JOURNAL

DR

MATHÉVATIQUES PURES ET APPLIQUÉES
 FONDÉ EN 1836 ET PUBLIE JUSQU'EN 1874
 Par Joseph Liouville

L.-J. Mordell

The definite quadratic forms in eight variables with determinant unity
Journal de mathématiques pures et appliquées 9^{e} série, tome 17, n° 1-4 (1938), p. 41-46.
http://www.numdam.org/item?id=JMPA_1938_9_17_1-4_41_0
$\mathrm{g}_{\text {allica }}$
Numdam

Article numérisé dans le cadre du programme Gallica de la Bibliothèque nationale de France http://gallica.bnf.fr/

The definite quadratic forms in eight variables with determinant unity;

By L.-J. MORDELL,

Let
(1)

$$
f(x)=\sum_{r, s=1}^{n} a_{r s} x_{r} x_{s} \quad\left(a_{r s}=a_{s r}\right)
$$

be a positive definite quadratic form with integer coefficients and determinant
(2)

$$
\mathrm{A}=\left\|a_{r s}\right\| .
$$

We consider the special case when $A=I$. It is well known that then there is for each value of $n \leqq 7$ exactly one class of nonequivalent forms, namely

$$
\begin{equation*}
\sum_{r=1}^{n} x_{r}^{n} \tag{3}
\end{equation*}
$$

This result was given by Hermite (${ }^{1}$) for $3 \leqq n \leqq 8$ but his proof for $n=7,8$ was vitiated by a numerical error. Stouff, however, has verified the result for $n=7$. Minkowski $\left({ }^{2}\right)$ proved in 1882 that the result
(1) OEuvres de Charles Hermite, 1, 1905, p. 122-130. See in particular, the footnote, p. ${ }^{2} 9$.

See also Bachmann, Die Arithmetik der quadratischen Formen, 2, 1923, p. $350-358$. On page 356 , he reproduces Hermite's mistake and $\mathrm{C}<7$, óo should be $\mathrm{C}<8,56$ and so $\mathrm{C}=8$.
$\left.{ }^{(2}\right)$ Gesammelte Abhandlungen von Hermann Minkowski, 1, 1909, p. 77, or Mémoires présentés par divers savants à l'Académie des Sciences de l'1nstitut national de France, 29, 1884.
was false for $n=8$ by giving an improperly primitive form of determinant unity. Dickson (${ }^{1}$) credits him with having corrected the error of including $n=8$. They have both apparently overlooked a simpler form of determinant unity given by Korkine (${ }^{2}$) and Zolotareff in 1873 , in connection with their theory of extreme forms, namely,

$$
\begin{equation*}
\sum_{1}^{8} x_{r}^{2}+\left(\sum_{1}^{8} x_{r}\right)^{2}-2 x_{1} x_{2}-2 x_{2} x_{8} \tag{4}
\end{equation*}
$$

Some recent arithmetical work on the representation of quadratic forms as sums of squares of linear forms with integer coefficients, in which Mr. Chao Ko and myself have been interested, suggested the desirability of investigating the class number for forms in eight variables with determinant unity. There is no theoretical difficulty attached to finding it by the method of Hermite, but a great deal of arithmetical work is involved. This can now be avoided by making use of two deep theorems in the theory of quadratic forms recently published. I prove the following

Theorem. - There are exactly two classes of forms in eight variables of determinant unity, namely the properly primitive class $\sum_{1}^{8} x_{r}^{2}$, and the improperly primitive class $\sum_{1}^{8} x_{r}^{2}+\left(\sum_{1}^{8} x_{r}\right)^{2}-2 x_{1} x_{2}-2 x_{2} x_{8}$.

The first theorem used is that $f(x)$ is equivalent to a form in which

$$
\begin{equation*}
a_{11} \leqq \sqrt[n]{\lambda_{n} \mathrm{~A}}, \tag{5}
\end{equation*}
$$

where $\lambda_{8}=64 / 3, \lambda_{7}=64, \lambda_{8}=256$. This is given by Blichfeldt $\left({ }^{3}\right)$, but Hofreiter (${ }^{4}$), also gave the value of λ_{8}. The second theorem is due to the latter and states that if the equality sign in (5) holds for $n=6$,
${ }^{(1)}$ History of the Theory of Numbers, 3, 1923, p. 235.
$\left.{ }^{(}{ }^{2}\right)$ Mathematische Annalen, 6, 1873, p. 366-389.
(*) Mathematische Zeitschrift, 39, 1934, p. 1-15.
${ }^{(4)}$ Monatsheft für Mathematik und Physik, 40, 1933, p. 129-152.
then $f(x)$ is equivalent to the form

$$
\begin{equation*}
\sqrt[6]{\frac{\mathrm{A}}{3}}\left[\sum_{1}^{6} x_{r}^{2}+\left(\sum_{1}^{6} x_{r}\right)^{2}-2 x_{1} x_{2}-2 x_{2} x_{6}\right] \tag{6}
\end{equation*}
$$

For $\mathbf{A}=3$, this can be written as

$$
\begin{align*}
& 2\left(x_{1}+\frac{1}{2}\left(x_{3}+x_{4}+x_{5}+x_{6}\right)\right)^{2}+2\left(x_{2}+\frac{1}{2}\left(x_{3}+x_{4}+x_{5}\right)\right)^{2} \tag{7}\\
& \quad+\left(x_{3}+\frac{1}{2} x_{6}\right)^{2}+\left(x_{4}+\frac{1}{3} x_{6}\right)^{2}+\left(x_{5}+\frac{1}{2} x_{6}\right)^{2}+\frac{3}{4} x_{6}^{9} .
\end{align*}
$$

I may note that by using this result and proceeding rather differently than herein, Mr Ko has at the same time as myself proved that there is one class of properly primitive forms in eight variables with determinant unity.

Let

$$
\begin{equation*}
\mathrm{F}(x)=\sum \mathrm{A}_{r s} x_{r} x_{s} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{A}_{11}=\left\|a_{r s}\right\| \quad(r, s=2,3, \ldots, n) \tag{9}
\end{equation*}
$$

etc.,
be the adjoint form of $f(x)$.
It is easy to see that if any $a_{r r}$ or $A_{r r}$ is equal to unity, then both $f(x), \mathrm{F}(x)$ are equivalent to $\sum_{1}^{8} x_{r}^{2}$, since the class number for the definite form of seven variables with determinant unity is one. We seek now the definite forms $f(x)$ with determinant $\mathbf{A}=1$. From (5), we may assume $a_{11} \leqq \sqrt[8]{256}$, i. e. $a_{14}=1,2$, and need only consider $a_{11}=2$. Hence

$$
{ }_{2} f(x)=\left(2 x_{1}+a_{19} x_{2}+a_{13} x_{3}+\ldots\right)^{2}+g(x)
$$

where

$$
g(x)=b_{29} x_{2}^{2}+2 b_{2} b_{\pi} x_{2} x_{3}+\ldots
$$

Now the determinant of $g(x)$ is $2^{8} \mathrm{~A} / 2^{2}=64$, and hence we may suppose $g(x)$ equivalent to a form in which $b_{2,2}<\sqrt[7]{2^{6} 2^{6}}<4$.

Then on replacing x_{1} by $x_{1}+b x_{2}$, we may suppose $a_{12}=0$, 1. But
if $b_{22}=0,1,2$,

$$
a_{22}=\frac{1}{2}\left(a_{12}^{2}+b_{22}\right) \leqq \frac{3}{2},
$$

and so $a_{22}=1$. Hence we need only consider $b_{22}=3$, and then $a_{12}=1$, and

$$
f(x)=2 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}+2 x_{1}\left(a_{15} x_{3}+\ldots\right)+2 x_{2}\left(a_{23} x_{3}+\ldots\right)+\ldots
$$

Take now the part $h(x)$, not involving terms x_{1}, x_{2}, of the adjoint form of $f(x)$. Its determinant is

$$
\left|\begin{array}{ll}
u_{1 i} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| \mathrm{A}^{\mathrm{j}}=3 .
$$

Hence $h(x)$ is equivalent to a form in which $a_{33} \leq \sqrt[6]{64}=2$, and we need only consider the case $a_{33}=2$. Then $h(x)$ is equivalent to the extreme form (7). We now apply a linear transformation in only the six variables x_{3}, \ldots, x_{8}, transforming $h(x)$ into (7), with, however, variables x_{3}, x_{4}, \ldots, and this leaves unaltered the three terms $2 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}$ in the new $f(x)$. Let the adjoint form of the new $f(x)$ have $k(x)$, say, for the part independent of x_{1}. The determinant of $k(x)$ is

$$
2=a_{11} \mathbf{A}^{6}=\left\|\mathbf{A}_{r s}\right\| \quad(r, s=2,3, \ldots, 8) .
$$

We can now construct $k(x)$ knowing its determinant 2 and (7) the part independent of x_{1}, say. From (7), on permuting the variables it must take the form

$$
\begin{aligned}
& 2\left(x_{1}+\frac{1}{2}\left(x_{3}+x_{4}+x_{5}+x_{6}\right)+c_{1} x_{7}\right)^{2}+2\left(x_{2}+\frac{1}{2}\left(x_{3}+x_{4}+x_{5}\right)+c_{2} x_{7}\right)^{2} \\
& \quad+\sum_{r=3,4,5}\left(x_{r}+\frac{1}{2} x_{6}+c_{r} x_{7}\right)^{2}+\frac{3}{4}\left(x_{6}+c_{6} x_{7}\right)^{2}+c_{7} x_{7}^{2}
\end{aligned}
$$

where the c 's are constant. From its determinant, $c_{7}=\frac{2}{3}$. Also the coefficients of $x_{1} x_{7}$ etc., must be even integers. Hence (all $\left.\bmod 1\right)$,

$$
\begin{gathered}
2 c_{1} \equiv 0, \quad 2 c_{2} \equiv 0, \quad c_{1}+c_{2}+c_{r} \equiv 0 \quad(r=3,4,5), \\
c_{1}+\frac{1}{2}\left(c_{3}+c_{4}+c_{5}\right)+\frac{3}{4} c_{6} \equiv \mathrm{o}, \\
2 c_{1}^{2}+2 c_{2}^{2}+c_{3}^{2}+c_{4}^{2}+c_{8}^{2}+\frac{3}{4} c_{6}^{2}+\frac{2}{3} \equiv 0 .
\end{gathered}
$$

Hence $3 c_{6} \equiv 0$ and since $2 c_{r} \equiv 0(r=1,2,3,4,5)$, the last two equations show that $c_{6}=I / 3$, where I is an integer $\neq 0 \bmod 3$. By replacing x_{6} by $x_{6}-\lambda_{6} x_{i}$, we may take $\mathrm{I}= \pm 2$.

Since $c_{3} \equiv c_{4} \equiv c_{5} \equiv \mathrm{o}$ or $\frac{1}{2}$, we may, on replacing x_{3}, x_{4}, x_{5} by $x_{3}-\lambda_{3} x_{7}$ etc., suppose that

$$
c_{3}=c_{4}=c_{5}=c
$$

where $c=0$ or $\frac{1}{2}$.
The first gives $c_{1} \pm \frac{1}{2} \equiv 0$. Then $c_{2} \equiv \pm \frac{1}{2}$ and on replacing x_{1}, x_{2} by $x_{1}-\lambda_{1} x_{7}$ etc., we have $c_{1}=\frac{1}{2}, c_{2}=\frac{1}{2}$ and

$$
\begin{align*}
k(x)= & 2\left(x_{1}+\frac{1}{2}\left(x_{7}+x_{4}+x_{5}+x_{6}+x_{7}\right)\right)^{2} \tag{10}\\
& +2\left(x_{2}+\frac{1}{2}\left(x_{3}+x_{4}+x_{5}+x_{6}\right)\right)^{2} \\
& +\sum_{r=3,4,5}\left(x_{r}+\frac{1}{2} x_{6}\right)^{2}+\frac{3}{4}\left(x_{6} \pm \frac{2}{3} x_{7}\right)^{2}+\frac{2}{3} x_{i}^{2}
\end{align*}
$$

We can take $+\frac{2}{3}$ as otherwise on replacing x_{7} by $-x_{7}, x_{1}$ by $-x_{1}-\left(x_{3}+x_{4}+x_{5}+x_{6}-x_{7}\right)$, we get $h(x)$ again. The last terms of $k(x)$ can be written also as $\left(x_{7}+\frac{1}{2} x_{6}\right)^{2}+\frac{1}{2} x_{6}^{2}$.

Next the case $c_{3}=c_{4}=c_{5}=\frac{1}{2}$ is impossible since

$$
\frac{1}{2}\left(c_{5}+c_{4}+c_{5}\right)=\frac{3}{4} \quad \text { and } \quad \frac{3 c_{5}}{4}= \pm \frac{1}{2} .
$$

We must now construct $F(x)$ of determinant unity knowing $k(x)$ the part given by taking $x_{8}=0$. Interchange the role of x_{6}, x_{7}, and so we must have

$$
\begin{aligned}
\mathbf{F}(x)= & 2\left(x_{1}+\frac{1}{2}\left(x_{3}+x_{6}+x_{5}+x_{6}+x_{7}\right)+d_{1} x_{8}\right)^{2} \\
& +2\left(x_{2}+\frac{1}{2}\left(x_{3}+x_{4}+x_{5}+x_{6}\right)+d_{2} x_{8}\right)^{2} \\
& +\sum_{r=3}^{6}\left(x_{r}+\frac{1}{2} x_{7}+d_{r} x_{8}\right)^{2}+\frac{1}{2}\left(x_{7}+d_{7} x_{8}\right)^{2}+d_{8} x_{8}^{2}
\end{aligned}
$$

where the d 's are constants.

From the determinant of $F(x), d_{8}=\frac{1}{2}$.
From the coefficients of $x_{1} x_{8}$ etc., we have $(\operatorname{all} \bmod i)$

$$
\begin{array}{ll}
2 d_{1} \equiv 0, \quad 2 d_{2} \equiv 0, \quad d_{1}+d_{2}+d_{r} \equiv 0 \quad(r=3,4,5,6), \\
& d_{1}+\frac{1}{2}\left(d_{5}+d_{6}+d_{5}+d_{6}+d_{7}\right) \equiv 0, \\
& 2 d_{1}^{2}+2 d_{2}^{2}+\sum_{r=3}^{6} d_{r}^{2}+\frac{1}{2} d_{7}^{2}+\frac{1}{2} \equiv 0 .
\end{array}
$$

From the latter, on multiplying by 2 , since $d_{3}^{2} \equiv\left(d_{1}+d_{2}\right)^{2}$ etc., d_{7} is an integer which on putting $x_{7}=x_{7}-\lambda_{7} x_{8}$ can be taken as o. Also $2 d_{1}^{2}+2 d_{2}^{2}+\frac{1}{2} \equiv 0$, i. e. we can take $d_{1}=\frac{1}{2}, d_{2}=$ o or $d_{1}=0$, $d_{2}=\frac{1}{2}$.

The first leads to $d_{3}=d_{4}=d_{5}=d_{6}=\frac{1}{2}$ which does not satisfy the last equation but one above. The second leads to $d_{3}=d_{4}=d_{5}=d_{6}=\frac{1}{2}$, and gives the self-adjoint form

$$
\begin{align*}
\mathbf{F}(x)= & 2\left(x_{1}+\frac{1}{2}\left(x_{3}+x_{4}+x_{5}+x_{6}+x_{7}\right)\right)^{2} \tag{11}\\
& +2\left(x_{2}+\frac{1}{2}\left(x_{3}+x_{4}+x_{5}+x_{6}+x_{8}\right)\right)^{2} \\
& +\sum_{r=3,4,5,6}\left(x_{r}+\frac{1}{2} x_{7}+\frac{1}{2} x_{8}\right)^{2}+\frac{1}{2} x_{7}^{2}+\frac{1}{2} x_{8}^{2} \\
= & \sum_{1}^{8} x_{r}^{2}+\left(\sum_{1}^{8} x_{r}\right)^{2}-2 x_{1} x_{2}-2 x_{1} x_{8} .
\end{align*}
$$

This proves the result on interchanging the role x_{1}, x_{2} and noting that this and the previous interchange of x_{6}, x_{7} give a transformation of determinant unity. It is of interest to note that all the forms (in) or (4), (10) and (7) have been given by Korkine (4) and Zolatareff as extreme forms in 8, 7, 6 variables respectively.

