corresponding to δ_{s} for the tangential deformation.

When dealing with a V_{m} in a V_{n}, we shall also see that a constant infinitesimal displacement in a direction normal to V_{m}, will produce in the metric tensor of V_{m} a deformation which is expressible in terms of the second fundamental form of a V_{m} in a V_{n}.
14. Tangential deformations for vectors of A_{m} and of A_{m}^{p}. - We have proved in Art. 6 that when we have a tensor field such as $v_{\beta \gamma}^{\alpha}$ in A_{n}, the deformations of its \mathbf{A}_{m} - and \mathbf{A}_{m}^{p} - components are given by such formulae as

$$
\begin{equation*}
\delta v_{\mu \nu}^{p}=C_{\alpha}^{f} \mathrm{~B}_{\mu ; \nu}^{\beta \gamma}\left(\delta v_{\beta \gamma}^{\chi}\right) . \tag{1}
\end{equation*}
$$

Now let us consider the particular case where $\xi^{\alpha}=B_{i \cdot}^{\alpha} \cdot r_{i}^{i}$ as applied to the A_{m} components of a contravariant vector field of A_{n}. By (1) we have

$$
\begin{equation*}
\overline{\partial \bar{v}^{k}}=\epsilon\left[\xi^{\delta} \nabla_{\delta} v^{x}-\bar{v}^{\delta} \dot{\nabla}_{\dot{\delta}} \zeta^{x}\right] \mathrm{B}_{\alpha}^{k}=\epsilon\left[r_{1}^{\lambda} \nabla_{\lambda} v^{x}-v^{\delta} \dot{\nabla}_{\delta}\left(\mathbf{B}_{\lambda}^{\alpha} r_{1}^{\lambda}\right)\right] \mathrm{B}_{\alpha}^{k} . \tag{2}
\end{equation*}
$$

On reduction this becomes

$$
\begin{equation*}
\bar{\sigma}^{-}=\epsilon\left[n^{\lambda} \nabla_{i} \bar{v}^{k}-\bar{v}^{\lambda} \dot{\nabla}_{i} \eta^{k}\right]-\epsilon \bar{v}^{\sigma}\left[\dot{\nabla}_{\sigma} n^{k}-\mathrm{G}_{\sigma,}^{k} n^{\lambda}\right] \tag{3}
\end{equation*}
$$

But the expression $\epsilon\left[r_{i}^{\lambda} \nabla_{i} \ddot{v}^{k}-\bar{v}^{\lambda} \dot{\nabla}_{i,} \eta^{k}\right]$ gives the deformation which a vector field of A_{m} of components $\overline{\boldsymbol{v}}_{k}$ would undergo under an infinitesimal transformation (1, 1), and therefore by definition

$$
\begin{equation*}
\delta_{s} \bar{v}^{k}=\epsilon\left[n^{\lambda} \nabla_{i} \bar{\rho}^{\prime k}-\bar{v}^{2} \dot{\nabla}_{;} r_{i}^{k}\right] . \tag{4}
\end{equation*}
$$

Hence we can write (3) in the form

$$
\begin{equation*}
\dot{\partial} \hat{\nu}^{k}=\dot{\partial}_{s} \bar{v}^{k}-\ldots \bar{v}^{\sigma}\left(\dot{\nabla}_{\sigma} r_{1}^{k}-G_{\sigma ;}^{k} r_{1}^{k}\right) . \tag{5}
\end{equation*}
$$

If the field $\boldsymbol{r}^{\boldsymbol{x}}$ of \mathbf{A}_{n} happens to be tangential to $\mathrm{A}_{\boldsymbol{m}}$ at the points of $\mathrm{A}_{\boldsymbol{m}}$, then by definition $\overline{v^{\sigma}}=0$, and we have

$$
\begin{equation*}
\dot{\partial}^{\prime} \cdot \overline{\bar{\alpha}}=\partial_{s} \cdot \sqrt{\bar{x}} . \tag{6}
\end{equation*}
$$

For a covariant vector field v_{α} of A_{n}, the deformation of its \mathbf{A}_{m} components will be

$$
\begin{equation*}
\partial \dot{v}_{k}=\epsilon\left[\dot{\xi}^{i} \nabla_{i} v_{x}+v_{i} \dot{\nabla}_{x} \dot{z}_{i}\right] \mathbf{B}_{k}^{\alpha}, \tag{7}
\end{equation*}
$$

and this can be reduced to the form

$$
\begin{equation*}
\overline{\partial r}_{k}=\in\left[r_{1}^{\lambda} \nabla_{i} \bar{v}_{k}+r_{i} \dot{\nabla}_{x} z_{i}^{i}\right] B_{k}^{\alpha} \tag{8}
\end{equation*}
$$

so that
(9)

$$
\overline{\partial s}_{k}=\bar{\partial}_{s} \bar{s}_{k}
$$

We remark that in this case there is no discrepancy between the deformation of $\bar{\gamma}_{i}$ treated as a covariant vector field of A_{m} under the transformation (1.1), and the corresponding deformation obtained by taking $\xi^{\alpha}=B_{i,}^{\alpha} r_{1}^{i}$ in the general result. We notice that this is true whether \boldsymbol{v}_{α} is tangential to A_{m} or not, since $\overline{\boldsymbol{\gamma}}_{\sigma}$ does not enter into the result.

Treating the span components in the same way, we have

and applying the formula

$$
\begin{equation*}
\dot{\nabla}_{\delta} \mathrm{C}_{\alpha}^{\rho}=-\dot{\mathrm{F}}_{\alpha \dot{ }}^{\rho}-\stackrel{\rightharpoonup}{\mathrm{J}}_{\dot{\alpha} \delta \delta}^{\rho}, \tag{ii}
\end{equation*}
$$

we get
so that no tangential components of v^{α} appear.

For the covariant components, however, we have the result

$$
\begin{equation*}
\dot{b}_{\rho}=\epsilon\left[r_{i}^{\lambda} \bar{\Gamma}_{i} \bar{v}_{\rho}+n^{\lambda} \bar{v}_{\sigma} \dot{J}_{i, \rho}^{\sigma}+\bar{v}_{\mu}\left(\dot{\nabla}_{\rho} n^{\mu}-G_{\rho \lambda}^{\mu} n^{\lambda}\right)\right], \tag{.3}
\end{equation*}
$$

which, when $\bar{r}_{\mu}=o$, reduces to
an expression similar to (12) obtained for contravariant components.
15. Span deformations for vectors of A_{m} and of A_{m}^{m}. - We quote the corresponding results for the case in which $\xi^{\alpha}=\mathrm{C}_{6}^{\alpha} \xi^{p}$. We have

$$
\begin{align*}
& \overline{\partial r}^{-k}=\epsilon\left[\zeta^{\sigma} \nabla_{\sigma} \bar{v}^{k}-\zeta_{\sigma}^{\sigma} \bar{\sigma}^{-\mu} \dot{\mathrm{G}}_{\sigma \mu}^{k}\right], \tag{I}\\
& \vec{\partial}_{k}=\epsilon\left[\zeta^{\sigma} \Gamma_{\sigma} \bar{r}_{k}+\zeta^{\sigma} \bar{\sigma}_{\mu}^{\mu} \dot{\sigma}_{\tilde{j}}^{\mu}\right]+\epsilon \bar{v}_{\rho}\left[\dot{\nabla}_{k} \zeta \rho-\mathbf{J}_{\mu \rho}^{\sigma} \zeta^{\rho}\right], \tag{2}
\end{align*}
$$

which, when $\bar{v}_{\rho}=0$, reduces to

$$
\begin{align*}
& \bar{\partial}_{k}=\epsilon\left[\zeta^{\sigma} \nabla_{\sigma} \bar{v}_{k}+\zeta^{\sigma} \bar{\nu}_{\mu} \dot{\mathrm{G}}_{\sigma k}^{\mu}\right], \\
& \left.\bar{\partial}_{\bar{\nu} \varphi}=\epsilon\left[\zeta^{\sigma} \nabla_{\sigma} \overline{\nu^{\rho}}-\bar{\nu}^{\sigma} \stackrel{*}{\nabla}_{\sigma} \zeta^{\rho}\right]-\epsilon \bar{\nu}^{\mu} \mid \stackrel{*}{\nabla}_{\mu} \zeta^{\rho}-\bar{J}_{\mu \sigma} \rho^{\sigma} \zeta^{\sigma}\right],
\end{align*}
$$

which when, $\overline{r^{4}}=0$, reduces to

$$
\begin{align*}
& \bar{\partial} \bar{\nu}^{\rho}=\epsilon\left[\zeta^{\sigma} \nabla_{\sigma} \overline{\nu^{\rho}}-\bar{v}^{\sigma} \bar{\nabla}_{\sigma} \zeta^{\rho}\right], \\
& \dot{\partial}_{\nu_{p}}=\epsilon\left[\zeta^{\sigma} \nabla_{\sigma} \bar{\nu}_{\rho}-\overline{\bar{p}}_{\sigma} \dot{\nabla}_{p} \zeta^{\sigma}\right] . \tag{5}
\end{align*}
$$

On considering (4^{\prime}) and (5) we notice that the forms of the right hand sides correspond exactly to those of $\bar{\delta}_{s} \bar{v}^{k}$ and $\bar{\delta}_{s} \bar{v}_{k}$ for tangential deformations. We can therefore conveniently introduce the notation

$$
\begin{equation*}
\delta_{\delta_{n}} \bar{v}_{\rho}=\epsilon\left[\zeta^{\sigma} \nabla_{\sigma} v_{\rho}-\bar{v}_{\sigma} \stackrel{\rightharpoonup}{\nabla}_{\rho} \zeta^{\sigma}\right] \tag{6}
\end{equation*}
$$

so that (4) and (5) can be written

$$
\begin{equation*}
\bar{\partial}_{\rho}=\delta_{n} \vec{\nu}_{\rho}-\epsilon \bar{v}^{\mu}\left(\dot{\nabla}_{\mu} \zeta^{\rho}-J_{\mu \sigma}^{p} \zeta^{\sigma}\right) ; \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \bar{v}_{\rho}=\delta_{n} \bar{v}_{\rho} . \tag{8}
\end{equation*}
$$

16. Application to the components of any tensor field of \mathbf{A}_{n}. Having dealt with every kind of index that can occur, we can write
down, on the basis of the above results, the expressions for the deformation of any mixed components of a general tensor field of X_{n}. In fact we might use the Aronhold-Clebsch symbols for any components such as
and use the symbolical relationship
so that we can treat each index as corresponding to an "ideal factor».
We can accordingly write down immediatly, for tangential deformations

$$
\begin{gather*}
\partial b_{\mu \nu}=\hat{o}_{s} b_{\mu \nu}, \tag{3}\\
\partial S_{\mu \nu i}=\delta_{s} S_{\mu \nu \lambda,} \tag{4}\\
\partial \overline{\mathbf{R}}_{k ; \mu \nu}=\delta_{s} \overline{\mathbf{R}}_{k \lambda \mu \nu} . \tag{5}
\end{gather*}
$$

Further, in the case of the metric tensor $b^{\mu \nu \nu}$, we have

But if in this case the span vectors $\mathrm{C}_{(\mathrm{p})}^{\alpha}$ have been determined as being orthogonal to the $B_{(\hat{1})}^{\alpha}$, we have $b^{\mu \sigma}=A^{\alpha \beta} B_{\alpha}^{\mu} C_{\beta}^{\sigma}=0$ so that we have

$$
\delta b^{\mu \nu}=\grave{\partial}_{s} b^{\mu \nu} .
$$

This result for contravariant indices is however a special property of the metric tensor only. In general, mixed tensor components have forms as follow

$$
\begin{align*}
& \delta S_{u \nu}{ }^{\lambda}=\delta_{s} S_{\mu \nu}{ }^{\prime \lambda}-\epsilon \bar{S}_{\mu \nu}{ }^{\sigma}\left(\stackrel{*}{\nabla}_{\sigma} r_{i}^{\lambda}-G_{\sigma k}^{\dot{\lambda}} \eta^{k}\right), \tag{7}\\
& \delta \overline{\mathbf{R}}_{\cdot \lambda \mu \nu}^{k}=\delta_{s} \overline{\mathbf{R}}_{\cdot \lambda \mu \nu}^{k}-\epsilon \overline{\mathbf{R}}_{. \lambda \mu \nu}^{\sigma}\left(\stackrel{\nabla}{\nabla}_{\sigma} \eta^{k}-\mathrm{G}_{\sigma t}^{k} \eta^{\prime}\right), \tag{8}
\end{align*}
$$

And for Span deformations, we have

$$
\begin{equation*}
\delta b_{\mu \nu}=\epsilon\left[\zeta^{\sigma} \nabla_{\sigma} b_{\mu \nu}+-\zeta^{\sigma}\left(b_{c \nu} \stackrel{\star}{\dot{G}}_{\sigma \mu}^{l}+b_{\mu!} \stackrel{*}{\dot{G}}_{\sigma v}^{l}\right)\right] . \tag{10}
\end{equation*}
$$

But $\nabla_{\sigma} b_{\mu \nu}=\nabla_{\sigma}\left(a_{\alpha \beta} B_{\mu \nu}^{\alpha \beta}\right)$, and if we are dealing with a metric space, this gives
(II)

$$
\nabla_{\sigma} b_{\mu \nu}=a_{\alpha \beta}\left(B_{\mu}^{\alpha} J_{\nu \sigma}^{\beta}+B_{v}^{\alpha} \mathrm{J}_{\mu \sigma}^{\beta}\right)
$$

But $J_{v \sigma}^{\beta}=C_{\rho}^{\beta} J_{\nu \sigma}$ and hence we have $\nabla_{\sigma} b_{\mu \nu}=0$, giving

$$
\delta b_{\mu \nu}=\epsilon\left[\zeta^{\sigma}\left(b_{l v} \stackrel{\star}{\mathrm{G}}_{\sigma \mu}^{*}+b_{\mu l}^{*} \stackrel{\star}{\mathrm{G}}_{\sigma v}^{*}\right)\right] .
$$

If we are dealing with a Riemann Geometry, this reduces to

$$
\partial b_{\mu \nu}=\epsilon \zeta^{\sigma}\left(b_{t \nu} G_{\sigma \mu}+b_{\mu \iota} \mathrm{G}_{\sigma v}^{;}\right)
$$

so that, on expressing ζ^{σ} in A_{n} components, and using the relation (11.1) we get

$$
\delta b_{\mu \nu}=-2 \in \xi^{x} a_{\alpha \beta} F_{\mu \nu}^{\beta}=-2 \in \zeta \rho a_{\alpha \beta} \mathrm{C}_{\rho}^{\alpha} \mathrm{F}_{\mu \nu}^{\beta}
$$

Now $\left(\partial b_{\mu \nu}\right) d u^{\mu} d u^{\nu}=^{\prime} d s^{2}-d s^{2}$ and if we take ζ° to be contant, and call $\epsilon \zeta^{\prime}=h^{(\rho)}$ say, then we can write (${ }^{1}$)

$$
\frac{\prime d s^{2}-d s^{2}}{-2 h^{(\rho)}}=\mathrm{F}_{\mu \nu}^{\rho} d u^{\mu} d u^{\nu}
$$

Returning now to the general case, we have the following results for other tensors

$$
\begin{align*}
& \grave{\partial} b^{\mu \nu}=\epsilon \zeta^{\sigma}\left[\nabla_{\sigma} b^{\mu \nu}-\left(b^{\mu \stackrel{1}{\mathrm{G}}} \stackrel{\star}{\sigma}_{\nu}^{\nu}+b^{\nu \nu} \stackrel{\star}{\mathrm{G}}_{\sigma_{\imath}}^{\mu}\right)\right], \tag{12}
\end{align*}
$$

$$
\begin{aligned}
& \left.+\overline{\mathrm{S}}_{\dot{\sigma}, ~}{ }^{k}\left(\dot{\nabla}_{\mu \mu} \zeta^{\sigma}-\mathbf{J}_{\mu \rho}^{\sigma} \zeta^{\rho}\right)+\overline{\mathrm{S}}_{\mu \dot{\mu}}{ }^{k}\left(\stackrel{\star}{\boldsymbol{\nabla}}_{\nu} \zeta^{\sigma}-\mathrm{J}_{v \rho}^{\sigma} \zeta^{\rho}\right)\right],
\end{aligned}
$$

$$
\begin{aligned}
& +\overline{\mathbf{R}}_{\cdot \lambda \sigma \nu}^{k}\left(\stackrel{*}{\nabla}_{\mu} \zeta^{\sigma}-\mathrm{J}_{\mu \rho}^{\sigma} \zeta^{\rho}\right) \\
& \left.+\overline{\mathbf{R}}_{\cdot \lambda \mu \sigma}^{k}\left(\dot{\vec{\nabla}}_{\nu} \zeta^{\sigma}-\mathbf{J}_{v \rho}^{\sigma} \zeta^{\rho}\right)+\overline{\mathbf{R}}_{\cdot \sigma \mu \nu}^{k}\left(\stackrel{*}{\nabla}_{\lambda, \zeta^{\sigma}}-\mathbf{J}_{\lambda \rho}^{\sigma} \zeta^{\rho}\right)\right]
\end{aligned}
$$

${ }^{(1)}$ This equation appears in Bompiani (199.1, p. if32) in the form

$$
\frac{\bar{d} s^{s}-d s^{*}}{-2 h}=\omega_{r s}^{(h} d u^{r} d u^{s}
$$

and the quadratic form appearing on the right hand side is called by him « th second fundamental form of the submanifold V_{m} relative to the normal ξ_{h} ".
and

$$
\begin{align*}
& \delta \overline{\mathbf{R}}^{\rho}{ }_{\sigma \mu \nu}=\epsilon\left[\zeta^{\pi} \boldsymbol{\nabla}_{\pi} \overline{\mathbf{R}}^{\rho}{ }_{\sigma \mu \nu}+\overline{\mathbf{R}}_{\cdot \pi \mu \nu}^{\rho}, \dot{\mathbf{V}}_{\sigma} \zeta^{\pi}-\overline{\mathbf{R}}_{\cdot \sigma \mu,}^{\pi}, \dot{\mathbf{V}}_{\pi} \xi^{\rho}\right. \tag{15}
\end{align*}
$$

17. Deformation of the connexion in a Tangential deformation. - In order to obtain the particular forms taken by $\partial l_{\mu,}^{\lambda}, \delta \lambda_{\sigma v}^{\rho}, \partial F_{\mu \nu}^{\rho}, \partial G_{\rho v}^{\lambda}$ for tangential deformations, we must first of all consider the form taken by $\delta \Gamma_{\beta \gamma}^{\alpha}$ when $\xi^{x}=B_{s}^{\alpha} r^{\prime}$. Considering first of all the term $\nabla_{\alpha} \dot{\nabla}_{\beta} \xi^{\alpha}$ occurring in the expression for $\partial \Gamma_{\beta \gamma}^{\alpha}$ we have

$$
\dot{\nabla}_{\beta} \xi^{\alpha}=\stackrel{\rightharpoonup}{\nabla}_{\beta}\left(B_{t}^{\alpha} n^{\prime}\right)=n^{\bullet} \dot{\nabla}_{\beta} B_{i}^{\alpha}+B_{t}^{\alpha} \dot{\nabla}_{\beta} n^{\prime}=n^{2}\left(\dot{F}_{j}^{\alpha}+\dot{J}_{t ;}^{\alpha}\right)+B^{\alpha} \dot{\nabla}_{\beta} n^{\prime} .
$$

Forming the ordinary covariant derivation of this, we have

Now

$$
\begin{equation*}
\delta l_{\mu \nu}^{\lambda}=\mathbf{B}_{\alpha \mu \nu}^{\lambda \beta \gamma}\left(\partial \Gamma_{\beta \gamma}^{\alpha}\right)=\mathbf{B}_{\alpha \mu \nu}^{\lambda \beta \gamma}\left(\boldsymbol{\nabla}_{\gamma} \dot{\nabla}_{\beta} \xi^{\alpha}+\mathrm{R}_{\cdot \beta \gamma \gamma}^{\alpha} \xi^{\dot{i}}\right), \tag{i}
\end{equation*}
$$

so treating the two terms separately, we have from (i),

$$
B_{\alpha \mu \nu}^{\lambda \beta \gamma}\left(\nabla_{\gamma} \dot{\nabla}_{\beta} \xi^{x}\right)=n^{\prime} B_{\alpha, 1}^{\lambda \beta} \nabla_{v}\left(\dot{F}_{i \beta}^{\alpha}+{ }_{i \beta}^{*}\right)+B_{\mu \nu}^{\beta \gamma} \nabla_{\gamma} \dot{\nabla}_{B} \eta^{i}
$$

where

$$
\mathbf{B}_{\alpha \mu}^{\lambda \beta} \nabla_{v} \dot{F}_{t \beta}^{\alpha}=\mathbf{B}_{\alpha}^{\lambda} \nabla_{v} \dot{F}_{i \mu}^{\alpha}=-\dot{\mathbf{F}}_{t \mu}^{\alpha} \nabla_{v} \mathbf{B}_{\alpha}^{\lambda}=+\dot{\mathbf{F}}_{i \mu}^{f} \mathrm{G}_{\rho v}^{\dot{\prime}}
$$

and

$$
\mathbf{B}_{\alpha \mu}^{\lambda \beta} \nabla_{v} \mathbf{j}_{t \beta}^{\alpha}=\mathbf{o} .
$$

Using again the relation

$$
\mathbf{B}_{\mu \nu}^{\beta \gamma} \nabla_{\gamma} \dot{\nabla}_{\beta} \eta^{\lambda}=\nabla_{\nu} \dot{\nabla}_{\mu} n^{\lambda}-\mathbf{F}_{\mu \nu}^{\rho} \dot{\nabla}_{\rho} n^{\lambda}
$$

and applying the Gauss equation to the term involving $\mathrm{R}_{\cdot \beta y^{\prime},}^{\alpha}$ we have finally

$$
\begin{equation*}
\delta l_{\mu \nu}^{\lambda}=\epsilon\left(\nabla_{v} \dot{\nabla}_{\mu} \eta^{\lambda}+\mathbf{R}_{\cdot \mu \nu 1}^{\lambda} \eta^{\prime}\right)-\epsilon \mathbf{F}_{\mu \nu}^{\rho}\left(\stackrel{\star}{\nabla}_{\rho} \eta^{\lambda}-G_{\rho r}^{\lambda} \eta^{\prime}\right) . \tag{2}
\end{equation*}
$$

But the expression in the first bracket is evidently the intrinsic deformation which would be undergone by $l_{\mu \nu}^{\lambda}$ in an infinitesimal

Iransformation (' $u^{i}=u^{i}+\epsilon \eta^{i}$) of the submanifold. Hence we can write

$$
\begin{equation*}
\partial l_{\mu \nu}^{\hat{\mu}_{2}}=\partial_{s} i_{\mu \nu}^{i_{\mu \nu}}-\epsilon \mathrm{F}_{\mu \nu}^{\rho}\left(\dot{\nabla}_{\rho} \cdot n^{\dot{\lambda}}-\mathrm{G}_{\rho_{i}}^{\dot{\lambda}} \cdot n^{\prime}\right) . \tag{3}
\end{equation*}
$$

For
(ii)

$$
\delta \lambda_{\rho v}^{\rho}=C_{\alpha \sigma}^{\rho \beta} \mathrm{H}_{v}^{\gamma}\left(\partial \mathbf{I}_{\beta \gamma}^{\alpha}\right)
$$

using (1), we have
where

$$
\mathrm{C}_{\alpha \sigma}^{\rho \beta} \nabla_{v} \stackrel{\mathrm{~F}}{t \beta}_{\alpha}^{\alpha}=\mathrm{C}_{\sigma}^{\beta} \nabla_{v} \stackrel{\rightharpoonup}{\mathrm{~F}}_{i \beta}^{\rho}=-\stackrel{\star}{\mathrm{F}}_{i,}^{\rho} \mathrm{G}_{\sigma v}^{\dot{\lambda}}
$$

and

Using again the Kühne equation for the term involving $R_{.}^{\alpha}{ }_{\beta \gamma \text { ò }}$ we have finally

Treating the deformations of the tensors of Eulerian Curvature in the same way, the

$$
\delta F_{\mu \nu}^{\rho}=C_{\alpha}^{\rho} B_{\mu \nu}^{3 \gamma}\left(\partial \Gamma_{3 \gamma}^{\alpha}\right)
$$

on using (1), gives
where

$$
\mathrm{C}_{\alpha}^{\epsilon} \mathrm{B}_{\mu \nu}^{3} \nabla_{\nu} \dot{\mathrm{F}}_{t ;\}}^{x}=\mathrm{B}_{j \mu}^{3} \nabla_{\nu} \dot{\mathrm{F}}_{i ;}^{\rho}=\nabla_{\nu} \dot{\mathrm{F}}_{i \mu}^{\rho} ;
$$

and

On applying the Codazzi equation to the term $\overline{\mathbf{R}}_{\text {. }}^{\rho}{ }$, we have

$$
\overline{\mathrm{R}} \rho_{\mu \nu}=\nabla_{t} \mathrm{~F}_{\mu \nu}^{\rho}-\nabla_{\nu} \mathrm{F}_{\mu \mathrm{l}}^{\rho}+{ }_{2} \mathrm{~F}_{\mu, 2}^{\rho} \mathrm{S}_{v_{i}}^{\lambda},
$$

so that on reduction, we have

$$
\begin{equation*}
\delta F_{\mu \nu}^{\rho}=\epsilon\left[n^{\prime} \nabla_{t} F_{\mu \nu}^{\rho}+F_{i \nu}^{\rho} \stackrel{\star}{\nabla}_{\mu} n^{l}+F_{\mu,}^{\rho} \dot{\nabla}_{\nu} r_{1}^{l}-n_{l}^{l} \mathbf{F}_{\mu \nu}^{\sigma} \hat{J}_{i \sigma}^{\rho}\right] . \tag{5}
\end{equation*}
$$

Now if A_{m} is a totally geodesic subspace of A_{n}, then $F_{j,}=0$ over the subspace. We can therefore conclude from (5) that for a tangential deformation, a totally geodesic subspace is deformed into a totally geodesic subspace.

Finally we have

$$
\delta G_{\hat{\gamma} \gamma}^{\dot{\lambda}}=B_{\alpha}^{\dot{\lambda}} C_{p}^{\beta} B_{\gamma}^{\gamma}\left(\partial \Gamma_{\beta \gamma \gamma}^{\alpha}\right)
$$

which, on using (I) gives
where

$$
\begin{aligned}
& B_{\alpha}^{\dot{\alpha}} \mathrm{C}_{\hat{j}}^{3} \boldsymbol{V}_{\nu} \dot{\mathrm{F}}_{6}^{x}=0 ;
\end{aligned}
$$

and

$$
C_{p}^{\beta} B_{Y}^{\gamma} \Gamma_{\gamma} \dot{\nabla}_{\beta} r_{i}^{i}=\Gamma_{r}, \dot{r}_{i}, r_{i}^{i} \quad\left(i, \dot{r}_{r}, r_{i}^{\prime}\right.
$$

Finally, applying the Codazzi equation to the term $\mathrm{K}_{\text {. }}$. we have
18. Deformation of the connexion in a span deformation. - In this case

$$
\xi^{x}=C_{9}^{\alpha} \xi^{\pi}
$$

so that
and hence
and so

But

$$
\mathbf{B}_{\alpha \mu}^{i \beta} \nabla_{v} \dot{\mathrm{G}}_{\sigma \beta}^{\alpha}=\nabla_{v} \dot{\mathrm{G}}_{\sigma \mu}^{\dot{\alpha}} \quad \text { and } \quad \mathbf{B}_{\alpha \mu}^{\dot{\alpha} \beta} \nabla_{v} \dot{\mathrm{~K}}_{\sigma \beta}^{\alpha}=-\dot{\mathrm{K}}_{\sigma \rho}^{\dot{\alpha}} \mathbf{F}_{\mu \nu}^{\beta}
$$

giving

Similarly we have
which can be reduced, in virtue of

$$
\begin{aligned}
& \mathrm{C}_{\sigma}^{\beta} \mathrm{B}_{\gamma}^{\gamma} \dot{\nabla}_{\gamma} \nabla_{\beta} \zeta^{\rho}=\nabla_{.} \stackrel{\star}{\nabla}_{\sigma} \zeta^{\rho}-\mathrm{G}_{\sigma,}^{\mu} \stackrel{\star}{\nabla}_{\mu} \zeta^{\rho}, \\
& \mathrm{C}_{\alpha \sigma}^{\rho \beta} \nabla_{\nu} \stackrel{G}{G}_{\pi \beta}^{\alpha}=0 \quad \text { and } \quad \mathrm{C}_{\alpha \sigma}^{\rho \beta} \nabla_{\nu} \stackrel{\rightharpoonup}{\mathrm{K}}_{\pi \beta}^{\alpha}=\dot{\mathbf{K}}_{\pi \beta}^{\mu} \mathrm{F}_{\mu \nu}^{\rho},
\end{aligned}
$$

to

$$
\begin{equation*}
\delta \lambda_{\sigma \nu}^{\rho}=\epsilon\left[\nabla_{\nu} \dot{\nabla}_{\sigma} \zeta^{\rho}-\mathrm{G}_{\sigma,}^{\mu} \dot{\nabla} \zeta_{\rho}^{\rho}+\zeta^{\pi} \hat{K}_{\pi \rho}^{\mu} \mathrm{F}_{\mu, \nu}^{\rho}+\overline{\mathrm{K}} \rho_{\sigma \nu \pi}^{\rho} \zeta^{\pi}\right] . \tag{3}
\end{equation*}
$$

We quote the corresponding results for the two tensors of Eulerian Curvature

$$
\begin{align*}
& \delta \mathbf{F}_{\mu \nu}^{\rho}=\epsilon\left[\nabla_{\nu} \stackrel{\star}{\nabla}_{\mu} \zeta^{\rho}-\mathbf{F}_{\mu \nu}^{\sigma} \stackrel{*}{\nabla}_{\sigma} \zeta^{\rho}+\zeta^{\sigma} \mathbf{F}_{\rho,}^{\rho} \mathbf{G}_{\sigma \mu}^{\prime}+\overline{\mathbf{R}}_{\rho}^{\rho}{ }_{\mu \nu \sigma} \zeta^{\sigma}\right] . \tag{4}
\end{align*}
$$

19. Deformation of the Riemannian Curvature Tensors for Tangential and Span depormations. - Let us first consider the chianges in the tensors $R_{.{ }_{\lambda \mu \nu}^{\prime}}^{i}$ and $R_{\cdot}^{\rho}{ }_{\sigma \mu \nu}$ for the case $\xi^{\alpha}=B_{\imath}^{\alpha} \eta_{1}^{\prime}$. We have the general result

where the complete expression for $\delta \breve{\mathbf{R}}_{.}^{k}{ }_{\lambda \mu \nu}$ for a tangential deformation is

If we insert this value of $\delta \overline{\mathbf{R}}_{\cdot \lambda \mu \nu}^{k}$ in (1), and apply the Gauss equation to each term, afterwards inserting the values of $\delta \mathrm{F}_{\lambda \mu}^{\sigma}$ and $\delta \mathrm{G}_{\sigma,}^{k}$, we have, on putting for brevity

$$
\begin{equation*}
\mathbf{Y}_{\sigma}^{k}=\stackrel{\rightharpoonup}{\Gamma}_{\sigma} n^{k}-\mathbf{G}_{\sigma:}^{k} n^{l} \tag{3}
\end{equation*}
$$

that

$$
-\epsilon \overline{\mathbf{R}}_{\lambda}^{\sigma}{ }_{\lambda \mu \nu} \mathbf{Y}_{\sigma}^{k}+\epsilon\left[\mathbf{F}_{\lambda \nu}^{\sigma} \boldsymbol{\nabla}_{\mu} \mathbf{Y}_{\sigma}^{k}-\mathbf{F}_{\gamma_{\mu}}^{\sigma} \boldsymbol{\nabla}_{, \nu} \mathbf{Y}_{\sigma}^{k}\right] .
$$

But the expression inside the first bracket is evidently $\partial_{s} R_{i, 1, \mu,}^{k}$, and hence, on applying the Codazzi equation to the term involving $\overline{\mathbf{R}}_{. ; \mu,}^{\sigma}$, we have finally

This result could also have been obtained by the following method. We have from
and
so that, on using
and substituting in (6), we have the result already given in (5).
For the $\delta R_{{ }_{\sigma}{ }_{\sigma \nu}}$ we have the general result
where $\partial \overline{\mathbf{R}}_{\cdot{ }_{\sigma \mu \nu}}$ is given in (16.9). On inserting their values for $\partial \overline{\mathbf{R}}^{\rho}{ }_{\sigma \mu \mu}$ $\partial \mathrm{F}_{\dot{\prime} \mu}^{\rho}$, $\partial \mathrm{G}_{\sigma}^{\lambda}$, in (8), and applying systematically the Kühne and Codazzi equations, we obtain

 deformations can be obtained in the same way, but in this case the formulae become considerably more complicated than in the case of tangential deformations, and they are not so interesting.

Added in proof. - Since this paper was presented in 1933, a comprehensive treatment of deformation problems has been published by Schouten and van Kampen, «Beiträge zur Theorie der Deformation»" Prac. Mat. Fiz., s. XLI, Warsaw, 1933, p. 1-19.

In that paper the deformed projection factors corresponding to B_{α}^{i} and C_{n}^{α} are not the simple transforms as in this paper and conse-
quently $\delta B_{\alpha}^{\lambda}$ and $\bar{\delta} C_{\alpha}^{\lambda}$ do not vanish. In fact:

$$
\delta \mathrm{B}_{\alpha}^{\grave{\alpha}}=2^{i \mu \mu} \mathrm{~B}_{\mu}^{g} \mathrm{C}_{\alpha}^{\tau} \nabla_{\left(\beta^{(} \varepsilon_{\gamma}\right)}
$$

and

A very convenient consequence of this choice of deformed projection factors is that the connection parameters $\overline{\boldsymbol{T}}_{\mu \nu}$ on ' \mathbf{A}_{m} will be obtained from those of $\mathbf{A}_{\boldsymbol{n}}$ by projection, with

Some formulae in Part ini of the present paper will then take a simpler form, such as (17.3) which becomes

$$
\delta l_{\mu \nu}^{\grave{\mu}}=\delta_{s} \dot{l}_{\mu \nu}
$$

and (19.5), which becomes

$$
\delta R_{\cdot i \mu \nu}^{k}=\delta_{s} R_{\cdot, j \nu \nu}^{k} .
$$

BIBLIOGRAPHY.

1. E. Bompianı. - Studi Sugli Spazi Curvi; la seconda forma fondamentale di una V_{m} in V_{n} (Atti Instit. Veneto, 80, 1920-1921, p. iti3-1145).
2. E. Bortolotri. - (i) Varieta minime infinitamente vicine in una V_{n} riemanniana (Mem. Accad. Scienze Bologna, ser. 8, t. V, 1927-1928, p. 43-48).
(ii) Scostamento geodetico e sue generalizzazioni (Giornale di Matematiche, 66, 1928, p.152-191).
(iii) Sulle varieta subordinate (Rend. Reale Instit. Lombardo, vol. LXIV, 1931).
3. E. Cartan. - Sur les variétés à connexion affine et la théorie de la relativité généralisée (Ann. de l'École Normale sup., sér. 3, vol. 40, p. 325-4 12 .
4. E. T. Davirs. - On the infinitesimal deformations of a space (Annali di Matematica, ser. 4, t. XII, 1933-1934, p. 145-151).

150 P. dienes and e. t. davies. - infinitesimal deformations.
5. P. Dibnss. - (i) On the fundamental formulae of the Geometry of tensor manifolds (Journ. de Math., ser. 9, t. IX, 1932, p. 255-282).
(ii) Sur le déplacement d'un n-uple et sur une interprétation nouvelle des coefficients de rotation de Ricci (Rend. Accad. Lincei, sér. 6, vol. 17, 1933, p. 119-122).
(iii) On the deformation of tensor manifolds (Proc. Lond. Math. Soc., ser. 2, vol. 34, 1933).
6. L. P. Eisenhart and O. Veblen. - The Riemann Geometry and its weneralization (Proc. Nat. Acad. of Sciences, vol. 8, 1922, p. 19-23).
7. H. A. Hayden. - Deformations of a curve, in a Riemann n-space, which displace certain vectors paralleiy at each point (Proc. Lond. Math. Soc., ser. 2, vol. 32, ı93ı, p. 321-337).
8. V. Hlavaty. - Contribution au Calcul différentiel absolu (Vestniku Kral. Ces. Spolek Nauk., t. 1I, Roc. 1926).
9. H. Kunne. - Die Grundgleichungen einer beliebigen Mannisfaltigkeit Archiv. Math. Phys., ser. 3, Bd. ', 19o3, p. 3oo-3ıi).
10. R. Lagrange. - Calcul différéntiel absolu (Paris, Gauthier-Villars, 19?6).
11. T. Levi-Civita. -- (i) Sullo Scostamento Geodetico (Boll. In. Mat. Italiana, ser. 5, 1926, p. 60-64).
(ii) Sur l'écart géodésique (Math Ann., Bd. 97, 1926, p. 291-3xo).
(iii) The Absolute Differential Calculus (Blackie, London and Glasgow, 1927).
12. G. Rıccı. - Formole fondamentali nella teoria generale di variela ? della loro curvatura (Rend. Accad. Lincei, ser. 5, vol. ?, p. 355-36z).
13. J. A. Schoitme. - (i) Der Ricci-Kalkul (Springer, 192́i).
(ii) On the infinitesimal deformations of a \mathbf{V}_{m} in a $\mathbf{V}_{\prime \prime}$ (Iroc. Kon. Akad. Wetenschappen, Amsterdam, vol. 31, 1928, p. 208-218).
14. W. Slebodzinsit. - Sur les transformations isomorphiques d'une sarièté í connexion affine (Prace. Mat. Fiz., Warszawa, 1932, p. 55-6ı).
15. D. van Dantzig. - Zur allgemeinen projektiven Differentialgeometrie Proc. Kon. Akad. Amsterdam, vol. 35, 1932, p. 535).
16. O. Vbblen. - Invariants of Quadratic Differential Forms (Cambridge Tracts, 1928).
17. R. Weitzenboce. - Invarianten theorie (Groningen, Noordoff).

[^0]: (${ }^{1}$) Eisenhart and Veblen (1922, p. 20).
 (${ }^{2}$) In the terminology of Cartan (1923) and Lagrange (1926) this would be an " espace à connexion euclidienne".
 $\left(^{3}\right)$ For the distinction between Latin and Greek suffixes see Dienes (1932).

[^1]: ${ }^{(1)}$ A structure tensor is one involving the connexion parameters of the soace.

