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ON THE INFINITESIMAL DEFORMATIONS. Ill  
On the infiniterimaède]brmationsof tensor submanifolr/s ;

BY P. I)IENES AND E. T. DAVIES.

General conventions. — I. The summation symbol 2 is suppressed
if it applies‘ to terms with identical suffixes.

Il. The first letters of Latin and Greek alphabets as suffixes vary
from 1 to n, the middle letters i,j, lc, . . ., from 1 to m(< n), and the
end letters p, q, .. . from m +_1 to n.

Part I. — Definitions, General Properties.

1. THE DEFORMATION OF A TENSOR MANIFOLD. — A general n-dimensional
linearly connected tensor manifold or space A,l is determined by two
independentsets of functions :

(ii the metric parameters (1,3 which assign a measure ds to the dis-
tance between the neighbouring points P(æ)°and Q(æ+ dac) by the
formula
(|) de‘—’: aaB dx“ dac-5.

(ii) the connexion parameters FË‘r which define parallelism (equi-
pollence) between vectors and tensors at neigbbouring points by the
formulae
(2) v“(QMP)=v“(Q)+I‘Ëch5 dxY, p3(Q[|P) =V3(Q) —— rËYV“ dæY.

The substitution of c°‘(Q||P) at P for v“(Q) at Q is called the
« parallel transport » of v°‘(Q) from Q to P.
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Special spaces are defined by special sets of metric and connexion
parameters,or else by relations between these two sets. For example,
a Riemann space V,, is specified by the two conditions
… rg, = Pia—
(4) V‘;aaB E d‘:a1,8 — l‘î._,aap — I‘â,ü:a= 0,

in which case the functions l‘Î‘, reduce to the three-index symbols {$,
;-

of Christofl‘el (‘).
A space in which (4) is satisfied will be called a metz-ic space (“’),

(or a Riemann space with torsion), since in such a case length of a
vector and angle between two vectors are unchanged by parallel
transport. In the classification of spaces given by Schouten (1924,
p. 75)such a space would be of the type 111 Av.

In order to define the deformation of A,, we remark that a change
of variables
(5) 'x“=f“(æ‘, ....æ")Ef“(æ“)Ef“(æ),
admits two different geometrical interpretations. lt can be regarded
either (i) as a mapping of the æ—space upon the ’æ—space, i. e. as a

straightforward transformation of the :::—space into the ’æ-space, or
(ii) as a mapping of the x—space upon itself, in which case the point of
coordinates ’æ“ is regarded as the point of coordinates 'a: in the
:::—space. ln this second interpretation the same change of variables
will be called a displacemcnt, and to indicate the fact that the new
points are also in the :::-space we shall replace the Latin suffix a by a

Greek one (“).
A change of variables of theparticularform

(6) 'xa=æn_+_ €Ea(æ),

where € is a small constant, is called an infinitesimal transformation,
or an infin1‘tesimaldisplacement of the :::—space according to the inter-
pretation chosen.

' 
(') Eisenhart and Veblen (1922, p. 20).
(’) ln the terminologyof Cartan (1923) and Lagrange (1926) this would bean

« espace a connexion euclidienne ».
(") For the distinction between Latin and Greek suffixes see Dienes (1932).
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For an infinitesimal transformation, we have
0 .(7) 'dw“= dÆ”+ € daEa-d$1=Agd£“ (da: (Tra),

where
(8) J,\a =ô‘lL + € da?“

The reciprocals A}? are defined as usual by

(9) AËAË=6% or AîAä: ;,

giving
a{ 8 _(;o) , Aä=ôb —- €d1,âFi (db—W)'

Hence, to' first order quantities in &, vectors and tensors are trans-
formed by the rules
(n) V“: V“A“, Vb=V{3AÎ.
(12) Tu:--Illl,( lx) =TË:.…Œ,,<æ) Afin:

-flp

azAî:::%?
'/

=T‘;;z:izç…+ e ETÎIIZIË"'"”âê”' '— € ET“::::Ç…bM
821s=t

Metric and connexion parameters are transformed by the usual for-
mulae

(13) aab=aapAaÎ,
(14) PZC=PÈYAZ AE? + Aïd A“.

The tensor space so constructed will be referred to as the transform
’A,, of A… Like every transform it represents, to first approximation,
the same geometry A,, in new variables, since corresponding vectors
have the same lengths, and since parallelism1s preservedm the trans-
formation.

In the second interpretation of the change of variables the point œ

is displaced in the originalspace A,, to ’a:. Thus in the displaced A,.
vectors and tensors at ’a: are just the vectors and tensors ofA at ’æ,
and the metric and connexion parameters are aa3( 'æ) and l“’Lfi'7<læ)
This displaced space will also be referred to as the deform of A…

Journ. de Math., tome XVI. — Fasc. II, 1937. 15
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If we introduce the notations ’a…(’æ) and ’I‘ÈY(’æ) for the metric

and connexion parameters of the transformed A,, at ’x, since the ’A,,
is the same geometry as the A,, (except that it is attached to different
points), we can consider ’aa@(’x) and ’ Ë‘r(lx) as the representatives
of A,. at the point ’a:.

A measure for the deformation of A" is therefore obtained by com-
paring the metric and connexion parameters of the new Geometry
(the deform of A,.) at ’x, with the representativesof A,, at ’x.

And since in this way we are going to consider the transform of A,[
as being at the points of X,,, we shall replace the Latin suffixes of ’A,,
by Greek ones in order to avoid a formal clash of suffixes. Thus
we shall denote A: and A: by AE and KË respectively, and similarly
9“, va, etc., will be replaced by ’v“ and ’va, etc.

Thus the deformation of metric and connexion parameters will be
measured by
(15) ôaap-=- aap(’æ) — ’aap(’w) = € [€* 07 aaa + au de @+ aw du 3],

which can be thrown into the tensor form
(16) ôaap= € [VY aap + art Vp EY+ a__,p Va EY+ 2 ng agp ”gY+ aSà‘f aaa Eÿ].

Similarly
(17) ôI‘ËYEI‘ËY(’w)— ’I‘ÈY('Œ)

_= e [0703 ga + rfi;Y dpEô+ r3‘a ôY'gôr-- rg;Y 0551 + 5505 r;_{'],

or, in tensor form
(18) °TÎ‘:: & [VY VB 5—1+ RÎ3'f'Î 53 + 2 VY(SÈ,—;“?)].

In the sequel we shall frequently meet with a special kind of cova-
riant derivation, in which the lower suffixes of the connexion para—
meters have been interchanged. We can call it the conjugate

covariant derivation, and denote it by V, where for an arbitrary
contravariantvector v“, we have

(lg) ŸY v“=âY v“+I‘% vl3.

Expressed in terms of ordinary covariant derivation, we evidently
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have
(zo) V,;»ï=V.fl…l+ zs;,é°‘ ali,

so that when the connexion parameters are symmetrical, the two
operators coincide.

In consequence of (19), we can write (16) and (18) in the shorter
forms
(z [) ôaap= & [57 V,, a,p + am Üp £Y + (1,3 Ÿ, EJ],

(… arg,: & [vY % + R°f,,, zÿ].

For a Reimann space V,., these reduce to
(23) , 8a.p=€[Vaâa+Vsäaly
…… 3{%Y}=€[V:/Vsä“+Rï‘z—xyaëôl-

It is easily proved that the 81‘ËY in the case of a V,, is equal to the dif—
ference of the three-index symbols of Christofi'el for the metric para-
meters —a-ap= aa_g+ 8aag, and for the original ones. Moreover, in this
case, since the whole Geometry is determined by the metric‘ para-
meters, the deformation of a structure (‘) tensor of V,, can be
determined by merely calculating the tensor using the new metric
parameters 515 (andconsequently the new connexion parameters ÎË,),
and subtracting the old tensor from the result. That the deformed
space is also Reimannian is therefore immediately evident. By a
definition of parallelism given in Dienes [1933, (iii)] however, it is
seen that the deformed space shall always be of the same nature as
the original space, so that any special properties possessed by the
space will be preserved in deformation.

2. The definition of the deformation of individual vectors and
tensors implies & comparison of vectors and tensors of the deform
of A,, with those of ’A,, both at 'x. Since however we usually attri-
bute the deformation to the vectors and tensors of A,, at x, this
implies a comparison between the pencils of tensors of A,[ attached
to J: and 'a: respectively. The simplest kind of correspondence is by 

(‘) A structure tensor is one involving the connexion parameters of the snace.
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parallelism, by which we mean that in the displacement of het
point :» to 'æ, the vectors and tensors at «: are carried along to 'a: by
parallel transport.

Thus, starting with a v°‘ say at a:, its deformationdue to the displa-
cement (6) will be Conveniently measured by
(|) AV°‘ï "1i‘L'll '.L‘) —- 't‘°‘t'.l:) : ,

€ v:"'(l‘Ë7 êY+ 03£1)=" € vi3V3;1

and this is called the direct deformation (_
' ).

In the case of a vector field v°‘(x) we may also take v°‘(’æ) as the
vector corresponding to v“(æ). This leads to the field deformation
(2) ôv" E v"(’æ) —— 'vH’w): & (3? 076!“ — VY 0—55“): € [EJ VY v°‘-— VY V ê“_l,

which, in virtue of (1), can also be written
(3) ôv°‘= € 57 VY v" + A:".

If we have an individual vector 0“ at .L', a field can be delined between
J: and 'a: along æ°‘+ & E“ by putting EYV,v“= o, i. e. a field can be
created by parallel transport. In this way, from a purely mathema-
tical point of view, the measuring process A appears as a special case
of the 8 process. We notice, however that the 8 measure depends
upon the existence of a field but not upon a definition of parallel
transport in the space, whereas A implies parallelism but no field.

The definitions are readily extended to general tensors, so that

… ATËÏÏÏÎËÇ
-=— TËZIZZÈÇ(ÆI’w) — "l‘ëjjjjÿçl’w) 

(‘) This difference A has been used by Hayden (1931) in his study of curves in
a Riemann space.
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and

a il .
r a .a,= …:x

_
“ a,...aP ;, a,...y...z, ”:(O)

0T;;’___;
’

[Qu], TË…{5Î, +ZT3,…-;…3qàfi.@Y—“zTp,…faq 'dvé ]_ “=1 s=i
p

‘ ...a, ‘ -, a...*;...a,‘ — ,

=€[ÜV.13...a"+ÊTË...—;Î..3qVB.QY'—2Tpî...jsq'VY€“]»€=1

which can also be written
(, Il

“;… .a,_ «...ou, - r 1...Y...Œ »- ,(5') '3Tr;r;'—€ |:ÙVYÇTË3'+2T51...7Î…3.,VPÂY*2 r{—;Ï…ja,, PV‘rC“
]-

On comparing (4) and (5) we have

(6) 3TÈ::::Ë:= “È:2::Ë: + 65‘ VYTËZIIZËZ-

In particular, the 8 measure for the deformation of au; as a tensor
field coincides with (1 . 16), and in a metric space V,,, we have

(7) Aa;p=âa;p=é[VV;{Ep+Vp5.1]

For structure tensors like Sr.?" and RÎ‘BY5 formed of the'metric and
connexion parameters, also Sp‘.Ï(’æ) and R‘_“BYô(’x) might be taken as
the representativesat 'a: [instead of ’SÈ'Ç‘(’æ) and ’RÎ‘3Y5(’æ)]. In this
way we can define the structuraldeformations :

and

(9) DB°ÏByôE RÎByô(æll læ) ”' Rolfiïô(læ): _ € ?! V‘fl RÎ@Y5'

We notice that ,

(…) AT _- DT E [T(œl @) _ ’T('æ)] _ [T(æ|| 'æ) .. T({æ)]: ôT.

These deformation operators 8, A, and D satisfy such formal rules of
manipulation as the following
(Il) ô(T+T’)=ôT—+—8T’,
(12) 8(TT’)=(6T)T’+T(ôT’).
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If we take the product v°‘w@ for example, we have

ô(v°‘ "'Bl =.- t‘“( '.1:) «vpt'.1:l —— VY wa Añ ÎË: u‘p (£a dg v“ — va de, E:“) + v°‘('£_ô ()5 wp + «v,; ();—; 215),

or
ô(v°‘ wp) : (ôv°‘) w3 + v°‘(ôwp).

Similar results hold for A and D.
If we consider the permutability of the operator 3 with covariant

derivation, we have, for a contravariant vector
…3) 6(Vavi’l—V1(ôv3)=(ôl‘äa)ciY

and for a covariant vector
(llgl ÔtŸ;t'3) «V1(ôc'p\:-—(ôriâa),

the extension to general tensors being obvious. The operators 3 and
covariant derivation will therefore be permutable for all tensors pro-
vided the equation
(15) 5l‘ä.j,=o,

is satisfied. This is the condition that the transformation (1.6)
should define an isomorphic transformation of the space, as proved by
Slebodzinski (1932, equs. I).

5. The Geometry A… on a point submanifold X… given by
(1)

.

.ü=_/“(u', ...,u'") (m<n),
is usually determined by « projection » in the following manner.
From dæ°‘=d—,f“.du*- we put v°‘=v'—d,_f°‘ expressing 0" in the A,,
frame. Hence

(2l BÎ = 0}. f“;
are the first set of projection factors forming, as )\ varies from 1 to m,
the m contravariant, base vectors for the tangent plane. We com—

plete it into an n—dimensional split frame A: by taking n —— m vectors
CË(u’, .. . , n’”) subject to the only condition
(3) . IAËfl#O,
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where A:E(Bî, Cg). The facetdeterminedby the pseudo—normalsCg
will be called the « span » of the submanifold at the point in question.
The reciprocals are determined in the usual way by putting
A:E (Bf, C:) and by requiring that '

(4) A:Ag=3g …— AgA3:ô£i.

The quantities
«_ a p. «_ a p

.
p_B BB’ $__C C ,

w1th
a a_ a(5) 5+Cp_ô ,

have been used extensively by Schouten (1924) instead of the pro—
jection factors Bâ‘, Cg. We remark that Bâv5 is the A,,—componentof
the projection of v°‘ on A…. Since

V“: V5 dg : v5(Bg + CÈ),

the conditions 9“: 83 123, or Cgv3= 0 express the fact that v“ lies in A…,

and v°‘= gv3 or Bgv3= o that v°‘ is pseudo-normal to A… or lies in
the « span » of A….

The projected metrics in A… and in its span Ail, are given by
(6) b…: a,p

B—ÎÊ
and cp“: aap CZÎ.

A system of split frames of the kind just defined leads to a fourfold
connexion with the followingprojected connexion parameters (‘),

(l) lûv: Bä Vv Bât—= “ 7Ïp.).w ( 11 ) )\1p=l= Cg Vv Cæ)= — 7Tpuv;(7) (iii) Silo: Bâ Va BÎ‘…= “ “Ma» (iv) Ugo-= Cä Va ÇÎp)= _ 7Ïp1ta»

where for orthogonal frames the '1'E functions reduce _to the corres—
ponding y functions of Ricci [Dienes, 1933 (ii)]. In this paper we 

(1) The quantites lg,, have only recently been used as connexion parameters
[see Bortolotti (1931, form. 24) and Dienes (1932, form. 19)]. They have
appeared in literature on the subject for many years however, and they “appear
for the Riemannian case as pu,… in Ricci (1902, p. 357); C‘,’,P in Kühne (1903),
AÏÎ" in Bortolotti (1928, form. 119), v3,‘9 in Schouten (1924, p. 200), and R?—, _in
Lagrange (1926, p. 32).
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shall only deal with projected connexion, in which case Table 1 in
Dienes (1932, p. 268) simplifies, since D=o, E=o, H=o, andI=o. The equations of Gauss, Codazzi, and Kühne have conse—
quently a simplified form, which we shall indicatein the next article.

4. RELATIONS BETWEEN THE tUNDAMENI‘ALTENSORSor A… AND\ —Having
defined the connexion parameters in A… and… A,‘,,, we shall intro—
duce the first and second tensors of Eulerian Curvature FS and G” ( )
ofA ,,,in A,, as follows :

From the definitions ol l,,“, and lg,, we have
B‘;;V, B;=… and cgv,c;=o.

so that we can write
(u) v B;=0;V,B,1=F;,=0;F,â,
and

(2) v, c;:n;v c;=o;=B;G;,.
We also define corresponding quantitiesJ,î,, and Kg, by the equations
(3) V,B;=cgvan;=i;=Ç;J;,
and

(4) V.C;=n;vac;=k;,=B;1<;,
The fundamental equations connecting A… and A,, are now the

following
(5) 'Ë;‘,‘ E 5,3“; Bä,Î‘,' =S;Ï(l),
(6) ñflp.v 5 Ra

R.“,Syô
oBZÎÎ£

_—Rk).pvU) + 2
F)îmea,vp(7) fi ap.v: R.316 CÊBBË——_RŸo'd‘y.v O‘) + 2Ga[|.tF|lclvl’

(8) “n;,,,,:a"‘-,,,,c, Bî,ïî =2V,,F,,,,,, +2F,,S,,‘,,
(9) ÊPPV= R_;,ôBäCËB,Ï,=2VÊ,Giplui+2Gp/rsùw 

(‘) These quantites correspond to H3,“ and L3‘Î‘, in Schouten’s theory (1924,

P 159)
Actually HgÇBËI : F;,—_ C; F;,and L,}, B; c;=_ G;,=_ 3,0;,.
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Equations (6) and (7) are the generalizations of the equations of
Gauss and Kühne, while (8) and (9) are the generalizations of the
equations of Codazzi.

In the latter part of the paper we shall need the following tensors,
which we can call the conjugate Eulerian Curvature tensors

(i) Êg…= GQÜ.,BÏ‘…=F5.— :;Sggî=Fîu where ”S..-€: sÿ‘cârsâï (1).

( )
(ii) éä,=Bïv.cfg)=ch,_ asp—\;“,

[O

(

(iii) Jâa=câquæ,=ng __ Æg.;ÿ,

(iv) Kg},: BËÜ, BÎ‘…=KË,,— 2Ëè&”.

with their corresponding A,, components, such as iËY= FS…CSBËÇ.
We also ive the con'u ates of formulae 'ven b Dienes ! 328 .] 8 g‘ Y 9 ,

p. 270) :

…)
?

(i) Vpr,fi= F;B+Jgp, (ii) VpBË=-GäB—Kÿp.
(iii) VpCË=é;3+ K;‘p. (iv) VpCÊ=—— ng_ Jâp.

5. THE DEFORMATION or TENSOR SUBMANIFOLDS. — Consider now a
neighbouring submanifold X… given by
(r) ’æ“=f“(u’, u"‘)+e£“(u‘, ..., n’")

and repeat the construction given in Art. 5 in order to obtain the
geometry ’A….

From
’dæ°‘= (Bâ_‘ + € chi“) dal,

we have

(a) 'Bg=Bï+ea.ga.
The simplest way of assigning & span to ’X… is to complete (r) into

(3) ’æ“=F°‘(u‘, ..., u")+eE“(u‘, ..., u”)

where
(à) Fa(u1’_n,um, 0; °)=fa(uia "‘) um) 

(1) The significance of the bar for the other cases will be sufficientlyf_obvious
from this example.

Journ. de Math., tome XVI. — Fasc. II, 1937. 16
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and '

:, E.“(u', ..., u’”,o, ._…,0)=E°‘(u', ..., u"‘)

and by putting

where, for convenience, we write
(ô) dpE“= (dp-Ë“)ue=o.

The reciprocal system is

(7) 'Bä= 8%. — & Bèd«&fh 'Câ= Câ -— e 03%?-
where

ÛaE“= Bâ dk? + C: du?-
We also have

(8) 43% 'Bä'BÈ=BË + e B; «a 51 — & BÇdp'ÿ',

'cgE 'cg'cp=cg + & cgaYga —— & cçapgv.

We notice that the projection factors 'B;, 'C;, 'Bä, 'Cfi, ’BË, 'C; are the
formal transforms of the corresponding factors treated as vectors and
tensors of A.., i. e. submanifold and span suffixes being ignored.

The displaced manifold 'A…, i. e. the deform of A,, will now be
constructed by the following metric and connexion parameters

(9) (i) ’bw=aa5('x)’Bïp,
_

(il) ’cpa=aap(’æ)'Czg,
(i) ”Îw= ’Bä[dv’Bñ+ TËy<'æ)'Büïl’

…) (… fgv='cg[av' S+1‘Ëv('æ)’CË’BÏ]—
(iii) 's%…= 'Bä[aa'Bä+ Pñy(’æ)’Bî’Cä],
…) ’aä;= 'cg[aa'cg+ l‘3{(’æ'>'C‘âä]-

To obtain an image or representative of A… at the points of ’A…,
we notice that the point correspondence 'a: —> a: is established by iden—
tical values u', . . . , u”. in (5. 1) and (5.1). Therefore the simplest
representative of A… in iAm is obtainedby taking vectors and tensors
with identica1 components in the u—frames at a: and ’a: respectively
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as corresponding to each other, and by attaching the same
metric (') and connexion parameters to the u ——frames at a: and ’a7‘.

This is possiblesince from the point of view of the variables u‘, .
._

. u…,

.it: and 'a: are identical.
This method leads to

(…l @) 3b‘…= ’b)p— bm= € [Eôâaa…p+aaadpfiô4—aapdaëô]Bÿ£= {Eôa…p,

)? (ii)
ôcPa=—.C°‘Êôa…p;

(… (i) az}…: 'z' _z'—_3331 arW (iv) axg =C353361‘3,,
(iii) as'——13“"cY ar…, (iv) a«gî:c:ÿg er“

6. THE DEFORMATION or vscroas AND TENSORS or A…. — To study the
deformation of tensors of A…, we remark that the deformation of A…
is due to a displacement of A… so that to measure the deformation we
have to express the tensors in their A…-components and then apply
the methods of the preceding articles. -

For example, if we denote by a bar the A…-component of a_tensor
of A…, then a vector vl at a: will appear as the vector 5“= V"B{‘ ofA…,
and the displacement Will carry it to '.:v by parallel transport. On
the other hand, the representativeof v’* at the point ’a: expressed in A,,
components is ’5“= v“Bî‘. Thus the deformation of &“ is

(1) 5°‘(æH’æ) —— ’;°‘=—— €( ËY«')'—BÎEY+ v7‘dxfiï)=— & V7*BÎŸp E“: A3“.

For A… however, only the projection on A… is significant, so that we
also have to introduce the deform v“(æ|[’æ)’B’ of 99 in A… with the
correspondingmeasure

(g)
._

—

, -Av"—-= 5«(æn'æ)'B'_w='BgApa=B"Aza

In the case of a vector field 5°‘ defined in X,; or at least in an n—dimeñ—
sional neighbourhood (X…)… of X…, we can also take v“('æ) ’B; as the 

(1 ) Taking b)… as the representative of b… at ’æ is fu1ther justified by the
fact that the simple transform of a…g 8,315 a…p'lî,,= a…38—‘ÎÊ= blu-
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displacedvector at ’æ, so that subtracting the representativeof v"* at ’a:
(i. e. vX itself), we have

(3) dol—=“ v“t'æ)’Bä — ‘,}.= Bâô:°‘.

Both processes readin extend to covariant vectors and general ten-
sors, leading to formulae like
(4) (i) Avu=B:Av—… (ii) a«…:n;aë…

'

… AvP=Zäï(æu'wycg'Bâï—vP=cgufimîàæ(5) , ! 3 3(ii) ôvâv—: Îl%.‘,( ’.r) CZ BFL
7——

"P=C;BJocäY,

and, in general

“‘> ôvf…= Avâv + e (? Vaëây‘) Canari.

We can write (3) in the form

(7) a(3ä3«):13àaîa,

i. e. with respect to the operator 3, the projection factors behave as
constants. This is due to the fact that the change resulting from
replacing B by 'B has been accounted for in the construction of35“.

Applying the 3 process to b… and CP,, we obtain (5.1l). ln a

Riemann space V,,, Bb… as given by (5.11) reduces to dg££P of
Schouten (1928, form. 1). In order to obtain the 3gÇ_,; of Schouten,
we notice that, in a V,,,

(8) a…au) 'B“'cg— a,;pBâ‘Cä: BCÊôa…p= e BÇCÊ (Vaëp + Vp£«)

which is Schouten’s8girô
For mixed tensors of the type 0“, the measure for dzrect deforma-

tion is given by

Av:= vË(æ||'æ) ’BÊ— VÊAË;

=l("B“ € l‘.{—ô"flêô+ € rrsa"vîô) (Bî+ € de?) _ (ôÈ+ € di331)‘îl
= € [vëâ.æfi—vîà.e£“++ël‘ ”$BÊë— Pï—‘ëBîëfl: € [vâ‘Bàitzfl— v8% 915

(9)
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so that
ra

‘(lo) A(‘Ê= BPAPË

and similarly
(( !) dv;: 83633.

The rules of manipulation for sums and products readin extend to
the deformation of a submanifold and its span. For example

A(u?ç…): 0533A(E«@),

and from Av-°= CÊAË°‘ and AW“: B&AÊg, we have

w.. AvP+ vPAwF=câs{î(æB Aïa+ 51A%)= CâBËA(Ë°‘Ëg),

by the rules for sums and products in the general space. Hence
(12) A((’PWP)=VPA(Ç’H+“’;,AV".

The same rules apply to contracted products. For example, if
u«°= v{îw“, then

A"P=CÊAÏ'“= — € Cfi“Ÿfàî“=—— e(Jî:flVÏ.îfl
and from _

Avi: CÊ BÊAËÈ= € (lâBä(3îèpîfi… ;gÜYEa>’
and

A…»: —— € 3553 %;g«
we have

Avâ…r+ VP_…= € [cî3âîfl_f
vl*Vp':Y_ CPBBv3wl*V7 51 _

BË‘_VBVÊLVBEaJ

where the first and last terms in the bracket cancel one another, and
thus

AVÊ__ wP- + Vä_ Awl’—= --- & Cg Cä,
v8_ wl* VYE1= — & Câ n“ V,, E“,

so that
;_ P _ P . .f‘ »(13) AUF—A(VP_W‘F)_AVWWP‘+(IP_Aflp'

andun the case of vector fields which can be defined… a small neigh-
bourhood (X…),L of X…, the same result holds for 3.
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Let us now consider & contravariant vector field 0“ of the general

space A… Since at every point of the submanifold the projection
factors are defined, the field v“ will have components :*: Bîv°‘ tangent
to A…. Hence treating 5" as a vector of the submanifold and remem-
bering the property of the 8 operation of leaving the projection
factors unaltered, we have for the deformation
(14) 6—5": B:, 69“ or AD: 135, Av“,

with correspondingresults for the submanifold and span components
of any tensor field of A,., so that for instance

(15) 335“: cg Bgz(aog,} and A59_— cg 353(A9g,).

Particular cases of this result are [5. 11, (i) and (ii)]. Since the
torsion tensors corresponding to the various connexion parameters,
such as S;3=l}… or S,}: a,’È,, are all obtained from the torsion
Sg,“= I“fê,, by projection, we can apply the deformation 0perat0rs to
them directly, and obtam e1ther

“‘” 55=3‘°*ôss+“ °r ASt'=Bäzä:ASs+“.ap.v

with correspondingresults for the other torsion tensors.
The various projections of the R“_p,5, such as R-_-,,,, or Rp,… do not

coincide with the corresponding intrinsic tensorsR‘—,,,, and R9_..,,,,, It
is still true, however, that
(17) «3î1_=,,,—B'®fô an,,,, and aî1n_…=cgä B‘,‘,Ï‘, au°‘,,,.«. Ap.v

Part II. —— Defomation of the fundamental tensors
of the Submanifold.

7. Dsronnnon or rar. EULEMAN cuavxruns rsusoas. — Let us now
apply the preceding results to the first tensor of Eulerian curva—
ture F{i… Expressing this in A…—components, we have (on omitting
the bar) Fg,: F5… CËBËÏ,. The Fg, is now a tensor field defined only
at the points of A… so that the 3 operation is not applicable. We
can however form the difi‘erence
(1) AFË,=F°‘,(æ| w) —- Fp,,
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where ’Fg,=Ffi,’Cg’Bäl} is the representative of FPV at the new
point ’x—expressed in A,,—components. This difference gives

.. _ #
a 8 u

(23 AFËY= € [FËY ŸB E°+ 1‘Ëa VTE “' FBYVSE“]-

We might, however, proceed otherwise in the case of a structure
tensor like FE…. Since the ’A… is a submanifold of A… it will havea
first tensor of Eulerian curvature in A,,, which we shall denote
by ’F" where&…

(3) 'ng='Câ[dv'B;+rg,i'm'Bâï -

On expansion

'Fg,= F5 + & cg {av a»,, ':_a + rg, 35 a, 57 +- g._, 53 a, 56
_

… rg, 1353 aa ga+ 353 dg rg, at a, B;_ aaaa],
so that from

_a, a, “5,1: av B;_ a, ;: + 333 a, 03 51,

we obtain

/F5v= F5, + & cg Bgz[a, 03 51+ rg, dg 58 + rg, &, 58 _ r;‘;, a.«, 51 + 58 a, rg,],
i. e.

(4) 'F{°…= Ff…+ 62 353 arg,

Now this ’Ff… can be taken as the representative, at the point 'a:, of
the original F{… at x. 50 that, expressed in A,,—components, we take
'Fg,’Cg’Bäç instead of Fâ,’CË’BËY, as the term of comparison, and thus
obtain what we call the total structuraldeformation
(5) DF“,EFg.,(æ fæ) —’Fñ’C°"BË“=AF“, —C°—‘ BÎ‘É, arô .B. … u ? .$Y … OB. nt

We shall now prove that this expression for DFËY is equal to what
Schouten (1928, p. 21 I, form. Ill) calls 8Hgç‘ provided we assume (i)
that A,l is a Riemann space V,,, and (ii) that in A… (i. e. V…) the
pseudo-normals (or span base-vectors), are all perpendicular to the
tangential base vectors.

It follows from (i) that, on replacing R‘_‘},,,—, for the V,, by KÎ‘W,,

8PÈY: VY VB &“ + K:“BYô Eô
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and from (ii) that BZCÏ,a,;=o, so that the Soperation applied to this
gives '

(6) B:; (J,; a…: o.

Schouten’s formula, with the indices changed in accordance with the
conventionshere adopted, is

alt-“= e W C6 V ”a+ n‘a-“C? vf r,; _ 115;“ m VT'aBy ..3 Y "]Q ._ [$ le ,} ( .Q
…. — ‘n! *a "? :—e

‘ 55 … : * '.Z ,—»‘

and this can be reduced, by re-arranging terms, to
\ ..a__ a r.: 5 .. -—

, .. ,-—- -—

T " ..1 "f, “' .. . .' "+ C.; [la” ll63 au“:+ (Jr.;
I)°‘

l'a?“ ($a-,,: “_
Illä.!'

I,1, ôaï|:.

The last three terms can easily be proved to vanish in virtue of (6),
so that, since Hg,_= FË,, the 8H3‘Ç‘ : DFÈ,.

As we have already pointed out the 8 operation is not applicable to
tensors of the submanifold, since when the new point ’.L‘ is no longer
in the submanifold, there is no value defined for the displaced tensor
T('æ). Whendealingwith a structure tensor, however, we can define
the displaced tensor T (’en) as being the reconstructed tensor at ’æ.
For the Ff… for example, this would amount to taking ’Ff… as being
FÊ…(’æ) and since the representative (i. e. the tensor with identical
components in the u-frame) of Fg, at 'a: is F

E…
itself, we can write

(7) angE 'Fg_, _ Fg_,= cg Bfiz(arg,)

and similarly
(8) ae;_,z G; —G';_,= B'; 02 33(arg,).

We remark that the ‘0‘ here dilfers in one fundamental respect from
the correspondingsymbol for tensors of the general space. Whereas
for the general space 3 only requires a tensor field for its definition,
here the connexion of the space is involved. This extension of the
operator 8 will, however, be found of use later.

The corresponding A and D deformations are measured by the dif—
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ference between (i) the projection of the displaced tensor and its
representative at ’æ; and (ii) the projection of the displaced tensor
and the corresponding structure tensor of Am at ’æ. Thus

(9) AFËV; FËY(æll a… log 'ng _ FîL,= cg Bâ3 AFgY,
(…) DFS” E rgY(æ ||

fæ) _ 'ng= AFF…
_ cg ng arg*Y= cs; 353 DFÈY.

Taking now the mixed tensor FÎL,= FS…CË=d.,Bî+ F;YBÊJ, we form
the corresponding expression for ’A…,

…) "îf…=ôv 135; + rgY('æ) ’BÊX=FÜH+ng & Ë—:+ & Fr… 0551.

The difl'erence ’Fÿv — F;v, which coincideswith Schouten’s expression
for dH@j‘ (1928, p. 21 1), is evidently not a tensor. If, however, we
take the representative of F

{';W
at ’æ, namely FS…’CË and form the difle-

rence 'FËV— F5…'Cg, we get a tensor
(…) 'Fî,‘…_

F5… lc;: 1335 argY,

which we call 3FÊ…
We can also define the deformations :

(13) AF@,= ng(æ|| fæ) _- th, C°‘= — 6 F3 vw
(where FÏ,‘… is transportedas a simple contravariantvector of A"), and

(14) DF;v ; ng(æ[| ’æ) _ 'FÊW= _ & F3 {78 ga… Bâ‘5 argY= AFÏL,- 1353 argY.

To extend the 8 operator to the tensor FËY, which coincides with
H3Ç‘(= B?}ä,Vnt) appearing in the works of Schouten, we remark
that we can deal exphœtly With this tensor in the form

(15) &: Ff… G; 13%: of; BÏ,(âç BÈ + rg:Bg).

Its re resentative at 'a: will be its sim le transform which isP P >

(16) ’%‘C ’Bä<d& 'B'% + Tä= 'Bä>= Fîèä+ € [FËY de'æ— F%æ "B zä— FË«: MF],

which coincideswith FgJCg’B‘gç.
Its structural representative,however, the FËY reconstructed for ’A…

Journ. de Math., tome XVI. — Faso. Il, |937. 17
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at ’æ, is «

(… C°—: 'Bîld': 'B% + rg,… ’Bâ‘]_ r°‘
"

2‘ TE _
‘

—ô »;
,;_ [ BY+ (al—%:) ‘0 “(i—r ‘l € l_"{$ydô 91‘ l,,.{ ();; Zf‘ l“%‘,;0.,_'l

which coincides with ’Ffi,’C;’B%}.
The obvious extension of the operator8 is therefore given by

(18) arg,E 'Fg, «:; 'Bgç. . rg, «:; lag; : (arg) c:; ngä…

In a similar manner we can give the corresponding results for the
other tensors, such as Gè,, J£… and KÊ,,. We have for instance

(i) AG",.,: Bä(;;Îf n.“; A c;,,
(l9') un …… = (;i afin;mg,.

um AK};,,: B; (123 Aug.,

ln this paper we assume throughout that in A…, the connexion has
been obtained by projection, so that
(20) DLÇ,=o, Egk=o, Hïip=o and lä.,=o.

A straighforwardcalculation shows however that
…) ’ng E 'n‘; vus; :. n;, + n‘;fiï arg,: 13,1, + ôlî,‘_,»

so that in general 'Dà, is different from zero. This happens becausse
the connexion parameters là., for ’A… have not been obtainedby projec—
tion. It follows that ADÏ…= 0, but D.Dä,= — BäÏ, 81‘g, is in general
not zero. The same remark applies to the tensors EQ, H,“… and 12, with
correspondingformulae.

8. If we define B… = b… + 5b—…, where
__8b…

: (Sa…)Bî‘fÏ and the
corresponding three index symbols [g… ={ ,Z;, }, then

7;1-, - — Iii» = Bäîï 61%? = ô'îi»

so that, in order to study the 8 operator as applied to tensors occurring
in the theory of a V… in a V… we could, from the point of view of the
formal results, disregard the point transformation altogether, and
consider the V… (consisting of the same points as V…, but with the



ON THE INFINITESIMAL DEFORMATIONS. 151

metric parameters 5…) as immersed in the correSponding V,,. We
could then introduce the operator V, where the Ÿ would indicate
covariant derivation using the ban-ed connexion parameters ÎË,, ÎÎ…
Î£… etc., so that for instance

— 3 \V,,pÊ: V,,vË, + (ôI‘Ë.,) ;;LB; .. (61€…) pg,
_ '

‘A
'

=\ 0' A

VVVË: VV VË --l— (alfa) "(z __ (O)\PV) VO“-

This artifice, of consideringa new space with a difi‘erént‘set of metric
coefficients Zap, has been used by Bortolotti (1928) in his study of
minimal submanifolds. It is a particular case of the theory of a point
manifold to which has been assigneddifferent metrics, and it has been
developed systematically by Levi-Civita (1927, Ch. VIII) and
Weitzenhôck (1923, p. 352).

These remarks can be extended to general linearly connected
spaces, in which the point manifolds are assigned two different sets
of connexion parameters instead of two sets of metric parameters. If
we calculate the projected connexion parameters and the various
structure tensors for an Am in an A… the differences between the
quàntities thus obtained and the original ones are equal to what we
have already defined as the 8 deformation of the quantities in
question. ,

We have for example
“X ‘A

). — a )_ a )."5 \ a ).
lil“, _‘ lp_v: Ba VV Blp_)—‘ Ba VV Bll'Ll : Bab}: °FpY: ôlpv,

and
.

__ ’ * 1 J. 3" \ \ *
hf… .. Ff…: 02 v, B…, cf;vv B…: CÊ Bi”; (01‘Ë7): Org….

This is also true for the extensions of 3 to mixed tensors like F,}, and
Fg,, so that .

—
:

'—
:'3Y \FÊy —FÊ"=VVBËL)_VVBÎËLJ=BFV(OPËYl’_“ Y ‘

FBY “'
FËY: CË‘ BË}(ôI‘Z,—,).

9. Deroaunmn or HIEMANNIAN Cunvnuna Tassess. —— To study struc—
ture tensors like Bf“… or RP… we can proceed in the followingmanner.
Since they are expressible in terms of RÉ‘BYô and of the first and second
tensors of Eulerian Curvature Fg… and GË, by means of the Gauss and
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the Kühnc equations, we can reconstruct these tensors at the points
of ’A… and then use the same artifice as we did… the case of I*{‘,,,
namely of delining the reconst1ucted tensor ’R"—,,… as being the dts—

placed tensor Rf‘,,,,(’æ). The representative ofR,,,, at the points ofA…
will be the tensor with identical components in

the
u--coordinates,

:.e. R‘"—,…. Hence we have

…) 611_‘—,,,.,_ '_..11_"—,,,,. 11"—,…,,,

_(a1tt,va)Bi,äf:_1,,611£,_(.2,51î,+ 1—,_.,o(:,… + (.;,,, a1r-°,,
Let us now consider the curvature tensor [t‘—,,,, (where we introduce
the double bar to distinguish it from R",,,,== ll“_,.,,; BfÉ-Ï_Ï,.,), of A…in A…
By definition we have

(2) fil,…: ()—,7'Î,, — (),, 7i; -i— 75,2:_,, —- [,,,/;“,

which, on replacing Ïf,, by its value and on putting 81Ë,.—_—e L{,,,
61%, = € .\Î,‘, can be written

<3> îî."—…: H."... + e [V.Léÿ. -— V..LâÇ. + 2 sg..‘L'Â.J.

On observing that L—f _—A.°,‘,Bfiÿ"…,and that Sg,.,—_ S,,Ç‘ Bf,,., we have

14) fifi... : R."—..,.. + € [112,33 (V5A;, _ V.Ag,; + zSçg‘Ag,13$,)]

+ & 1â.[BÏ’V Bf, _Bf”vBf. +BâEïva,î
_ 112,1“,13. + Bâ{,V.BÇ_ _ BâïV,B'Î_],

and since by Dienes (1932, p. 269)

(5) V., BÎ,= _ of…: _ CS”, Gé…

the right hand side of (4) can be reduced to the form

161 Ti....— R“....=(6R“…) Bâîä. — F-îî..ôGâ. — G... ôF-î..+rï. acâ. + Gé. air—Cf..

so that the right hand side coincides exactly with that of (1), and is
thereforeoR….

The same procedure applied to the tensor R"_.,,,,, would give us

(7) an?_..,,, _—(an“,,,—,) câEBYŸ,+ Fï, act. + GZ… 6Fî_ _ F?ac… _ Gä,3F—f…

The results given in equations (1) and (7) of this article show that for
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structure tensors of A… which are connectedwith the corresponding
tensors of the general space by means of the Gauss and Kühne equa—
tions, all we have to do is to apply the 8 operation to the whole equa-
tion, as if it were an ordinary symbol of derivation except that the
projection factors are to be regarded as constants with respect to 3.
The extension of the operator 8 to Eulerian Curvature tensors as
introduced in Article 7 therefore proves a convenient one.

If we apply the direct deformation method, we have

(8) m…, E Et,… (x
"+ 'w>'Bî"—Îäî

— RS…

:BŒJÎ(AR376)

and it can be written explicitly in terms of RS… itself in the form

(9) AR"… = & [B‘,(Rî_…6,51 + R_"—,_…V‘,,ga+ tif—,,,, VÏ,ga) _ BâR’;—,_…Ÿ,g«].

Similarly
…, ARP…= Câîî Bäfî_ AËÎaya,

which can be written explicitly as

<…)AR?…=a[B,(RÈ…‘VÆŒ+IŒ,',,V,,,ïŒ)+01ŒR…'Vr__==_câaz,…,vflga].

10. Let us consider the first of the Codazzi equations in the form
(,) v ir? _v F-Î=R°‘…,C$BÏ,ÏÎ _.zs,‘;—fFâ,.

In view of our extensionsof the operator 8, its application to the right
hand side of this equation would give us

(a) (sa“…)cäs1333
— 2(S,°5 arï, + Fâ, 655).

In order to prove that the 8 applied to the left hand side will lead to
the same result, let us remark first that
($)

_

v, F—f,: Câ 8% VaFËY,

a fact which can easily be verified. Consequenly, remembering that
the 3 operator leaves the projection factors unaltered, we have

(4) a(v,r…>= 0511313,35. a(vsrät).
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Further, on applying the formula (2,13) for the interchangeability
of 8 and oovariant dérivation, we have

(5) a(v;rg,)_ v,(ar;,): (arç,) F_ä, _ (51%) F°,‘_, _ (ar'ç,) rg,
Finally, on putting 8_I‘g,: & Ag, and 8FËY: & (Afi;)CgBg$ we get on
simplification
(6> a(v, "‘—îQ = € Cà BË,ÏÎVsAËY + CZ BÊCä(ôl‘ëy>F{L + az£,.w;ä, + æ.â…F—ï,

ôl‘,,.Ffl, _ ôli,, F{’., _ az;…1«*â,.

On interchanging p. and v and subtracting the result from (6), we get

(7) ô[V, F‘Ïa _ Vu FÎ,,]: € Cî B‘Îiiv [V5”\ËY ‘ V,;\Ë,;]
.. ", 3 VT…— 2 F—Î,_ S,;—Ï + 9. (ôI‘ËQ C‘, B“, C:, s,.j’,

which, in view of the fact that o‘R‘3,,—, = e [V,—,. g —' V,…\_ä,—,+ 2 S;{u\ÿ,‘,,
can be written

<s> 6[VvFât -- mt]= (en:…) cfinî;ä — (F—î. est + sa: am,
the right hand side of which coincides with (2). ‘

We have therefore proved that we can apply the 80perator to both
sides of the Codazzi equations just as we have done for the Gauss and
the Kühne equations.

It can easily be verified that the expression (2) is equal
to 2 Î.,Îf,… where, to first order

(9) … V,”F{,: Ÿ,(Fÿ_,+ ôF{,,): V,l«‘{', + vçar£,),

and

(to) Ÿ,F{,: v, Fâ, + (auâ,) F—Ï,, _ (az;_,) Fï, _ (az‘ ,) FÊ,.

“. Let us now fconsider the curvature tensor Bf}… for a Riemann
space. In this case, since Bi : b"”a,s BË we have

v,, Bf, : b“”a,,pv,, 33 = M…F,?,

and since Vv B1 =— G", we can write: I ,

… Gäç=— b)‘“aapFv{â.
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Further, on recalling that a term of the form Fi‘,,Gâ, occurring in the
Gauss equation can be written as F"‘Gf… and therefore, in virtue
of1(1 ) as — b"‘a,:,F—,°Ï,FË, we can write the Gauss equation in the form

… RS…: R$,a BZ—ËÎ‘,‘£Î + b=*aap(F—î,F£î —— Fit—, Fit)-

On contracting this with b,… and changing indices, we get

(3) llfli.uv=RaBvoBx—ÊW +“:B(FîuF/rv —F}./Fkp.)

To find the 8R,,… we have only to apply the operator 8 to the whole
equation (3) as it stands, taking account of the extension of 3 to F—î‘,,.

This gives
13‘")(Il) 8Rk).p.v—_l0RaBw}l BH… + 611313 (F‘Îu. Fîv _ Fîv Fig)

+ a,,(F—“,., 8F'Ï» + F}, 3F—î‘, _ F-Î_Î, ôFä, … 1«“2,31«‘î,),

which is equivalent to the expression obtained by Schouten (1928).
We could also have obtained the same result by applying the

operator 0 to the equation R……—-_ R‘… b,, giving
(5) ôRki.p.v: bk: ôl‘if‘,_,… ”+" “l‘/pv ôbkia

where oR‘,,,, and Bb,“ are to have values already given for them.
Since the 0 operator can be applied to products and contracted

products, we can use it directly to obtain the contractions of the
R tensor. Let us take first the so-called Ricci tensor (‘) given by
(6) R,_., : ii,—,,,,W = R_"—,_….

.)p.;

From this we have
(7) ap.—…: R…… «sm-a+ un an,—,…,

so that, on putting in the value of SE,… from (4), and putting ob“’1n
the form
(8) abri—=— butbV*Bî‘? Ôaap,

(' ) In view of the difference in notation, since B/‘,… is R$) in Schouten’s
notation, the c01responding Ricci ten501 would appear as R,), with the indicè_sinterchanged.
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we have

. a: r] . \ \ \ '$ \ ($
(9) ôR-,_., : b“*(ôltaMa) BÆÏ, + l)…ôd4—g (|<—j‘. oF*… __

1«-ï_‘v 1— +,.)
: \ \{$ _

J \ \:1 \a \'5 "1 \a+ Wa..3[lr«,__uol* … + |« f., ol< … _ 1« ar ‘…
_ 1+ -… ar ,,,]

Y.\ $ '\— H,ç‘,_… b…!)"BÎÜ ôaa3,

to which Schouten‘s expression for the corresponding tensor can be
reduced.

If on the other hand we take the SRS… as given in (9,1) and con—
tract it with respect to the indices lc and 9 we obtain

\ a y 56 a . \ \0' «O‘ \ \ \ a…) an…: (an,…) BaB—… _ F—…ôGë. _ mg, 01“… + 1«—,_., o(:ËP + of:, oF—…

which appears to differ materially from the right hand side of (9). If
however, we make systematic use of equation (1) of this article, of
the Gauss equation, and of

« “f.dll,_3—,a: (l,… Oll_q—@ + “fig—,,; dau—,.,

it is not difficult to prove that the right hand side of (10) does in
effect coincide with that of (9). Hence we can write BR,, for SRE—…and
(10) gives the 8 deformation of the Ricci tensor independentlyof any
use of the metric parameters.

lf finally ;we wish to determine the deformation of the invariant R
of the submanifold for the infinitesimaldeformation, we have onlyto
apply the operator 8 to the equation
(! I) a = R—…b“—”,

giving
(12) 53 = b“ ôR‘… + R)… db)”

=b‘m aa—… — b7—‘ b"*BÎÏÊ aa,p.R-…

where we imagine 8R>… replaced by its value from (9).

12. Gaouesm AND MININAL suammrows. — A submanifold is geodesic
when the first tensor of Eulerian Curvature vanishes, i.e. when
F,Ê.,=o.

The condition that, as a result of the infinitesimal deformation,
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the resulting submanifold ’A… should also be geodesic is therefore
that
(I) ôFî… : 0,

or that
(a) (âI‘ËQ 02 333 = o.

Since F{îv: o this can be written at length in the form
(3) (:S: [vvviaa + RïeYaBâïë + zBËE*V»SÆ + 2 BÊSsËVÆB]= 0,

which for & Riemann space becomes

(4) 02 [WW + KÏ"maB{îîaô]= o,

where KÎBY8 is the expression for Ri… when the space is (JV… This
generalization is already given by Schouten (1928, p. 213) for Levi—
Civita’s equations of geodesic deviation.

Let us consider again the minimal submanifolds immersed in a
metric space in which autoparallels are lines of extremal length, so
that the minimalsubmanifoldsof this space coincide with those of the
Riemann space determined by the metric parameters.

The condition for a minimal submanifold is that
(5) bWFÎ…: 0,

so that the déformed submanifold is also minimal provided
(6) Ffiw aw + b!“ 6Ff…: o,

i. e. provided

(7) b““Câ[VVVFE“+RÏpYaBÊËEB—l—2BËVV(SËËEÔ)— sz*bV’—BËËFËVV«EB=0.

But in this case the relation

PËY=l Ëil + Slïïa— a°‘ô(sfiïô + 5687),

between the connexion parameters and the three—index symbols of
Christofi'el takes the simple form

a a ..a(8) I‘m=lsü+Sm»
Journ. de Math., tome XVI. — Faso. 11, 1937. 18
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and consequently

(9) BÎ‘Bvô = K‘j… + VôSBŸ —
VYSB‘ô“ + 5‘n‘y“ “bô" — Sà‘e°‘Säifi

’

so that using (8) and (9) and replacing covariantderivation with I‘g.£.

as connexion parameters by derivation with {;;} as parameters, we
get the equation which Bortolotti (1928, p. 176, form. 95) has given
for the Riemann case.

Part III. — Tangentialand “ Span ” Def0rmations.

15. From this point onwards we shall consider the two special
cases in which the infinitesimal displacement & E°‘(u) undergone by
the points of the submanifold, is either definitely in the tangent
plane to A… at every point, or else in the pseudo—normal « plane »
(which can in our terminology be described as being « in the span »).
In the case of a tangential deformation,where €“ can be written in the
form Bî1fl, since the new point P’ will now be in the tangent plane
of A… et P, it will also, to first order terms in e, be in the A… itself.
Hence P’ will have coordinates in the u—system, and, from the point
of view of the submanifold, we could regard the infinitesimal displa-
cement as producingan intrinsic deformationof the A…, expressed by
(1) ’n'-: u"‘+€‘ff".

The fundamental tensors of A… (considered independently of the
surrounding space A,.) will undergo changes due to the transforma-
tion (1), corresponding to the changes undergone by the fundamental
tensors of A,, due to an infinitesimal transformation (’æ°‘= æ°‘+‘ Ë_e “)
of the A…

When, however, the tensors (or more precisely the tensor fields)
of the submanifold are related to those of A,! by laws, such as projec—
tion (in the case of the metric and the torsion tensors) or the Gauss
and Kühne equations (in the case of the curvature tensors), then
there is usually a discrepancy between the results obtained by consi—
dering the tensors of A… as undergoing an intrinsicdeformationdeter-
mined by ( l), — and those obtained by finding the particular form
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taken by the results of the preceding articles on putting E“== B°{v{*.

We shall now consider this discrepancy, denoting by 3, the symbol
corresponding to the intrinsic deformation which a fundamental
tensor of A… would undergo in virtue of the transformation (1).

We shall also obtain the results of the preceding sections in the
case where E“ is in the span, i. e. where E°‘= CËCP. We cannot in this
case introduce an intrinsic point deformation corresponding to (1),
although certain results have a form suggesting the use of an opera—
tion 8… for the « span » deformation corresponding to 8, for thetarigem
tial deformation.

When dealing with a V… in & V,,, we shall also see that a constant
infinitesimal displacement in & direction normal to V…, will produce
in the metric tensor of V… a deformationwhich is expressible in terms
of the second fundamental form of & V… in a V,,.

14. TANGENTIAL DEFORMATIONSron vncrons or A… AND or AZ,. — We have
proved in Art. 6 that when we have a tensor field such as "Ëv in A…
the deformations of its A… — and AZ, — components are given by
such formulae as

(1) 61€}; 051 B{ÎË(ôVËY).

Now let us consider the particular case where E°‘= B—Î‘q"* as applied to
the A… components of a contravariant vector field of A… By (15 we
have

'

(2) ô;k= € [ËfV5 (”‘ — Î?ôè5Ç1] “à: € [fi—V;v°‘— vôès(Bîn)‘)] Bâ.

On reduction this becomes

(3) 35"= € [‘fllVxîk— ÎŸ"Ÿ>‘YJ"] — € 5°[Ÿank — Gêm"‘]—
'

But the expression 6 [nW—,_Ô"— Î)‘“V«,_Mîl gives the deformation which a
vector field of A… of componentsÎ)k would undergo under an infinite-
s1mal transformation (1, 1), and therefore by definition
(A) 615%: € [nXV‘LÎ’"—— ;)‘è‘;_‘flk].
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Hence we can write (3) in the form

(5) 3è"= ô.Bk-- & 66(V.-n* - (3Ê—wfl‘>.

If the field v“ of A,; happens to be tangential to A… at the points of A…,

then by definition 5“: 0, and we have

(6) ôrÎ= ô,v".

For a covariant vector field v… of A… the deformation of its A… com-
ponents will be

(7) ôvk=€ [£5Vava + «’aŸaîalBî,

and this can be reduced to the form ,

(8) art: € [n>—v—,_ë.+ vav.z_ô] Rif.

so that
(9) 6h: a__î-…

We remark that in this case there is no discrepancy between the defor-
mation of Ï‘,_. treated as a covariant vector field of A… under the trans—
formation (l.r), and the corresponding deformation obtained by
taking E“=B—În"- in the general result. We notice that this is true
whether 9… is tangential to A… or not, since Î),, does not enter into
the result.

Treating the span components in the same way, we have

(1°) 639: e [E‘V5v1— vôÿggl]Câ= & [n)‘V;_ÔP—n)‘v“V-,_Câ+BÏv}ngCâ],

and applying the formula

([ ]) ŸBCâ=—Êâô_‘îäô’

we get

(12) 636: € [T:—"V}‘îp_ .Û)“Îajîfi]‘

so that no tangential components of v°‘ appear.
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For the covariant components, however, we have the result

(13) 6740: 6 [av—,}?+ n15535f,+ în( vpn“ — eg,n*)],
'

which, when @: o, reduces to

(14) 65.5: e [finit + n>»«îaîî,, ,

an expression similar to (12) obtained for contravariant components.

15. SPAN DEFORMATIONS ron vscrons or A… AND or AZ,. — We quote
the corresponding results for the case in which E°‘= CËCP. We have

… «33: e l:°V£flf-— :°F“3êgla '

(2) ôÎq-= e [:cV,b}+ ça FHËï,] + & «Î,,[ñçp _— Jg,çp],

which, when «:P: o, reduces to

(2’) 63k= & [cavqëk+çoëpëgk],

… ôëP= e lc°vaEP—E°vacpl — e ;»| vtcP—îfiqc‘],

which when, &: o, reduces to

(A’) ôÏ»P= e l’çcv,;.o_ wifi?],
(5)

_
al’p= €lC°VaÎÏa—‘îaèpïal-

On considering (4’) and (5) we notice that the forms of the right
hand sides correspond exactly to those of 8,Î)" and 85% for tangential
deformations. We can therefore conveniently introduce the notation

(6) M,: & [ç°v,op_ëavpça]

so that (4) and (5) can be written
(7) 6%: Ô,,Îÿ,— € t:l"(èpcp_ Jâgca)i

and
(8) 369: 3,159.

16. APPLICATION ro THE comonmrs or ANY TENSOR FIELD OF A… —
Having dealt with every kind of index that can occur, we can write
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down, on the basis of the above results, the expressions for the defor—
mation of any mixed components of a general tensor field of X… In
fact we might use the Aronhold—Clebschsymbols for any components
such as

1 n , ,”l...X…a...a,_‘“* *'-\m—
-— _ _ __ _(!) AP-i. .p-. p:...p‘,— /‘\*‘.

. .A’ AP—.° _ ”AFnêc'° _ "}6'Apx- _ .A
Il] Pt’

and use the symbolical relationship
!m , t

| '/_}.'...q,_ __)“ '__A_.<
'

”.… .,“ _IV —.—|
— _ _(a) 6A…___P,_2}I\ ...o.\f …\ ..._\p, \ …+21\....\l,,,…aApq…Apl,

l=| q=1

so that we can treat each index as correspondingto an « ideal factor ».
We can accordingly write down immediatly, for tangentinl defor—

mations
(3) ôbp.v= 65—pr.

(A) ôSp—f,: ô,Sp_yl,
(5) ' a“ k}.p.v: ô: Rkhp.v-

Further, in the case of the metric tensor bt“, we have

(6) 6bm= ô,b*“ —- & [mea—nv _ u;',-,_-f,>—)+ /w(v…v«_ Gä—…'—)l,

But if in this case the span vectors CG,, have been determined as being
orthogonalto the Bf“… we have b“°= A°‘5 BËCE= o so that we have

(s') aw: 6_.b”".

This result for contravariantindices is however a special property of
the metric tensor only. ln general, mixed tensor components have
forms as follow
(7) 68.13: ô_çSg…;" — € Ë@q°(Ÿ«fi‘— Gäm*),
(8) film“: 8Ï—fi…— € Ë7\pv(Ÿank— Gâm‘),

‘

(g) añe…= e [mkv—AW…+‘Rf…ùæ+ ñ?…fi…‘*
—3— ’n)‘

ñ.P1ËP-VJÎO‘ “" 'f[1 RÈguvJâfi+ ñF‘APV( v,,— "fl—I‘
_ (‘Il—[ n‘ )_l .

And for Span deformations, we have

(I°) ' abuv= ‘ [Ç°V,b… 4‘ C°(bwêhu+ bw.Ghv )]-
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But V,,b…= V,,(aGEBËÈ), and if we are dealing with a metric space,
this gives

(1 1) Vabv—v= a«a<8ä—'Æï + BÜJË«)’

But JÎÎ,= CÊJ$, and hence we have V,,b…= o, giving

(m’) «M…: e [çv(b…é:…+ b… à:…)]
If we are dealing with a Riemann Geometry, this reduces to

(! l') Ôbp.v= € C°(bwGlxp.+ b…G;,,),

so that, on expressing C° in A,, components, and using the rela-
tion (“ . I) we get

abw=— 2 e E“a…pFÊV=—— 2 € CPaaBCSFËV-

Now (êb,,,)a‘utLdu": 'ds”——ds’ and if we take CP to be coutant, and
call €C°= h‘Pl say, then we can write (') '

'ds=_dsfi_— “P v
—-—2h‘Pl _l‘deul‘du .

Returning now to the general case, we have the following results fm
other tensors ,.

…) ôbW=eça[vcbw— (b…Ôä,+b”èäï ],
(13) 68,19": € [Ç°VGSgaf + Ç"(S—,‘,,;"(flt}'{;EL+ S,,{ÔÎ}, — S@ÙÔâ,)

+ Ë;,z,k(Ÿpç°—JÇPCP)+ Ë,,;,*(Ÿ,ç°- J3pÇP)],

(Ill) ôR.k‘/.p.v= € [Ç"Vañ.k‘… + C°(Ëkm
*

:… + Êx…
*

hv + fik”… ÔÎ:>. — ñÎx… ÔÏ.
+ W“… (<mcv—Jap?)

+—Rf‘…(ivv— 53€?) + “Rî‘…(‘Væ— JÎPCP)] 
(‘) This equation appears in Bompiani (199,1, p. n32) in the form

cis:2 —— ds2__ _— (h‘ r s,_ 2h __.œn. du du

and the quadratic form appearing on the right hand side is called by him «th
second fundamental form of the_submanifold V… relative to the normal E,, ».
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and

(15) ôñ?d‘p-V= € [Ç"V,;ñ?ç…+ Îi?finveaïfl _ ñ1Ïanv en?
+ C“( Ë.Po‘mGlip. + E.Pfrp.‘/\Giiv)+ “Pam (en €“ “ -Œ:Ù)

_
+ E?…(W — mr )— ËÏ"…(V—,ÆP — J£;cr)l

l7. DEFORMATION OF THE CONNEXION IN A TANGENTIAL DEFORMATION. — In
order to obtain the particular forms taken by 81à.,, SM… 8F{î… 8GËV for
tangential deformations, we must first of all consider the form taken
by 8FÈY when E“= Bf‘n‘. Considering first of all the term VaVBE“
occurring in the expression for 81‘;Y we have

Ÿpi“=èp(Bffl‘)=n‘èp B? + B?Ÿpn‘=n‘(
ÊË +.lä) + B“èpn‘.

Forming the ordinary covariant derivation of this, we have

(1) V1ŸBE“=(ÊÎ{$+JÎB)VY“‘+W‘VY(FË3+JÎp)+(FÎY+JÎY)Vpn‘—ç—BÏVYŸW:,

Now
(i) fill“: Blpï(ôl‘gï): Bäï(V7VBE°‘+R‘ÏfiYôEô)aap»

so treating the two terms separately, we have from ( 1),

BÈË3(VYVBE“)= n‘BË‘Î. Vv(Î*‘f‘e+%) + BËÏVYVBW‘“
where

BägVVÈÎÇ= Bä VV Î*‘ÏL= — {::va Bä= + ÈÎpGÈv9

and , '

_
ngvvJgp—_— o.

Using agam the relation
BgzvTv3nk: vvvP ,,u _ nganl

and applying the Gauss equation to the term involving R‘f‘…,; we have
finally
(2) ôlàv= € (vvèpïlk+R}p.vzfl‘)"" € ng(èpnx_ Gèffl‘).

But the expression in the first bracket is evidently the intrinsic
deformation which would be undergone by 1}… in an infinitesimal
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transformation (’u"—_—‘_uï+enl) of the submanifold. Hence we can
write
ç3) ai;…= asz{iv_ € F5…(vwi_ Gè‘.nt)_

For
(ii) ., axgv= (155 Bï(«3l‘äT

using (1), we have

CÊ‘ËBX(VY Ÿpî“)=jfan‘+n*CâîVv(Êîs+ jÎÎ8 + FŸvŸ°“‘
where

_
cg};vvirÿp= câVv Î«‘53=

— F"G
and

cggvng3= cï;ng= vv3P .

Using again the Külme equation for the term involving Rf“…ô we
have finally
(4) æ\âv=e V,,(jâ,-q‘)+‘ç WlRp.aw+ € F‘Îv(ÿcYl—"_ Gin”)-

Treating the deformations of the tensors of Eulerian Curvature in
the same way, the '

, 6F{L,= cg333(arg._,)
on using (!), gives

\ *
3 t‘ t ‘J « _

ong= F3V…t+ Cä Bùvv(1«:3+ J3)+1«5,V…c+new…c
where

… 3
* _ 3 3 _ = .

and
1 * ! * *,J : *

__LâBâV,JÏË=BÊVVJ‘P{$=
_ Jg‘3Vv Bg=_ JP P“:o p.v°

On applying the Codazzi equation to the term ÎÏË’… we have

R'p‘*‘”= V‘FÊv _ VVFËl+ 2 FË)‘S:Ê,

so that on reduction, we have

(5) ang=e [nuvngv.+. Ffvku+ FÊLVm‘« .,,LngÎfa .

Journ. de Math., tome XVI.— Faso. II, 1937. 19
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Now if A… is a totally geodesic subspace of A,,, then F{;,,= o over

the subspace. We can therefore conclude from (5) that for a tangen—
tial deformation, a totally geodesic subspace is deformed into a totally
geodesicsubspace.

Finally we have
_ _ _

aG'—.,= B;CË B_Ï(ôI‘ËÙ

which, on using (l) gives

se}; & [#Bä CËVV(I:‘Ë,+ .î;.,) + <:{,j n‘;v._,\"pn>— .. Î{Ï—|,,,,_ -,,u:

where
BäC_‘ZVv ÊÎ{$= ():

BâUËV.,.ÏÜ,= |:àvv.îfp=_jÿpvvngz ; .i3_,,t'iâ…

and
C? BÎ,‘VY .Vp ‘n‘" = V"{-? 1,’- (.,, €,_1[" .

Finally, applying the Codazzi equation to the term RÏp.” we have

8Gèv= € [vv(v 'n‘" "'“ Gèlïl‘) “*“ Gèlvv‘fll “ UÈ‘JV.T))‘ + ‘fllth$v ““ Gâ‘lJgp‘fl‘]-

18. DEFORMATION or THE CONNEXION … A SPAN navomnmu. — In this
case

î“f ‘wC".
so that

€PE1=C:V._‘1C°+Z°Ÿp(lâ-:(ÏÎÊŸ3Ç"«:_v(hgz :. kg.,J)_

and hence
(|) VYvpîgz= ('<:g.‘,+ kg_‘,‘)v°3:a (:âè'ïvpça

<ùæ+ Êärs)V-;:" + .«v7<azfi+kg.).
and so

313“: E lGZË"ŸFC° “*” (“'ÊnV—Æ" " ? Bäfivv(dËp + kâ3) --1— ÎtÎ@.,,,çd]_

But
-BàfiVv6333: VV (3331. and Bä‘ÊVV f(äg;:‘ _ l‘()&p Fâv

giving
… °“’£»= € [“'—:(ë‘âm)+ Gä—fitcv — va.r‘<ä::« + ça.—e…].
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Similarly we have

axg,= & [cÿ BIV,ÜpÇ? + ;mgê;v,( èg,+ ûg,) + ñÿ,…;«],

which can be reduced, in virtue of

CBBÎŸYVBÇP=V,Ÿ,;P.G%,Ÿ,,ÇP

cg£3vo:,=o …! CPËV.,K;,=KP,F5,,
to
(3) «ng.,=; [v,è,çp - Gä.,V;P+ ;fiKïpFg,—ç ñP,,,;n]

We quote the correspondingresults for the two tensors of Eulerian
Curvature
(!.) 8FP=;[ VŸ,;P —F,‘I,Ÿ,,;P+;°Ffä };,,+îî?…î""]
(5) ôG,;,=e [V (KZ,,;6) + GÇ’,,V,;° — ;°Ôä,Gÿ,+RÎ,…,;Fl.

l9. DEFORMATION or THE RIEMANNIAN Cunvnuns TENSORS son TAN-
GENTIAL AND SPAN nsroamnrons. — Let us first consider the changes
in the tensors Bf“)… and R?… for the case ?: Bf‘n‘. We have the
general result
(|) 6R.I;).p—v: ôñ{lkpü_ ;ap.6GGV ' GTO").u. + "“Î‘i aGgF— 'l ' ("'/";P' al‘—ï"

where the complete expression for 8ÏÎ_*… for a tangential deformation
is
(2) 3RI‘).p./=€ [n‘V(BI")p.:°l‘ Rings/v). TIl RA__—)…Vp,'fl“l“ RIÏ) ,,,.V—fff— ñl),püVtïlk]

" € R.).uv(vVa'flA— (15m).

lf we insert this value of SR"… in (1), and apply the Gauss equation
to each term, afterwards inserting the values of 8F{,, and 8GÇ,, we
have, on putting for brevity
(3) Yâ=€a‘fl"‘— Gâz'fl

that
(A) ôR."'u…= € _w‘VLR."x…—+« R’_";…V) n‘—l— R'ÏMvVu ‘n‘+ R’.‘i…Vm‘—— RÎ),…th‘]

— & Rf’…Yâ+ & [Fï,v,y5_F3Î,,V.,Yâ].
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But the expression inside the first bracket is evidently 8,Rf‘—,… and
hence, on applying the Codazzi equation to the term involving Îlf‘—,_,…

we have finally
(5) ôRf‘—,_,,.,= ô_.ltf‘-,_,… + :>. & [V…(l«‘f’—,_,,I Yâ) — Y{;F£î Sii“:|

This result could also have been obtained by the following method.
We have from

. \ _, \ l.“ \ l.“ ‘… '\ .”(b) oRf;_…= V.,(ol—…) « V,,(ol—…)+ 125…301—1,

and
\

_—
\ !; \ /i ‘..'. ‘ l.“( 7 ) ox Hill“: Vv( 0s hp.) _ vp. ( 05 [).—I) + 2 Sp.-; Os ll.t

so that, on using
«3/{f,,= &. l-,’:‘._. & 1«‘ï,Y!;

and substituting in (6), we have the result already given in (5).
For the 3RË’,… we have the general result

(8) ear…: afin,… + F€_, ao‘3. + ot. arï, _ F—Î_, ao}…_ et,. air—‘;,

where 8Ë?…, is given in (16.9). On inserting their values for 8ËŸ,,,

3F-Î… BG}, in (8), and applyingsystematically the Kühne and Codazzi
equations, we obtain

(9) ôR?ouv=€ [n‘VLRŸau—t+ H.vavp. “"‘ + “.pautVvïli+an.ofitLV‘lÎq— 'fl‘Bîzcuv-IÎKJ
P ‘. ‘. P_ 2 € [vm(FlllviY3)_ Y35u‘iF‘ul'

The corresponding formulae for the 8RÎ‘—… and 8RË’…, for the span
deformations can be obtained in the same way, but in this case the
formulae become considerably more complicated than in the case of
tangential deformations, and they are not so interesting.

Added inproof. — Since this paper was presented in 1933, a com-
prehensive treatment of deformation problems has been published by
Schouten and van Kampen, « Beiträge zur Theorz‘e der Defarmation »

Pme. Mat. Hz., 5. XLI, Warsaw, 1933, p. 1-19.
In that paper the deformedprojection factors corresponding to B;

and C‘,‘.‘ are not the simple transform: as in this paper and conse—
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quently SB}. and “SC; do not vanish. In fact :

aBà: 2 b“… 33 G; v(3a.,
and

ac; :._ 2 W 1333 cg V(Ye5,.

A very convenient consequence of this choice of deformed projec—

tion factors is that the connection parameters là., on ’A… will be
obtained from those of A,l by projection, with

6/3…
=— Bäï(âl‘_ä.fi.)+ cg(aB‘g—)Fg_,, an…: 053,33 (argï)_ Cg(aBä)ng,

arg…: cg BËÎ{(6PËQ, ac};.,: B; cg BI(6PÎ‘Y) c;v.(asä).
Some formulae in Part 111 of the present paper will then take a

simpler form, such as (17 . 3) which becomes

az{;v= a,z{;.
and (19. 5), which becomes

.

ôRF‘/.p.v=â_;RS….
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