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ON THE ELEMENTARY SOLUTION. 217

On the elementary solution of the general linear
differential equation of the second order with
analytic coefficients ;

By T. Y. THOMAS axo E. W. TITT.

Introduction.

Consider the second order differential equation (') -

(A) F(u)= ; gzﬁt)x;i;ﬁﬁ+zf=%+b(¢:o,
2,8=1 a=1

where the g, f and b are analytic functions of the real variables
', ..., 2" in a region R of the (real) n-dimensional number space
(nz2). Or, more generally, owing to its invariance under coor-
dinate transformations, this equation may be considered to be defined
with analytic coefficients g, f and b over an analytic manifold I1 (*).
We assume that the determinant |g*#| does not vanish at any point
of the space under consideration.

The following paper is largely, although not entirely, expository.
It is concerned largely with Hadamard’s elementary solution of the
equation (A) as treated in Chapter III of his Lectures on Cauchy’s

(!) Hereafler the summation convention will be used.

(*) By definition an analytic manifold I is a Hausdorff space with coordinate
neighborhoods, homeomorphic to the interior of a spherical surface of n-— 1
dimensions in a Euclidean space of n dimensions, and such that the coordinate
relationships between the coordinates of two intersecting neighborhoods are
analylic.
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218 T. Y. THOMAS AND E. W. TITT.

Problem in Linear Partial Differential Equations ('). We have
made direct use of the invariant form ot the equation (A), the coeffi-
cients of which are the components of tensors, the well known
properties of normal coordinates, and have so treated the case where
n is even that the convergence proof can be given without resort to
Cauchy’s existence theorem (?). 'We believe that our treatment of
this problem will greatly facilitate the reading of Chapter III of
Hadamard’s Lecture by present day students of Tensor Analysis.

In paragraph 4 we have proved a new result of general interest
concerning normal coordinates, namely that a Riemann space is flat
if the determinant of the components of its fundamental metric tensor
is constant in any system of normal coordinates. We have shown
the significance of this result for the elementary solution of the equa-
tion (A).

Before proceeding to the discussion of our problem let us first state
precisely what is meant by a real analytic function of n real variables
xz',...,z". Areal function f(&', ...,z") defined in a region R(open
point set) of the real n-dimensional number space will be said to be
analytic at a point 2> = a* of R if there exists a neighborhood NC R
of this point such that in N the function can be represented by aseries
of the form

2 Ay o (2t —a ) (x— a* )% . (2" — a™)®n,
2.0, =0
which is absolutely convergent in N, the cocfficients A of the series
being real. The requirement of absolute convergente is no essential
restriction for our purposes. We recall that if there exists a point
x*=b* where b*£a* for a=1, ..., n such that for x*=>5" the
absolute values of the terms of the above series are bounded (necessary
condition for the series to converge as a simple series for some ordering

(*) Yale University Press, 1923. A French translation of this book has also
appeared, Le probléme de Cauchy et les équations aux dérivées partielles
linéaires hyperboligues, Hermann, Paris, 1932. Hadamard’s lectures may be
consulted for references to the original researches on the elementary solution of
the above equation.

(*) This method is in fact suggested by Hadamard on p. 101 of his Lectures.
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of its terms) then the series will be absolutely convergent in the
domain |z* —a*|<|b* —a*| and the convergence will be uniform
inany closed set contained in thisdomain. The function f(2,...,2"
is analytic in R if it is analytic at every pointin R. In the following
when we say that a series is convergent we shall always mean that it
is absolutely convergent.

1. INVARIANT FORMULATION OF THE DIFFERENTIAL EQUATION. — We assume
that u is a scalar function in the expression F(u) and likewise that
this expression is itself of scalar character under analytic coordinate
transformations in R or M. It follows immediately from these
assumptions that under such a transformation x — z the coefficients
g, fand b in F(«) transform in the following manner

I o
() rﬁ

g-rr:: ’
Jr* Qb
(1‘ l) ].0. :/.1 ()76 + "'13 ()’.l'c ,
da* T gl
b —=b.

The first set of the above equations expresses the fact that the quan-
tities g*# are Lthe components of a contrevariant tensor. Hence it is
possible to define a covariant tensor with components g,s(«) which
are the normalized cofactors of the g** and thus in the usual manner
introduce into the space a metric defined by

dr*= gu8(x) dz* drB.

‘We make no assumptions on this quadratic differential form other than
those above staded, namely that the coefficients g,s(x) are analytic
and that the determinant | g,3| does not vanish in the region R or the
manifold 9. The differential form defining the metric may be posi-
tive definite in which case we speak of R or J1U as a Riemann space,
or the form may be indefinite and we shall then call R or O a pseudo-
Riemann space [if the differential form is negative definite it may be
replaced by one which is positive definite by multiplying the diffe-
rential equation (A)by —1]. While this distinction in terminology
is not customary, it is convenient, as we shall find that certain results
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can be proved only when the quadratic differential form defining the
metric is positive definite, i.e. when we deal with a Riemann space in
the strict sense in which we employ that word.

On the basis of the above metric we can now define the Christoffel
symbols, the curvature tensor, etc. and in fact the various quantities
which one is accustomed to consider in a Riemann or pseudo-Rieman
space.

Let us now denote by u,,3 the components of the second covariant
derivative of the scalar u and let us put

T d*u Ju ( o
. = o8 =paf| .
(1.2) Au=g UyaB =8 [ J02% 018 019 | as } ]

We now see that the expression F(u) can be written in the form

(1.3) F(u)=Au + a*u,y+ bu,

where u,, denotes the partial derivative of u with respect to 2* and
where
*—= f“-}— gaw ; :v }

Since the right member of (1.3) is a scalar and since the first and last
terms of this expression are also scalars it follows that the middle
term a*u,,is likewise a scalar. Infactsince a*u,,is a scalar for arbi-
trary values of the u,, at a point P of the space it follows that the
coefficients a* are the components of a contravariants vector (quotient
law of tensors). A direct proof of the vector character of the a* can
be obtained from the second set of equations (1.1) by eliminating the
second derivatives by means of the equations of transformation of the
Christoffel symbols.

In particular if the coefficients a* and b are identically zero in the
expression F(u) the equation (A) reduces to be generalized Laplace
equation

(B) Au—o.
In most of the following discussion it is immaterial whether or not

the above quadratic differential form definess a Riemann or pseudo-
Riemann space. For definiteness however in our discussion (§ 2-
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§ 10) we shall assume that this differential form is positive definite, i.e.
that it defines the metric of a Riemann space. The modifications
necessary in case this differential form is not positive definitec will be
briefly discussed in paragraph 11.

2. AvrrLicATION OF NORMAL COORDINATES. — We shall now derive the
form which the equation (A) assumes in a system of normal coor-
dinates with origin at an arbitrary point P. We recall that these
coordinates are defined in a neighborhood of the point P and are
related to the underlying coordinates z* by analytic transformations.
As a result of such a tranformation to normal coordinates y* let us
suppose that

w(e) > u(y), g8 (xr) - h23(y), a*(x) - (), b(x) > d(y).

The first of these indicated transformations is of course not intended
to imply that the u(x) and u(y) are the same functions of the
variables * and y* in any sense, the same letter u being used in each
case since it is convenient to have a single letter torepresent the solu-
tion of the equation (A). When referred to the y coordinate system
the equation (A) therefore becomes

(2.1) F(u)=Au+ *u,q+ du=o,

where Au and u,, are defined as above with respect to the y system.
Asis well known the equations of the geodesics through the origin
of the normal coordinate system have the form

(2.2) yr=3:s,

where the £* are constants. If the £'s are the components of a unit
vector then the parameter s occurring in the above equations represents
the arc length measured from the origin. We recall that the trans-
formation x — y is such that the derivatives dz*/dy® have the values
2; at the origin of the normal coordinates. Thus ,3(0) = (gus),and
hence the function
L= (gap)ey*y?

gives the square of the geodesic distance of a point with coordinates y*
from the origin of the normal coordinate system. Let us recall also
that in the normal coordinate system the following identities are
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satisfied

& /laa()')}'qz has(0))7,
(2.3) § & i

[ {5}o=

We shall make frequent use of these identities (').

It will greatly facilitate matters if we now calculate the result of
substituting a function u(y, I') into the equation (2.1). If we look
upon I' as a function of the y* we have

_(ﬂ _ ﬂ 4 du o
Ay - ay* Jar 0).1'

Making this substitution and the corresponding substitution for the
second derivatives of « into the equation (2. 1) this equation becomes
d.

. AT + 24 (du, T) du AT

aT ar

A c"( du du or

hd‘)’“_‘_d_l‘(—))_'“)_‘_dl[:o

in terms of the following differential quantities :

Jar Jr du 0*u dJr
— h2B il i 1 R,
AT = Q¥ ()_)"1 d)'?” A ( ’ ) h*3 l)Fd)“ d)ﬁ

© 0T Jar ( o . J*u du | o)
h2B —_ , *u— h*B — = U,
Ar=4 <0y°‘ dy? d)""%a?l}) Au=h= (()}'“d)’f‘ 0)"’(235>

where the Christoffel symbols appearing in these expressions refer of
course to the normal coordinate system. By use of the first identity
(2.3) we have

(2.5) AT =4h% hog(0)y? hy-(0) y*=4T,

du Jd*u
(2.6) A} ( > I‘)_zh“ﬁdrd = kg (0) )y ° _2390[‘0)#-

‘When we replace the Christoffel symbols in the above expression for

(*) For a discussion of normal coordinates and their properties the reader
may be referred to T. Y. Tnouss, The Differential Invariants of Generalized
Spaces, Cambridge University Press, 1934, p. 84-87.
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AT by their values in terms of the A,s and their derivatives we have

dhy,

AT =2 /%8 hag(0) — 2h38 30 (—z)—,;%r + h3d yo d;"’ﬁ .

If we differentiate the first relation (2.3) with respect to y?, multiply
the result by 4*? and sum on the indices « and 3, we find that

7).
()),[5

L3 )0

=— n+ h*3 hag(0).

Hence the expression for A’ becomes

;9 1ogh
dy°

(2.7) AT =2n+y

/ H

where A is the determinant of the components A,5. 'When wereplace
the quantities appearingin (2.4 ) by their values given by (2.5),(2.6)
and (2.7) we find that u(y, I') must satisfy the equation

0-"+Zm’° l +Md—"'+F*(u.):o

3 4 —_
(2.8) AT ore 407 rgye + Mor

if it is to be a solution of (2.1); here

dlogh Jr

M=oan—+ )" 9y + (F’
F'(u)= A% + l'"ﬂ —+ du
)— - dy“ .

3. CoNDITION FOR THE DIFFERENTIAL EQUATION TO ADMIT A EUCLIDEAN SOLUTION.
— Our purpose will be to obtain a generalization of the ordinary
potential for the general (analytic) linear differential equation of the
second order (A). With this end in view let us first consider the
possibility of obtaining a solution of (A) or (2. 1) of the form

«=1logT (n=2),

3.
(3. u="Ir (n 2 3),

where p is a constant which we assume to be different from zeroandT,
as defined in paragraph 2, is the square of the geodesic distance from
an arbitrary but fixed point P. The functions u defined by (3.1)
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forpz(—?;—nz

are direct generalizations of the well known solutions
of the ordinary Laplace equation, i.e. the equation (B) for which the
associated Riemann spacein the Euclidean. 'We shall therefore refer
to a solution of the form (3. 1) as a Euclidean solution. For the case

under consideration the equation (2.8) becomes

d*u du
(3.2) 4F8F+Mjf+du:o.

Making the substitutions (3. 1) we now have (')
dloghn

dy°
1'[411—4+2n+y“d;j§h+20”‘aﬂ(°)7‘3J+ ar =o »23)

—4+2n+y° 4+ 2¢* hyg(0) )R +a’l‘log£o (n=2),

(3.3)

Evaluating the second of equations (3.3) at the origin we obtain

p(4p—4+2n) =0 so that p="2 — ” as in the case of the ordinary
solution. Hence (3.3) becomes
log
/% ddj;h 4+ 2¢* hag(0)3# + dllogT =0 (n=2),
(3.4) n23
dlogh ’ 2 —
p[}"’ d;!; +2c“lzag(o))'a’3J+ dlL =o [p:(q - n):l.

In other words the differential equation (A) will admit a non-trivial
Euclidean solution (3.1) if, and only if, p= (2__r) JSorn23 and the

2

corresponding condition (3.4) is satisfied in a system of normal coordi-
nates. While this condition is stated in normal coordinates it is in
reality a condition on the coefficients of the original differential equa-
tion (A). In the particular case that the equation (A) reduces to the
generalized Laplace equation (B) the condition (3.4) becomes

(') In writing équations (3.3) we have neglected the factor I in case n =2
and the factor I'’~! in case n>3 which is legitimate since I = o only at the
origin at which point the left members of these equations are continuous.
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’ ()(l)jih = o for all values of n>2. In consequence of (2.2) this latter
condition becomes s dl:;f k—o along an arbitrary geodesic through

the origin. Hence the differential equation (B)will admit a non-trivial
Euclidean solution (3.1) if, and only if, p= (Q—Z—nl JSorn2>3 and the

determinant | h,s| is constant in a system of normal coordinates.

It is evident from the foregoing discussion that (3.1) will define
solutions when the right members of these equations are constructed
with reference to a particular initial point P if, and only if, the above
conditions are satisfied in the normal coordinate system having its
origin at the point P. If (3.1) is to define solutions for arbitrary
initial points P these conditions must hold in every normal coor-
dinate system.

A. A NEW CHARACTERIZATION OF FLAT RIEMANN spaces. — Let us now
consider the significance of the condition that the determinant | 4|
be constant in every system of normal coordinates. We shall in
fact prove the following

LEMMA. — A Riemann space of dimensionality n22 is flat if, and
only if, the determinant | h,g| of the components of the fundamental
metric tensor is constant in every system of normal coordinates ().

We know that for any Riemann space the determinant |43} is a
relative invariant of weight 2 and that its first derivatives vanish at

(') The proof of this lemma does not require that the components g,3 of the
metric tensor be analytic functions. In fact it will be seen to be sufficient for
the components /i,5 of this tensor in any system of normal coordinates to have
continuous derivatives to the third order inclusive. We can then deduce the
equation (4.g) from (4.8) by differentiating this latter equation twice along an
arbitrary geodesic issuing from the origin instead of differentiating four times
with respect to the coordinates »* as is done above. For the existence of these
continuous derivatives of the /,q it is sufficient that the components g,3 of the
metric tensor in the underlying = coordinate system have continuous derivatives
to the order five inclusive. See T. Y. Tuomas, On normal coordinates ( Proc.
Nat. Acad. Sci., Vol. 22, 1936, p. 309).
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the origin of normal coordinates. The second derivatives of | hos
with respect to y*y’ when evaluated at the origin will define the com-
ponents G, of a relative tensor of weight 2 (T. Y. Tuomas, loc. cit.,
P- 97)- Infact it readily follows that

(&.1) Gu=1guv| &7 gij.x1r

where g;; ., are the components of the second extension of the funda-
mental metric tensor. Now between the components of this exten-
sion and the components B;;; of the curvature tensor we have the
relations

(b.2) Biji= gur.jt— &jk,its 3gij1= Birji+ Bjru,

(loc. cit., p. 131). From (4. 1) and the second set of equations (4.2)
we now have

2 .
(5.3) Gy=— glgpleu (Bu= & Binj),

where B,, are the components of the contracted curvature tensor.
Since the determinant |A,s| is constant by our hypothesis it follows
that G;=o0 and hence by (4.3) we have that B,,=o0. Now it is
well known that the vanishing of the contracted curvature tensor for
n =2 or 3 is the condition for a Riemann (or pseudo-Riemann) space
to be flat. This proves part of the above lemma.

To investigate the case n > 3 we shall need to make explicit use of
the expressions defining the components of the contracted curvature
tensor, namely the expressions

Jd (k Jd (k k m Al (m
0 =g g L) 14 L Ly
Now the left member of this equation vanishes as we have proved in
consequence of the fact that |A,3| is constant in any normal coordinate
system and it likewise follows from this same fact that the second
and third terms of theright member of the above equation vanish since
% k }_ 1 dlogh
ki{7 2 dy

(k.4)

By differentiation we obtain from the second set of identities (2.3)
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the relation
. LR kY
(5.6) d—v-‘-z;{l‘.l.s) )/—}—zgt.k%_) —o.

Hence if we multiply the right member of (4.4) by y'y/ and sum on
repeated indices the first term vanishes by (4.6) and the fact that the
left member of (1.5) is equal to zero. Hence only the term obtained
from the last set of terms in the right member of (4.4) remains, i. e.
we have
- fhLfmy
(4.7) ImI.HJ.“))/_o.
Now by making use of the equations obtained by differentiating the
first set of equations (2.3) it follows readily that
C) o v 0k,
%mlff"”“ AL

Hence from (4.7) we have

o 1y Ol Ol
(ll'-s) hxr /F’; Wll l)/:O.
Now differentiate the last set of equations with respect to y“y’y <y
and evaluate at the origin of normal coordinates. There results the
set of equations

( b. 9) g[m é’l‘klo"klu,abé’/d,cd —+ km.ac S bd + gk:n,adghl,bc] —o0.

Now in consequence of the vanishing of the contracted curvature

tensor we have that
5’“5’:’/,&-1: 0.

Hence if we multiply (4.9) through by g* g’ and sum on repeated
indices we find that

(%.10) 8 gk g GY! Fiy b Emik,cd == ©.

In a Riemann space this condition implies the vanishing of the second
extension of the fundamental metric tensor. In fact we can make a
coordinate transformation such that at an arbitrary point P of the
space the components g; will have the values 8. Then (4.10)
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becomes
Sthyab Eth ab = 0O,

where the summation extends over all possible values of the indices
l, h,a,b. Since all terms in this summation are either positive or
zero it follows that all components gy, ., vanish. Hence all compo-
nents B, of the curvature tensor vanisch and this is the well known
condition for ti:e space to be flat.

Conversely if the space is flat it follows immediately that the
determinant | A,3| is constant in any system of normal coordinates (').
This completes the proof of the above lemma.

The following result has now been proved : 4 necessary and suffi-
cient condition that the differential equation (B) defined in a Riemann
space of dimensionality n2 2 have the Euclidean solution

u =logT (n=n2),
2—n)

w="T > (n 23,

where the initial point P used in the construction of the function I is
arbitrary, is that the space be flat.

8. FunpaMENTAL FORMULE. — Let us now return to the consideration
of the general differential equation (A). 'We seek solutions of (2.8)
which are valid in a neighborhood of the origin of the normal coordi-

nate system. Since the coefficient of %in equation (2.8) vanishes

l“’
at the origin and since the coefficient of ~= does not vanish at the
origin we are led by analogy with ordmary dlﬁ"erentlal equations to
look for a solution of the form

(5.1) u=Tr{u,+ u,I' + u,I*+...],

(1) Infact if the space is flat we can introduce coordinates z* in the neigh-
borhood of any point such that with respect to the z system the g3 have
constant values. 1f P is any point having coordinates ¢* with respect to the
Z system then the normal coordinates y* with origin at P are related to the z*
coordinates by Z*— g*+ y*. Hence the components of the fundamental metric
tensor are constant in the y system and so in particular the determinant of these
components is constant.
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where the u; are analytic functions of the y* in a neighborhood of
y*=oand p is a constant. Substituting (5. 1) into (2.8) we have

2([)+/.)I‘/l f— |{ 4+ M) }+21‘/;+/:F(u‘)

k=0 k=0

Equating to zero the coefficients of like powers of I' this gives
du, 4 i
P[é")”‘)v? tw(dp—4 M)]—Oy

o
(3.2) ( (p+ k) [4)"’:—))—%‘—; + u“f./f—i—ﬁp—ﬁ+M)]+ F(ur—,)=o

(h=1,2,3,...).
When we make use of the equations (2.2) of the geodesics through

the origin, the equations (5.2) go over into the following system of
ordinary differential equations

[4 sl (G M')] —o,

(5.3)

{ (1)+A)[ 9*-{—[—-—*—(/,((4/\—*—4[7 + M )]—i—F(uk_.):o

(hA=1,2,3, ...),
where 4p,=/4p— 4+ 2n and M* is used to denote the functlion
M—2n.
If we equate the bracket expression in the first equation (5.3) to

zero we have a differential equation for which the variables are sepa-
rable. Integrating we obtain

x Q
(5.4) y= & s,

G

where Q is an arbitrary constant depending in general on the geo-
desic of integration and G is defined by

f —41\‘
°

We shall now show that G is an analylic function of the coordi-
nates y* in a neighborhood of the values y*=o0. Since M* is such a
function and since M* = o at the origin we have

M'=a,y*+ ﬂ,..g)’:)’g —+ (1137_)'“)'3‘)’7—4— ceee
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Making use of the substitution (2.2) we have
s Mi $
f Tds :f (@2 + aasZ*Bs + agsyZ*B2Vs 0. ] ds
0 0
1 I
=a,y*+ 5 ax3 y* ¥yt + gaag.{yiyfj T4,

and obviously this series will converge whenever the above series for
M* converges. Hence the function G is analytic as above stated and
has the value 1 at the origin.

Since G =1 for y* =0 we can expand the function (1} in a power
series about the values y*=o0. Similar power series expansions
exist for the coefficients in the expression F (u) defined by (2.1).
Hence we can find a neighborhood U (P) of the origin of normal
coordinates in which the expansions about y*=o of the functions

G, ~ and the coefficients of the expression F(u) are all convergent.

An integrating factor for the second set of equations (5.3) is

sk+r G
4(k+p)
and the general solution is
(5'5) uks’H—I"G —_— Z;(k—im_/“Sk+’I‘_iGF(llk_l) ds +- Rk (/.: I, 2, 3, ),
[}

where R, is an arbitrary constant. We shall leave the discussion of
the analyticity of u, and u, as defined by (5.4) and (5.5) until we
find what values may be given to the constant p.

6. A soLutioN wiTHOUT SINGULARITIES. — Let us first consider the
case p=o0 in equations (5.3). 'We can then take u, to be an arbi-
trary analytic function of the coordinates y* with a power series
expansion about y*=o0 convergent in a spherical neighborhood
U, (P) defined by Zy*y*<p where p is a positive constant such
that U,(P) is contained in the neighborhood U(P) defined in
paragraph 8. If u,, u,, ..., w_, are expandable in power series
about y* = o which are convergent in the neighborhood U, (P) we
shall prove that u, as given by (5.5) admits a similar power series
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expansion provided that Ry=o0. By the definition of the neigh-
borhood U(P), the fact that U, (P)C U(P) and the theorems on
differentiation and multiplication of power series it follows that the
function GF (ux_,) can be expanded in a series of the form

GF (o)) =c+ cay*+ a3y yB+ casy y* )BT+ ..

convergent in U, (P).

’

In the following we shall use ¢ to denote the value(—?—:i)- ‘When

p=o we then have p,=¢. Noting that ¢ ispositive or zero, making
use of the equations of the geodesics (2.2) and the above expansion
for GF(u;—,) we have

~ f s GF () ds

0

e et eyt 5
= ﬁlc[/-'+q+/-'+t/+l4 /‘_+(I+2-1—... (h21),

and this series converges in U, (P). Observe here that in evaluating
the above integral we have made use of the fact that the geodesic
given by (2.2) which issues from the origin and ends at an arbitrary
point of U,(P) is contained entirely in this neighborhood in conse-
quence of its spherical character. Since £+ p, is positive in (5.5)
it follows that u, G is analytic in a neighborhood of the values y*=o0
if, and only if, the constant R,—=o0. Hence

s

6.1 wp=— m [ s&* TG F (us—y) ds (h=1,2,3,...),

“au

is expandable in a power series about y* = o which is convergent in
the neighborhood U, (P).

Since u, and u, as given by (6.1) are defined and are in fact
analytic in the neighborhood U, (P) it follows that these functions
satisfy the equations (5.2). Hence (5.1) with p=o0 and the above
functions u, and u, as coefficients is a formal solution of (2.8) and so
of (2.1) in the neighborhood U,(P). It will be proved in para-
graph 10 that this formal solution is convergent in a neighborhood
U,(P)C U,(P) and in fact that the function z admits a power series
expansion in the y* about ¥* = o which is convergent in U.(P).
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Treorem L. —  If y* are the coordinates of a systemof normal coor-
dinates with origin at the point P and if u, is an arbitrary analytic
Sfunction of the y* defined by a power series convergent in a spherical
neighborhood U, (P)(C_U(P) where U(P) is the neighborhood specified
in paragraph 8, then analytic functions u, of the coordinates y*,
Sor k=1, 2,3, ..., are given by (6.1) such that the u, admit power
series expansions about y* = o convergent in the neighborhood U, (P)
and the differential equation (A) or more specifically (2.1) has the
solution

(6.2) u=u,+ t,F + u,T*+...

which admits a power series expansion in the y* about y*= o convergent

in a neighborhood U,(P)C U, (P).

7. THE ELEMENTARY SOLUTION FOR ODD VALUES OF n. — Suppose that
p#o0in(5.3). Then u, has the form given by (5.4). Since G is
an analytic function of the coordinates in the neighborhood of y*=o,
it is evident that we must take p, to be an integer o if u, is to be an
analytic function of the y* in the neighborhood of y*=o0. In the
following we consider only the case p,=o0; then — p has the value
L”;Q and so is equal to the number ¢ introduced in paragraph 6.

Now suppose that Q in (5.4) is a fixed constant independent of
the geodesic of integration and for definiteness let us take Q =1.
Since p, = o by the above assumption, the equation (5.4) becomes
u,— G~'. Hence u,, G and the coefficients in the expression F(u)
defined by (2.1) admit power series expansions, convergent in a
spherical neighborhood U, (P) contained in the neighborhood U(P)
defined in paragraph 5.

If nis an odd integer the expression k- p appearing in the deno-
minator of the first term of the right member of (5.5) which has the

value
2k+2—n
k—g=—7—
will always be different from zero. Since here p, = o it will follow
by the argument used in paragraph 6 that u, as given by (5.5) will
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be an analytic function in a neighborhood of y*= o if, and only if,

the constant R,=o0. Also by the argument of paragraph 6 the

functions u, given by
T

(7.1) wp=— Z(T_—_!]—)?‘_(I

fls"—‘GF(uk_l)d.s‘ (hk=1,2,3....),
admit power series expansions about y*=o, convergent in the
neighborhood U, (P). Corresponding to Theorem I we can now
state the following theorem.

Tueoren I1. — For odd values of the integer n the differential equa-
tion (A) referred to a system of normal coordinates y* with origin at
the point P, i. e. the equation (2. 1), will admit the solution

G+ w4+ 0,1+ w5 L
2—n

I :

(7.2) "w=—=

where the u, are defined by (7.1) and are analytic functions of the
coordinates y* having power series expansions about y* = o convergent
in a neighborhood U, (P) contained in the neighborhood U (P) defined
in paragraph 3. The numerator of this solution admits a power series
expansion in the y* about y*=o convergent in a neighborhood

U,(PYDU(P).

The proof of the convergence of the series mentioned in the above
theorem will be given in paragraph 10. The solution u given by
Theorem II will be analytic at all points of the neighborhood U,(P)
for which I is different from zero (i. e., with the exception of the
origin of normal coordinates for the case of the Riemann space under
consideration).

8. SIMPLIFICATION OF THE ELEMENTARY SOLUTION BY THE INTRODUCTION OF
SPECIAL COORDINATES. —  We shall now observe an interesting fact
regarding the solution (7.2) of the differential equation (2. 1) for the
case when n is an odd integer. Let us put

(8.1) Y tELI N I S

(ju—!

which defines § as an analytic function of the normal coordinates y*
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in a neighborhood N of the origin. In fact since the exponent n— 2
is an odd integer § will be defined uniquely in N and will have the
value 1 at the origin since G(O)=1. Hence a*="0(y)y* will
define an analytic coordinate transformation in a neighborhood V(P)
of the origin P of the normal coordinate system. We observe that

.. o> ~ .. .
the derivatives d_WTi have the values ¢§ at the origin P.  'With respect

to the coordinates #* in V(P) the solution u given by (7.2) will

become
1

(8.2) = s

—

[(Gas)povrod |

where the coefficients (g,3), are the components of the metric tensor
at the point P.

The above coordinates #w* have a unique determination when the
underlying x coordinale system and the origin P are specified [in
fact the only arbitrariness entering into this determination isinvolved
in the arbitrary constant Q in (5.4) and we have fixed the value of
this constant to be 1 in paragraph 7|. To deduce the behaviour of
the coordinates #* having a fixed point P as origin when the under-
lying coordinates * undergo arbitrary analytic transformations we
observe first of all that the quantity I' is a scalar under such transfor-
mations, i. e. I is a scalar function of the coordinates with respect to
arbitrary analytic coordinate transformationsin a neighborhood V (P)
when the initial point P entering into the definition of the function I'
is kept fixed. Similarly Al is a scalar under such transformations
by the definition of the operator A and the scalar character of the

. . . . . ar .
function I'. A similar remark applies to the quantity ¢* = since
the c* are the components of a contravariant vector. Hence

Jr

M = AT + ¢
>

—n

is a scalar function. It follows that the function G defined in para-
graph 3 and hence its inverse G~' are scalars under the above coor-
dinate transformations. In a similar manner we observe the scalar
character of the successive coefficients u; defined by (7.1) which
occur in the solution (7.2). Hence u defined by (7.2) is a scalar
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function of the coordinates with respect to arbitrary analytic coordi-
nate transformations in a neighborhood V(P) and hence the above
function 8(y) is a scalar under such transformations. _

Now under an arbitrary analytic transformation x - z of the
underlying coordinates x* in a neighborhood V (P), the normal
coordinates y* and y* which are determined by the z* and x*
coordinates and which have the fixed poind P as origin undergo the

transformation
. _ Py
yr—= % 8 = [ = .
J 37 [ 3 928 )y

Hence if we multiply each member of this equation by the above
scalar  we have

5(r)yr=af6(r)s®;
or

(8.3) W= a?;;ﬁ.

The results which we have now obtained are stated in the following
theorem.

Tueorem III. —  [f n is an odd integer it is possible to define in a
neighborhood V (P) of an arbitrary point P a system of coordinates w*
with origin at the point P and related analytically to the underlying
coordinates x* in V (P) such that the equation (A) with respect to the w*
coordinate system has the solution

1
u— ’

[l

[(ga3)pn™ wd| 2

where the coefficients (g.3), are the components of the fundamental
metric tensor svith respect to the w* coordinate system and evaluated at
the origin (or these coefficients are the components of the fundamental
metric tensor with respect to the underlying z* coordinate system
evaluated at the point P). The coordinates w* which can be so intro-
duced are determined uniquely by the underlying x* coordinate system
and the point P as origin and when the coordinates x* are subjected to
an arbitrary analytic transformation x - x in the neighborhood V (P)
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the coordinates w* undergo the linear homogeneous transformation (8.3)
with coefficients af equal to the derivatives 55 evaluated at the point P.

9. THE case oF EVEN vALUES oF n. — 1lf n2>/ and even we note
that (7.1) fails to define the coefficient u,. For these of n we are
again led by analogy with ordinary equations to look for a solution
of the form
(9.1) u:(z"kr") |0g1‘+<2u,(.r">r“‘/.

k=0 k=0
where the «; and ¢; are analytic functions of y* in a neighborhood of
y*=o0. When we substitute a function of the form (9. 1) into (2.8)
the terms containing logT as a factor are

(9.2) ; Ekrk—* [4‘}"’% “+ vi(4hk— 4+ M)] +‘2"I""F(w) logT.
\ k=0 t=0

The rest of the terms are given by

: [ —r-l‘ .o'dul" 7 1.
(9.3) %(A—q)rw L W+rlk<4A—4q—4+ml>}
+21‘“’/ F(uy) —{—21‘*“‘{43/” 3;: + v (8hA— 4+ M);.

k=0 k=u

When we equate to zero the coefficients of like powers of I in the
bracket expression in (9.2) and also the coefficients of like powers
of I'in (9.3) we obtain

ol .
(9.4) )L;_}"’—d}—,g.+u(,31 —=o,
(9.5) (A-—q)[z.)-ﬂ%’,_ﬁﬁu uk([;k—l—M*)] - F () = 0
(h=1,2,3, ..., ¢ —1),
(9.6) 4)"’%;4—00([,(1—!—1\1')-1—F(u,,_,):o.
(9.7) k[[g}"’%+vk(4k+4q+M*)]—+—F(u._,):o (A=1,2,3,....),
(9.8) (/.‘—q)[[;y”j-j—ii—kzq(dk-i— M*)J - F )

+ 4)”’—",,”)‘;" iy [8(k—q) +hg + M| =0

(A=¢g+1,9g+2....),
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where the quantity M* =M — 2n is introduced. When use is made
of equations (9. 7) these last equations become

(9.9) (A—1q) [[I.""z‘;—lé + e (4h+ M')]
—|—F<uk—|— 2‘—‘:_";)-%4(/.-_’])%—420 (k=qg+1,q+2,...).

Now equation (9.4) is identical with the first equation (5.2)
with p £ 0 and the equations (9.5) are identical with the first ¢ — 1
equations of the second set of equations (5.2). Hence the solution
of (9.4) is given by u=G~' where G is the function defined in
paragraph 8. We now define the spherical neighborhood U, (P) as
in paragraph 7. Also as in paragraph 7 we use the equations (9.5)
to define functions «,, ..., «,, of the y* which admit power series
expansions about y* = o convergent in U,(P). Inparticularifn =4
we have ¢ =1 so that there are no equations in the set (9.5) and this
step is to be omitted. In integrating the equations (9.6), (9.7) and
(9.9) it will follow by augument used in paragraph 6 that we must
take zero for the values of our constants of integration. We then
have

1 3
(9.10) = l;s_"/Gf; s7 lGIf‘(u,,,.)ds,
(9.11) ¢p=— lt_/f}"l'*_"c'_f s+ G F(v4_,) ds (k=1,2,3,...),
[

_ 1 ' ket 7 _ b
(9.12) U= 4’_—(‘/.'—r/)skG_/“‘s Gl(uk_, /-‘—q)ds

l &
_s"Gf s=1Gyyy ds (k=q-+1,qg+2,...).

From (9.10) and (9. 11) we determine ¢, and the ¢, as analytic func-
tions of the y* admitting power series expansions about y*=o0 con-
vergentin U,(P). Defining u, by an arbitrary power series about
y*=o convergent in U,(P) we arrive at a similar conclusion
regarding the functions u; determined by (9.12). In view of the
convergence proof in paragraph 10 we are now able to state the
following theorem.
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Taeorem IV. —  Let the y* be normal coordinates with origin at the

(

point P and let u, where g = —n—:—ﬂ be an arbitrary analytic function

of the y* admitting a power series expansion about y*= o convergent
in a spherical neighborhood U, (P ) U(P) where U(P) is defined in
paragraph 8. Then for even values of n24 the differential equation
(2.1) will admit the solution

(9.13) U=Jlogl' + ——,

I‘ 2

where

x

J :kal"‘ and K:G—'-*—iukl"‘,

k=0 k=1

the coefficients v, and u, being analytic function of the coordinates y*
with power series expansions about y* = o convergent in U,(P). The
o are determined by (9.10) and (9.11), the u,(k=1, ...,q—1)are
determined by (7.1) and the u,(k=q + 1, g+ 2, .. .) are determined
by (9.12). The above functions J and K admit power series
expansions in the y* about y*=o convergent in a neighborhood

U, (P)C U, (P).

If n = 2 the value of p, considered in paragraph 7, namely p, = o,
leads to p=o0. Hence (5.1) assumes the form (6.2) and we are
back to the theory of paragraph 6. However for n = 2 we can have
a solution of the form (9.1) where ¢ =o0. Taking ¢=o0 and equa-
ting to zero the coefficients of like powers of I' in (9.3) and in the
bracket expression in (9.2) we now have

dv,

(9.14) /U"’dyc—i—roM‘:n,

(9.15) k[&y“%‘%+vk(4k+M')]+F(vk_|):o (h=1,2,3,...),

(9.16) k[dy"z;—‘; e (Gk + M‘)] + Futey) + 4)/6%+ ve(8h + M) =o.
(k=1,2,3, ...).
From (9.14) we have v, = G~'. The function u, can now be taken

arbitrarily; we take u, to be defined by an arbitrary power series
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convergent in the spherical neighborhood U, (P ) U (P) where P is
the origin of the system of normal coordinates y* and U(P) is deter-
mined as in paragraph 8. Since (9.15) and (9.16) are the same as
(9.7) and (9.8) with ¢ =o it follows that the ¢,, ¢,, ..., and the
Uy, Uy, ..., will be determined by (9.11) and (9.12) with ¢ =0 and
will be given by power series about y*= o convergent in U, (P).

Tueorem V. —  1f n = 2 the differential equation (2.1) will admit
the solution
(9.17) w—Jlogl + K,
where

J :G—‘+2vkl“' and K:Z Tk,
k=0

k=1

the coefficients v; and u, being analytic functions of the normal coor-
dinates y* with origin at the point P and having power series expansions
about y* = o convergent in a suitably chosen neighborhood U, (P).
The above functions J and K admit power series expansions in the y*
about y* = o convergent in a neighborhood U ,(P)_U,(P).

The solution u given by Theorem 1V and Theorem V will be
analytic at all points of the neighborhood U,(P) with the exception
of the origin of normal coordinates at whichI'is equal to zero. Since
G(O)=1 the neighborhood U,(P) may be chosen so that in this
neighborhood K £ o for even values of n2> 4. Also for even values of
n2 4the value of J is uniquely determined by the choice of the arbitrary
constant Q (taken to be equal to 1 in paragraph 7). For the ordinary
Laplace equation (with n2>4 and even) the value of J is easily seen to
be zero from the equations determining the coefficients ¢, in the expres-
sion for J ; moreover taking the arbitrary function u,to be identically
zero the funktion K in the solution (9.13) has the value one and hence
the solution (9.13) reduces to the solution (3.1) treated in paragraph 3.

Similary for n=2 the neighborhood U,(P) can be takenso that J <0
in U,(P) and J is uniquely determined by the choice of the constant Q.
When the equation (A)is the ordinary Laplace equation (n = 2) and
the arbitrary function u, is taken to be identically zero, the function K
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will be identically zero and J will have the value one; hence (9.17)
reduces to the first equation (3.1).

10. Convercence proors. — Before proving the convergence of the
series appearing in the solutions (6.2),(7.2), (9.13),(9.17), it will
be convenient to make a change of unknown u in the differential equa-
tion (2.1), which will give us a new differential equation with its
corresponding function G equal to unity. Let us consider the diffe-
rential equation

(10.1) F,(a):GF(%):().

where I is defined by (2.1) and G as in paragraph 8. The equation
(10.1) can be written

(10.2) F,(;)EAi£+(c“+izh“fjd—l-j:i—’§':\g}%&-ddi:o.

where d, depends on the coefficients of F(u), the function G, and their
derivatives. Note that the metric associated with (10.1) or (10.2)
is the same as that associated with (2.1). Let the functions corres-
ponding to M* and G when constructed for the equation (10.1) be
denotedby M| and G,. Referringto the definition of M(= M* + 2r)
as given in paragraph 2 we have

o 3t
M} =" d;;;’,h + <c°‘+ 2 h*8 Jlogt lgﬁf; )2haa(0)3"’
or
N 0 logG—"
(10.3) M§ =M+ 407 3“,0 -

Along any geodesic issuing from the origin of the normal coordinate

system the second term in the right member of (10.3) is equal to 4s

dlogG— . . . « . .
s and this in turn is equal to — M*.  Hence this term 1s equal

to— M* in a neighborhood of the origin and hence in this neigh-
borhood M} =o0. From this it follows that G, = 1.

Let us now examine the relationship between the solutions (6.2)
constructed for the equation (2.1) and the corresponding solution
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for the equation (10.1). In (6.2) the function u, is arbitrary. We
define the corresponding function u, for the solution of the equation
(10.1) to be given by u,= Gu,. The formule (6.1) can be writen
in the form

l 5 :G _
(10.4) = C; — Zﬁm[ sk+4— G F (—l(l}i—’> ds}.

We shall use u, to denote the functions of the form (6.1) when
constructed for (10. 1) with the assigned arbitrary function u,. Assu-
ming that w,_, = Gu,_, it can be seen from (10.4) that u, = Gu,.
Making use of the definition of F,(u) and the fact that G, =1, the
equation (10.4) can be written

v S
I —
= krg—1 | —
Gup=— Zm/ sk+d l‘l(uk‘l)ds__llk.
0

Hence mere multiplication of all of the coefficients in the series defi-
ning the solution (6.2) by the quantity G yields the corresponding
solution for the equation (10.1). A similar statement can be made
for each of the solutions (7.2), (9.13), (9.17).

In the following we treat the series appearing in the solutions (6. 2),
(7.2),(9.13),(9.17) when constructed for the equation (10.1). We
show that these series define functions of y* which can be represented
by power series convergent in a neighborhood U, (P) of the origin of
normal coordinates; the same can be said for the corresponding
series constructed for the equation (2. 1) since G™* has a power series
expansion convergent in U,(P) and by the above the series for (2. 1)
can be obtained from the series for (10.1) by multiplication by the
function G—'.

For convenience in what follows we drop the subscripton F,( )
and the baron u,, i.e. we treat (2.1) under the assumption that G =1.

Let us recall that a power series p(y*) is said to be dominated by a
power series W'(y*) having positive coefficients, if each coefficient of ¢
is in absolute value less than or equal to the corresponding coefficient
of . If we put

U:‘)"—‘i“_)‘?-{")""'—n . ‘_,_)/n’

the positive constants m and rcan be so chosen that all the coefficients
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of F(u) will by dominated by

" __.
g
(=7)
Let w(y*) be any function analytic in the neighborhood of y*=o
such that
(10.5) W<

where 4 is zero or a positive integer and where the sign < means
« dominated by ». Then it follows that

adw < M iw - M/A(h+1)

g 1) R T

% r(.—fy l dy* Iy r?([—g>h
rj; r

These relations and the relation (10.5) will still hold if we increase
the exponent 4 in the right member for none of the coefficients in the
power series expansions of these right members will be decreased by
this operation. When we take account of this fact and also the
number of terms in the expression F(w) we see that we can write

. A "MAh(h+
(10.6) P(W)<in*‘——cml—)
T r

(%)

, n n?
m:ln(l+~—+»_>-
r I

where

Let us now consider the question of the convergence of the nume-
rator in the formal solution (7.2) of the equation (2. 1) for odd values
of the integer n. In this numerator the functions u,(y), u.(y),
u,(y), ..., admit power series expansions about the values y*=o
convergentin the neighborhood U, (P)as shownin paragraph 7. Let

us now assume that
Mk—l

for some value of the integer £>1. Since u,=1 the relation (10.7)

(10.7) Upmy <
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can obviously be satisfied for #=1 by taking M, =1. We are going
to show that we can write
M,

where the constant M, will be defined later. If in (10.5) we take
w=uwu_,, M=M,_, and A = 2(k —1) we have from (10.6) that -

m' My_(2k —2)(2k—1)
G\ A+ :
—_
(=7)

Hence from (7.1), recalling that G =1, we have

(10.8) o

(10.9) F(up,) <

"Mi_(2k —2)(2k —1) [ sh—1
10. g A
( [0) 177 4(/{—'(])3'{ A (l—_a-)zk+l

r

Let us now consider only geodesics (2.2) along which vy = Z,5* is
different from zero. Along such a geodesic we have s=vs. To
avoid confusion we introduce the letter¢ as the variable of integration
in the right member of (10.10). Then along such a geodesic we
have

1 s shk—1 I s (nt)—
(10.[1) :ng ————amdszc—kf _—‘I)t 2/{+Indt'
A G
r r

Upon making the substitution = = n¢ the right member of (10.11)

becomes
3

1 k=1
(10.12) ;kﬁ (—-———1):‘:—]({7.

r

Now consider the following relation involving the integrand function
of (10.12)
(10.13) R (,+E).

o\ A+ T\ %+ r
I— - I — -
r r

Using differentiation it is easily seen that the integral of the right
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member of (10.13) is given by
Ll gy

Combining the above results we can now replace (10.10) by the
following relation
m' Mi(ah —2)(2h —1)

A(k—q)k(l— ;)M

(10.14) wp 3

In deriving (10. 14) let us notice that we have shown that along geo-
desics for which v £ o, the right member of (10. 10)is actually equal
to the function (10.12) multiplied by a certain constant, and this in
turn is dominated by the right member of (10.14). Since the domi-
nating property depends only on the coefficients of power series, the
relation (10. 14) is generally valid irrespective of whether or not the
condition v; % o is satisfied. Defining M, by

_ m' M (2k—2)(2k—1)
(10.15) M= Lk—q)k )

the relation (10.14) yields the desired relation (10.8).

This completes the induction. Hence (10.8) is valid for £ =o,1,
2, 3,... with M, =1 and the successive values of the constants M,
given by (10.15).

Let us now select a set of n positive constants a* satisfying the
conditions X, a* < r and

m'| hag(0)a*ab | <m’|h¢3(o)|a1aﬁ
( zaaz>! ) ( Zaaa)’
1 — 1—
r r

such a choice of the a* is evidently possible. In view of (10.8), each
term of the power series expansion for u, will be in absolute value
less than the corresponding term of the expansion of

(10.16) =p <1

M,

Zaaa 2k
l —
r
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for values of y* satisfying | y*| < a*. Hence for the same values of y2,
each term of the power series expansion for 4, I'*(# not summed)
willbe in absolute value less than the corresponding term of the series
for

A 4 a8 1k
(10.17) Mg hag(0)aaB |k

‘\_‘m_aa‘ 2k
| — —=
P

The series of positive constants, the terms of which are the constants
(10.17)fork=o, 1, 2,...,is convergent in view of (10.16) and the

fact that L1m Mo * = m' (ratio test).
k—1

Now let us consider the double array, that has for its k ¢k row
the terms of the power series for u, I'*(# not summed) arranged in
some order, it being understood that the terms in any one column
involve the same y's raised to the same powers. Due to the convergence
of the series of constants (10.17), this double array is absolutely
convergent when summed by rows for values of | y*| < a*. Making
use of the theorem on double arrays ('), we will also have absolute
convergence when summing by columns. However this is nothing
more than a statement of the fact that the series appearing in the
numerator of the solution (7.2) defines a function of y* which can be
represented by a power series convergent in the neighborhood
y*|<a*. By taking the positive constants a* sufficiently small the
inequalities | y*| < a* will define a neighborhood U,(P) U,(P)
as defined in paragraph 7.

Let us now consider the case of even values of n2> 4 1.e. the conver-
gence of the series mentioned in Theorem IV. As before for k=1,

, ¢ —1 the relation (10.8) is valid; in particular

M,

(%)
Making use of (10.6) and (9.10) we have
o <m M,,_,(zq—z)(zq—l)f s71

A 2y+) d’
(*=7)

a8
(') E. Goursar, Cours d’ Analyse mathématique, 1929, p. 40g-414.

Uy <
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Using the process to obtain a dominant function for the above integral
which was previously used to obtain a dominant function for the
integral in (10.10) we have

(10.13) (o

where

_ m’M,,_l(zq—2)(2q—l)‘

N
0 4y

Making use of (10.18), (10.6), and (9.11) we have
N

1 o \#kry
l__ —
,.

mNe2tk+g—n2th+g) =),
Gkik-+q) T

(10.19) ' << (A=o0,1,2,...),

provided we choose

(10.20) Nk:

Let us now select the positive constant M, such that the arbitrary
function u, satisfies the condition

(10.21) Uy <<

From (10.19) and (10.6) we have
: m’N,{._,,_l(2k—2)(').k—l)’

S F(rig) < (l_ ?)

Viy € ———— 71 (k=g —+1, g+ ...)

2h-+1

(10.22)

Making use of (10.21), (10.22), (10.9) and (9.12) we have for
k:q—{—l that

Ni—gs \ m'(2k — 2) (2k—1) [~ st
uk<(Mk—1+ k—q) Ak —¢)s* A (l_?):A+I ds
,

s 3
N‘__’/ '¢l+\
+ = i ( P TET ds.

r
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Using the above process to obtain dominant functions for the
integrals in the above expression we are led to (10.8) for k=g + 1.
In fact it is readily seen that we can continue our induction to obtain
(10.8) for all values of k provided we take

} "(2k — - — hy.
(«10',‘)‘3) \“: <MA-—|+ l\k—l/—l) m le 2) (2A ]) + \A v

k—gq Gk(hk—q) I
(A=q+1,g+02 ...)

From (10.23) we deduce that 1\1:1—1‘ — m' as k - o making use of

the fact that%ﬁ1 - m' as k - from (10.20). Using (10.8) and

(10.19) and the theorem on double arrays as above, it therefore
follows that the functions J and K in (9.13) admit powers series
expansions in y* about y* == o convergent in a neighborhood U, (P) of
the origin of normal coordinates. This completes the convergence
proof required for Theorem IV.

With slight modifications the above proof for even values of 24 will
include the case n = 2 covered by Theorem V, the formulae (9.11)
and (9.12) now being the only ones involved in the determination of
the functions v, and u,. The proof of the convergence of the series
(6.2)is very similar to the one given above for odd values of n. We
might point out that in each of the solutions just mentioned u, is
arbitrary and this leads in place of (10.8) to a dominant relation of
the form

M
llk"{———;—TH (k:O,, I, 2, ...).
l —_— -
(-7)
14. Remarks on tHE NoeFINITE casE. — If R or OM is a pseudo-

Riemann space in which case the fundamental quadratic form is
indefinite we cannot choose the vector £ in equations (2.2) in such a
manner that the parameter s will represent the arc length measured
from the origin along all geodesics passing through the origin. These
exceptional curves are the so-called geodesics of zero length. Any
neighborhood N of the origin of normal coordinates will contain a
real hypersurface I' = o which will separate N into a portion N, over
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which T is positive and a portion N, over which I' is negative. By
multiplying the differential equation (A) through by —1 the two
portions N, and N, will be interchanged.

If we take the neighborhood N to be spherical (Euclidean definition
of distance in the normal coordinate system ) any point in N, can be
joined to the origin of normal coordinates by a geodesic lying entirely
in N, and this geodesic can be determined by a vector of unit length
as in paragraph 2 and hence admits a parameter s which can beinter-
preted as arc length. Confining our attention to the portion N, of
the neighborhood N all expressions in the preceeding sections will
retain their real meaning, viz. log I" and I'” in (3. 1), etc. will be real
functions. An inspection of the formul® defining G, the u, and the ¢,
reveals that for the indefinite case under consideration they are
likewise expressible as analytic functions of the y* admitting power
series expansions about y* = o convergentin some neighborhood of the
origin of normal coordinates. Also the convergence results of para-
graph 10 remain valid without modification. Hence Theorem I is
valid for the indefinite case as are also Theorem II, IV and V these
latter theorems giving real solutions of the differential equation (A)
in N,. Itisevidentalso that the special coordinates w*in paragraph 8
can be defined for the indefinite case and lead to the special form of
the elementary solution (real in N,) which is given by Theorem III.



