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ON THE ELEMENTARY SOLUTION. 217  
On the elementary solution of the general linear

differential equation of the second order with
analytic coefficients;

Br T. Y. THOMAS un E. W. TITT.

Introduction.

Consider the second order differential equation (') .

(A) F(ll)E E gïgäfi+zf“%+bu=o,
a,{3=1 a=1

where the g, fand b are analytic functions of the real variables
x', . . ., a:” in a region R of the (real) n-dimensional number space
(nî2). Or, more generally, owing to its invariance under coor-
dinate transformations,this equation may be considered to be defined
with analytic coefficientsg, fand b over an analytic manifold JR (2).
We assume that the determinant |g“3| does not vanish at any point
of the space under consideration.

The following paper is largely, although not entirely, expository.
It is concerned largely with Hadamard’s elementary solution of the
equation (A) as treated in Chapter 111 of his Lectures on Cauchy’s 

(‘) llereafter the summatiou convention will be used.
(*) By definition an analytic manifold 311 is a Hausdorfl' space with coordinate

neighborhoods, homeomorphic to the interior of a spherical surface of n-— 1

dimensions in a Euclidean space ofn dimensions, and such that the coordinate
relationships between the coordinates of two intersecting neighborhoods are
analytic.

Journ. de Math., tome XVIII. — Fasc. III, 1939. 29
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Problem in Linear Partial Differential Equations ('). We have
made direct use of the invariant form ot the equation (A), the coeffi—
cients of which are the components of tensors, the well known
properties of normal coordinates, and have so treated the case where
n is even that the convergence proof can be given without resort to
Cauchy’s existence theorem (2). We believe that our treatment of
this problem will greatly facilitate the reading of Chapter 111 of
Hadamard’sLecture by present day students of Tensor Analysis.

In paragraph 4 we have proved a new result of general interest
concerning normal coordinates, namely that a Riemann space is flat
if the determinant of the components of its fundamentalmetric tensor
is constant in any system of normal coordinates. We have shown
the significance of this result for the elementary solution of the equa-
tion (A).

Before proceeding to the discussion of our problem let us first state
precisely what is meant by a real analytic function of n real variables
æ', . . . , x”. A real function f(x', . . .,æ") defined in a region R(open
point set) of the real n—dimensional number space Will be said to be
analytic at a point a:“ = a“ of H if there exists a neighborhood N C R
of this point such that in N the function can be represented by a series
of the form

2 A°‘1___an(ar1 — a‘ )°‘i(.r’— a:)“î. . .(.1'"— a")°‘n,
a,...a,.=o

which is absolutely convergent in N, the coefficients A of the series
being real. The requirement of absolute convergente is no essential
restriction for our purposes. We recall that if there exists a point
œ“=b“ where b°‘#a°‘ for «::—1, . . ., n such that for x“=b°‘ the
absolute values of the terms of the above series are bounded(necessary
condition for the series to converge as a simple series for some ordering 

(‘) Yale University Press, 1923. A French translation of this book has also
appeared, Le problème de Cauchy et les équations aux dérivées partielles
linéaires hyperboliques, Hermann, Paris, 1932. Hadamard’s lectures may be
consulted for references to the original researches on the elementary solution of
the above equation.

(=) This method is in fact suggested by Hadamard on p. mr of his Lectures.
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of its terms) then the series will be absolutely convergent in the
domain lx“ —a“|<]b“ —à°‘| and the convergence will be uniform
in any closed set contained in this domain . The functionf(x' , . . . ,x"
is analytic in B if it is analytic at every point in B. In the following
when we say that a series is convergent we shall always mean that it
is absolutely convergent.

l . [NVARIANT FORMULATION OF THE DIFFERENTIALEQUATION. — We assume
that a is a scalar function in the expression F(u) and likewise that
this expression is itself of scalar character under analytic coordinate
transformations in B or JÏ‘L. It follows immediately from these
assumptions that under such a transformation a: —> ÊÎ; the coefficients
g, f and b in F(u) transform in the following manner

Ï-fît- n-1{fi (_)_IÎ Æ,
().1'JL ().rf5

()’.r°'__ ?().I'°‘ ().1'Î5

(1.1)  _.f:a.: +().1'“ 0i« =]“
!) =]).

The first set of the above equations expresses the fact that the quan-
tities g°‘B are the components of a contrevariant tensor. Hence it is
possible to define a covariant tensor with componentsgag(æ) which
are the normalized cofactors of the g°‘3 and thus in the usual manner
introduce into the space a metric defined by

(l.r’= g1{3(.1) dx“ d.rB.

We make no assumptions on this qu adraticdifferential form other than
those above staded, namely that the coefficients gap(æ) are analytic
and that the determinant |gagl does not vanish in the region R or the
manifold Jl‘t. The differential form defining the metric may be posi-
tive definite in which case we speak of R or on as a Riemann space,
or the form may be indefinite and we shall then call R orJÏ'L a pseudo-
Riemann Space [if the differential form is negative definite it may be
replaced by one which is positive definite by multiplying the diffe-
rential equation (A)by — 1]. While this distinction in terminology
is not customary, it is convenient, as we shall find that certain results
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can be proved only when the quadratic differential form defining the
metric is positive definite, i.e. when we deal with a Riemann space in
the strict sense in which we employ that word.

On the basis of the above metric we can now define the ChristofÏel
symbols, the curvature tensor, etc. and in fact the various quantities
which one is accustomed to consider in a Riemann or pseudo-Rieman
space.

Let us now denote by u,a$ the components of the second covariant
derivativeof the scalar u and let us put

' ()“! u Ôll O'
. _=_ 013 E ,:{3 _ _ _ .(1 2) An “AB 5 [ ()J-a ()_1l3 ()«l'°

__ 15 il 

We now see that the expression F(u) can be written in the form
(1.3) F(ll)EALL—l—LI“ll,a—l—bll,

where u… denotes the partial derivative of 11 with respect 10 x“ and
where

(t“:f“+ gP-"
; :v }.

Since the right member of (1 .3) is a scalar and since the first and last
terms of this expression are also scalars it follows that the middle
term a°‘u,ais likewise & scalar. In fact since a“u,a is a scalar for arbi-
trary values of the u,a at a point P of the space it follows that the
coefficients a“ are the components ofa contravarianls vector (quotient
law of tensors). A direct proof of the vector character of the a“ can
be obtained from the second set of equations(l . 1) by eliminating the
second derivatives by means of the equations of transformation of the
Christoffel symbols.

In particular if the coefficients a“ and 1) are identically zero in the
expression F(u) the equation (A) reduces to be generalized Laplace
equation
(B) Au: o.

ln most of the following discussion it is immaterial whether or not
the above quadratic differential form definess a Riemann or pseudo-
Riemann space. For definiteness however in our discussion (& 2-
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% |0) we shall assume that this diflerentialform is positive definite, i.e.
that it defines the metric of a Riemann space. The modifications
necessary in case this dtflerentialform is not positive definite will be
brie/ly discussed in paragraph “.

2. APPLICATION OF NORMAL COORDINATES. — We shall now derive the
form which the equation (A) assumes in a system of normal coor-
dinates with origin at an arbitrary point P. We recall that these
coordinates are defined in a neighborhood of the point P and are
related to the underlying coordinatessc“ by analytic transformations.
As a result of such a tranformation to normal coordinates y°‘ let us
suppose that

u<w>+u<yt g*fi<a->—>lnfi<y>, a“(l‘)—>t‘“(y% b(w)—>d(y)-
The first of these indicated transformationsis of course not intended
to imply that the u(æ) and u(y) are the same functions of the
variables a:“ and y°‘ in any sense, the same letter u being used in each
case since it is convenient to have a single letter to represent the solu-
tion of the equation (A). When referred to the y coordinate system
the equation (A) therefore becomes
(2.1) F(u)=Au—f—c“u…+du=o,

where Au and u… are defined as above with respect to they system.
As is well known the equations of the geodesics through the origin

of the normal coordinate system have the form
(2-2) )’°‘=î“-‘;

where the E“ are constants. If the E’s are the components of a unit
vector then the parameters occurringin the above equationsrepresents
the arc length measured from the origin. We recall that the trans—
formation a: —>y is such that the derivatives dæ°‘/dy5 have the values
8: at the origin of the normal coordinates. Thus hag(0> = (gag)? and
hence the function

P = (é':p)py“y5

gives the square of the geodesicdistanceof a point with coordinatesy“
from the origin of the normal coordinate system. Let us recall also
that in the normal coordinate system the following identities are



222 T. Y. THOMAS AND E. W. TITT.

satisfied
haa()')}'a= llaa(°)) “)

2.3 '/< > %
We shall make frequent use of these identities (‘).

It will greatly facilitate matters if we now calculate the result of
substitutinga function u(y, l‘) into the equation (2.1). If we look
upon F as a function of the y“ we have

Æ_Æ+@Wdy“ — (À)“ 01‘ ())'°‘
 

Making this substitution and the corresponding substitution for the
second derivatives of u into the equation (2. 1) this equation becomes

d’u , du ()Il
Tr-“Ar+zA, (ar’r>+ dFAI‘

+A‘u+c°‘<
()u + @ £' _d)'“ 01‘ ()3'“
 >+du=o

in terms of the following differential quantities :

AlI‘: h°‘l$ âl‘ ()I‘ A(du >=h13
0211 ()F

dy“ 5ÿ’ 5r’ T «W àT:î’
,, 021‘ ()T ' a , ()’u du { a l= P — — , * = 1t5 — -—-* )Ar ": <dy°‘dyfj d “la-Bi) A ” " (ayxdyff d…r°la.3$>
  

where the Christoffel symbols appearing in these expressions refer of
course to the normal coordinate system. By use of the first identity
(2. 3) we have
(2.5) A I‘: ’h°‘l5Ph…,(o0)1"’ /137(o)3'T=5T,

du “ 1)‘-’u d‘u.(2.6) A: ((Î‘ , I‘) =2h l‘a—Wg‘h_m(o))“=2yïJLdI‘di—î

When we replace the Christoffel symbols in the above expression for 
(’) For 3 discussion of normal coordinates and their properties the reader

may be referred to T. Y. THOMAS, The Dij]‘erential Invarz‘ants of Generalised
Spaces, Cambridge University Press, 1934, p. 84—87.



ON THE ELEMENTARY SOLUTION. 223

AI‘ by their values in terms of the ha5 and their derivatives we have

'-° ' dh , dh
AI‘: 2th/‘13(°)_ 2hlëîfi ())? + Il“? )'°

03?“
.

If we difierentiate the first relation (2 . 3) with respect to y3, multiply
the result by ha?» and sum on the indices et and B, we find that

5 0/1…—
(J

()_)'t‘
/flfiy : —— n + Il“? [zap (o).

Hence the expression for AF becomes

rr)logh(2.7) AI‘=2n+j" ())” ’

where h is the determinant of the componentsha3. When we replace
the quantities appearingin (2 . 4) by their valuesgiven by (2. 5), (°). . 6)
and (2. 7) wc find that u(y, I‘) must satisfy the equation

d‘-’u , d”(( du
dl“-” +4"Wdl‘—dy°+ MäÎ‘ +F (u)=o (2.8) 4r

if it is to be a solution of ('2. r); here
() log IL ()I‘.1_

ob"?
““ dy“

Ædy“

M = ?. n + )"’ ’

F'(u)=A'u+c“ +du.

5. CONDITION FOR THE DIFFERENTIALEQUATIONTO ADMIT A aucuns… SOLUTION.
— Our purpose Will be to obtain a generalization of the ordinary
potential for the general (analytic) linear differential equation of the
second order (A). With this end in view let us first consider the
possibility of obtaining a solution of (A) or ( 2. 1) of the form

u=logI‘ (n=2),
3.( [) u=l‘” (n g 3),

wherep is a constant which we assume to be different from zero and F,
as defined in paragraph 2, is the square of the geodesic distance from
an arbitrary but fixed point P. The functions u defined by (\3. 1)
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(z — n)

2

of the ordinary Laplace equation, i. e. the equation (B) for which the
associated Riemann space in the Euclidean. We shall therefore refer
to a solution of the form (3.1) as a Euclidean solution. For the case
under consideration the equation (2. 8) becomes

 are direct generalizations of the well known solutionsforp=

{l'—'n du(3.2) 4r-{i—P+MÜF+du=o.

Making the substitutions (3.1) we now have (')
Ôl0"l't ‘” + 20“ hfl5(0)3'3 + dl‘log: o (n = 2),0)”

p[41)—4+2n+y°d;îîh+20“ha5(0))’5J+ dl‘ =0 l'îê3)-

 —-Â+ 2n+y°
(3.3)  
Evaluating the second of equations (3.3) at the origin we obtain

2 — Il
2
 as in the case of the ordinaryp(4p—4+2n)=o so that 1):

solution. Hence (3 . 3) becomes

[côlogh
ây°

(3-4) n g 3

p[)'°â;îîh+2c°‘hap(o)y3J+ dÎ :o [ =(2—n)]_
In other words the dtflerential equation (A) will admit a non—trivial
Euclidean solution (3 . 1) if, and only if, p = (2 … ")

for n 23 and the
2

 +2c°‘haç(o)ylï +dFlogl‘=o (n=2),   
correspondingcondition (3 . 4) is satisfied in a system ofnormal coordi—
nates. While this condition is stated in normal coordinates it is in
reality a condition on the coefficients of the original difTerential equa—
tion (A). In the particular case that the equation (A) reduces to the
generalized Laplace equation (B) the condition (3.4) becomes 

(‘) In writing équations (3.3) we have neglected the factor I‘—1 in case n = 2

and the factor l‘/*—1 in case nî3 which is legitimate since I‘=o only at the
origin at which point the left members of these equations are continuous.



ON THE ELEMENTABY SOLUTION. 225  "
():)îîh : 0 for all values of nê 2. In consequence of (2. 2) this latter

. . l " . .condition becomes s
d ;; h = 0 along an arb1trary geodes1c through

the origin. Hence the diÿ"erential equation (B) will admit a non—trivial

Euclideansolution (Il. !) if, and only if, p: (—2—;—n2for nî 3 and the

determinant
[ haïr. |

is constant in a system of normalcoordinates.
It is evident from the foregoing discussion that (3. 1) will define

solutions when the right members of these equations are constructed
with reference to a particular initial point P if, and only if, the above
conditions are satisfied in the normal coordinate system having its
origin at the point P. If (3. 1) is to define solutions for arbitrary
initial points P these conditions must hold in every normal coor-
dinate system.

4. A NEW CHARACTERIZATION OF PLAT RTEMANN SPACES. — Let us now
consider the significance of the condition that the determinant |ha5|
be constant in every system of normal coordinates. We shall in
fact prove the following

LEMMA. — A Riemann space of dimensionality nê2 is flat if, and
only if, the determinant ih13| of the components of the fundamental
metric tensor is constant in every system ofnormalcoordinates (').

We know that for any Riemann space the determinant lhagë is &

relative invariant of weight 2 and that its first derivatives vanish at 
(‘) The proof of this lemma does not require that the components gag of the

metric tensor be analytic functions. In fact it will be seen to be sufficient for
the components It;g of this tensor in any system of normal coordinates to have
continuous derivatives to the third order inclusive. We can then deduce the
equation (&.9) from (&…8) by difierentiating this latter equation twice along an
arbitrary geodesic issuing from the origin instead of diflerentiating four times
with respect to the coordinates 3'°‘ as is done above. For the existence of these
continuous derivatives of the 1113 it is sufficient that the components gag of the
metric tensor in the underlying x coordinate system have continuous derivatives
to the order five inclusive. See T. Y. THOMAS, On normal coordinates (Proc.
Nat. Acad. Sci., Vol. 22, 1936, p. 309).

Journ. de Math., tome xvm. — Faso. m, 1939. 30
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the origin of normal coordinates. The second derivatives of |h…i
with respect to y"y’when evaluated at the origin will define the com-
ponents GM of a relative tensor of weight 2 (T. Y. THOMAS, loc. cit.,
p. 97). In fact it readin follows that
(h. 1) G“: {g…

[
é”/gi/.u—

where g,-j,kl are the components of the second extension of the funda-
mental metric tensor. Now between the components of this exten-
sion and the components B,… of the curvature tensor we have the
relations
("n 2) Bin-[= gil—.il -— é'jk,ily 3gu.u= B,-…+ Bit—il;

(loc. cit., p. 131). From (44. 1) and the second set of equations (4. z)
we now have

(!*-3) le=— â]g…l“u (Bk1=é”/Biku)a

where BM are the components of the contracted curvature tensor.
Since the determinant |ha3| is constant by our hypothesis it follows
that G…=o and hence by (4.3) we have that B…=o. Now it is
well known that the vanishing of the contracted curvature tensor for
n = 2 or 3 is the condition for a Riemann (or pseudo—Riemann)space
to be flat. This proves part of the above lemma.

To investigate the case n > 3 we shall need to make explicit use of
the expressions defining the components of the contracted curvature
tensor, namely the expressions

0 k () k A“ m ]“ rn”"“ B“: Wiu “ Wi Al + i …} iii l_ { mji iAl
Now the left member of this equation vanishes as we have proved in
consequence of the fact that |h13| is constant in any normalcoordinate
system and it likewise follows from this same fact that the second
and third terms of the right member of the above equation vanish since

{
k

%_
£ à log/z

_ki _
2 dyi(ü-4)  

By differentiation we obtain from the second set of identities (2.3)



ON THE ELEMENTARY SOLUTION. 227
the relation

) ' /i ‘
. . k .(ll-.6) _(îi'jivw”W+2iÏ/t'i‘)"=0-

Hence if we multiply the right member of (4.4) by y"yf and sum on
repeatedindicesthe first term vanishes by (4.6) and the fact that the
left memberof (»’1 . 5) is equal to zero. Hence only the term obtained
from the last set of terms in the right member of (4.4) remains, i. e.
we have

ll - l I“ m} .z .,‘_( -/) lmii %j/f}JJ _0.

Now by making use of the equations obtained by difl'erentiating the
first set of equations (2. 3) it follows readin that

{ [- ) ,À.___I k (”dh/"”,
l Ill/fl) _

2
y IL [ dy"

Hence from (4 . 7) we have
_, ,… ()h,,… dh,,k .: '._("‘.8) [l‘] ll

l—()—)Î W “ll—0.

Now differentiate the last set of equations with respect to y“y"_y"_yd
and evaluate at the origin of normal coordinates. There results the
set of equations
(ll' - 9) o”lm €“ [ é'k!)L,u[)é'/il,cd+ gkm.acghLb:l+ gkrlr,adglLl,bc] : 0-

Now in consequence of the vanishing of the contracted curvature
tensor we have that

g“é’u,u= 0-

Hence if we multiply (4.9) through by g“'” g““ and sum on repeated
indices we find that
(& . IO) "!…é’hkg“"gbdérlh,abgmk,cd=0_

In a Riemann space this condition implies the vanishing of the second
extension of the fundamental metric tensor. In fact we can make a
coordinate transformation such that at an arbitrary point P of the
space the components g,—,— will have the values 8}. Then (4.10)
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becomes
ér”l,üb é’lh nb: (),

where the summation extends over all possible values of the indices
1, h, a, b. Since all terms in this summation are either positive or
zero it follows that all componentsg,,…,, vanish. Hence all compo-
nents Bij/‘.; of the curvature tensor vanisch and this is the well known
condition for the space to be flat.

Conversely if the space is flat it follows immediately that the
determinant [bag] is constant in any system of normal coordinates (').
This completes the proof of the above lemma.

The following result has now been proved : A necessary and suffi-
cient condition that the dtfierential equation (B) defined in a Riemann
space ofdimensionalitynê 2 have the Euclidean solution

u=logl‘ (11:12),

lt=P ? (n g 3),

where the initial point P used in the construction 0] the function F is
arbitrar_y, is that the space be flat.

5. FUNDAMENTAL FORMULÆ. -—— Let us now return to the consideration
of the general differential equation (A). We seek solutions of (2. 8”)

which are valid in a neighborhood of the“origin of the normal coordi—
nate system. Since the coefficient of——Td‘îin equation (“Z. 8) vanishes

at the origin and since the coefficient of:;——iÎdoes not vanish at the
origin we are led by analogy with ordinary

1idiff<oarential
equations to

look for a solution of the form
(5.1) u=I‘/'[uo+u,l‘+u,P+.…], 

(1) In fact if the space is flat we can introduce coordinates 5“ in the neigh—
borhood of any point such that with respect to the &" system the gag have
constant values. lf P is any point having coordinates q°‘ with respect to the
.îv‘system then the normal coordinates_y°‘ With origin at P are related to the .î‘°‘
coordinates by ”Æ“: q°‘+y°‘. Hence the componentsof the fundamental metric
tensor are constant in the )! system and 50 in particular the determinant of these
components is constant.
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where the ui are analytic functions of the y“ in a neighborhood of
y“ = 0 and 1) is a constant. Substituting (5 . 1) into (2. 8) we have

2<p + /-->l‘… '-'—'

{ 41°%‘% + …41+ 41» — 4 + M)
}
+2r...p(…_):o

[”=" /f=0

Equating to zero the coefficients of like powers of F this gives

p…4"——';+1(0(4p—4 +M)]=o,
(5.2) \

_
,a()”k

(

<p+ 1)[4, ,,,.    (—,lk+4P—4+M):I+F(llk—l)=0
(À”: [, 2, 3, . ..)

When we make use of the equations (2.2) of the geodesics through
the origin, the equations (5. 2) go over into the following system of
ordinary dilÏerential equations

…[4çi'_’ + u.,(4p,+ M*)] = o,

(5—3)

((p—+

k)
[451%ÈÈ

+ llk(4/f—l— 4p.+ M')] + F(uk_.)=o
(À“:l, 2, 3, ).,

where 4p,=4p—4+2n and M* is used to denote the function
M — 2n.

If we equate the bracket expression in the first equation (5. 3) to
zero we have a differential equation for which the variables a1e sepa—
rable. Integrating we obtain

. ()
(0-4) H.,: —‘— s-/'1,

G

where Q is an arbitrary constant depending in general on the geo—
desic of integration and G is defined by

=e-1-f‘“
—IIS

0

We shall now show that G is an analytic function of the coordi—
nates y“ in a neighborhoodof the valuesy“: 0. Since M* is such a
function and since M*= 0 at the origin we have

W: a.)“ + 0133423+ ”1373'“)"3)'7+-- --
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Making use of the substitution (2. 2) we have
S M* Sf Tcls =f [aaî°‘+ aa3zïgfis+ aa{3751î35Ys=+;…]ds

0
'

o

l I .:: aay°‘+ ; aagy°‘y3+ âaa37)'1y‘b)'Y—l—. . …

and obviously this series will converge whenever the above series for
M* converges. Hence the function G is analytic as above stated and
has the value 1 at the origin.

Since G=l for y°‘= o we can expand the function & in a power
series about the values y“=o. Similar power series expansions
exist for the coefficients in the expression F(u) defined by (2. 1).
Hence we can find a neighborhood U(P) of the origin of normal
coordinates in which the expansions about y°‘=o of the functions
G l and the coefficients of the expression F(u) are all convergent.’ G

An integrating factor for the second set of equations (5 . 3) is
sk+p.—1G
[t(/f + p)

and the general solution is

(5.5) uksk+P1G:_ Î/f—Œf, sk+l‘t—'GF(uk_i)ds+ Rk (I:: [, 2, 3, ...),

where B,. is an arbitrary constant. We shall leave the discussion of
the analyticity of u0 and uk as defined by (5.4) and (5.5) until we
find what values may be given to the constantp.

6. A SOLUTION WITHOUT smoummrms. — Let us first consider the
casep: 0 in equations (5. 3). We can then take u0 to be an arbi—
trary analytic function of the coordinates y°‘ with a power series
expansion about y°‘=o convergent in a spherical neighborhood
U1 (P) defined by Zy°‘y°‘<p where {: is a positive constant such
that U,(P) is contained in the neighborhood U(P) defined in
paragraph 5. If un, u., ..., u,… are expandable in power series
about y“ = 0 which are convergent in the neighborhood U, (P) we
shall prove that uk as given by (5.5) admits a similar power series
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expansion provided that R,.=o. By the definition of the neigh-
borhood U(P), the fact that U.(P)ÇU(P) and the theorems on
differentiation and multiplication of power series it follows that the
function GF(u,…) can be expanded in a series of the form

G F(uk—1 ) = c + cl)/“+ 013)'°‘y5+ flag—{yïyfiyY+. . .

convergent in U (P).
In the following we shall use q to denote the value—;2)- When

p = 0 wc then have 1). = q. Noting that q is positiveor zero, making
use of the equations of the geodesics (2.2) and the above expansion
for GF(u,.-.) we have

!—m:;f Sk+'/—"1GF(lt/ç_l)d8
0  __L “ cl)“ _ Gai“ .?" ._ 4/.‘[/f+q+k+q+l /.‘+q+2+u°] (1:21),

and this series converges in U‘ (P). Observe here that in evaluating
the above integral we have made use of the fact that the geodesic
given by (2. 2) which issues from the origin and ends at an arbitrary
point of U.(P) is contained entirely in this neighborhood in conse—
quence of its spherical character. Since /c+p, is positive in (5 .5)
it follows that u,_.G is analytic in a neighborhoodof the values y“: 0
if, and only if, the constant R,.= o. Hence

(6.1) uk=—Œî+_qG[sk+q—1GF(uk_i)ds (k=1,2,3, ...),

is expandable in a power series about y°‘ = 0 which is convergent in
the neighborhood U, (P).

Since u0 and u,_… as given by (6.1) are defined and are in fact
analytic in the neighborhood U,(P) it follows that these functions
satisfy the equations (5. 2). Hence (5. 1) with 11 = 0 and the above
functions u0 and u,. as coefficients is a formal solution of (2.8) and so
of (2.1) in the neighborhood U.(P). It will be proved in para-
graph '10 that this formal solution is convergent in a neighborhood
U.(P)C U, (P) and in fact that the function u admits a power series
expansion in the 7“ about V“ = 0 which is convergent in U.(P).
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THEOBEM [. —— Ify°‘ are the coordinates of a system of normal coor—
dinates with origin at the point P and if u0 is an arbitrary analytic
function of the y°‘ defined by a power series convergent in a spherical
neighborhoodU4 (P)Ç U(P) where U(P) is the neighborhood specified
in paragraph 5, then analytic functions u,. of the coordinates y°‘,
for k = I, 2, 3, . . ., are given by (6. l) such that the u,. admit power
series expansions about y°‘: 0 convergent in the neighborhood U1 (P)
and the dzflerential equation (A) or more spec1fi'cal{y (2.1) has the
solution
(6.2) u=u.,+uJ‘+uJ”—l—….

which admits a powerseries expansionin the y°‘ abouty°‘= 0 convergent
in a neighborhoodU2(P)C U., (P).

7. THE ELEMENTARY SOLUTION ron ODD VALUES or n. — Suppose that
p#o in (5.3). Then u., has the form given by (5.4). Since G is
an analytic function of the coordinates in the neighborhoodofy“=o,
it is evident that we must takep, to be an integer ËO if u" is to be an
analytic function of the y°‘ in the neighborhood of y°‘ : 0. In the
following we consider only the case p' = o; then —p has the value@ and so is equal to the number 9 introduced in paragraph 6.

Now suppose that Q in (5.4) is a fixed constant independent of
the geodesic of integration and for definiteness let us take Q = 1.
Since p, = 0 by the above assumption, the equation (5.4) becomes
u() = G“'. Hence un, G and the coefficients in the expression F(u)
defined by (2.1) admit power series expansions, convergent in a
spherical neighborhood U. (P) contained in the neighborhood U(P)
defined in paragraph 5.

If n is an Odd integer the expression k+p appearing in the denc—
minator of the first term of the right member of (5 . 5) which has the
value

k __ 2/f + 2 —— It

will always be different from zero. Since here p, = O it will follow
by the argument used in paragraph 6 that u,. as given by (5.5) will
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be an analytic function in a neighborhoodof y°‘= 0 if, and only if,
the constant R.: o. Also by the argument of paragraph 6 the
functions uk given by

'
I"*=— W——q_b  (7.1) fls"—1GF(uk_l)ds (Ir—1, 9. 3. ...),

admit power series expansions about y°‘=o, convergent in the
neighborhood U. (P). Corresponding to Theorem I we can now
state the following theorem.

THEOREM Il. — For Odd values of the integer n the diÿ'erentialequa-
tion (A) referred to a system of normal coordinatesy°‘ with origin at
thepoint P, i. e. the equation (‘2 . I), will admit the solution

G—‘ + uil‘+ lt._,I"—+— u3F“+. ..
(“l—ll:

l‘ —.»

 (7.2) (i:

where the uk are defined by (7.1) and are analytic functions of the
coordinates y°‘ havingpower series expansions about 3!“ = O convergent
in a neighborhood U. (P) contained in the neighborhood U (P ) defined
inparagraph 5. The numerator of this solution admits a power series
expansion in the y°‘ about y“ = o convergent in a neighborhood
U2(P)DU.(P)-

The proof of the convergence of the series mentioned in the above
theorem will be given in paragraph 10. The solution u given by
Theorem Il will be analytic at all points of the neighborhood U2(P)
for which [‘ is different from zero (i. e., with the exception of the
origin of normal coordinates for the case of the Riemann space under
consideration).

8. SlMPLIl-‘ICATION OF THE ELEMENTARY SOLUTION BY THE INTRODUCTION OF

SPECIAL COORDINATES. — We shall now observe an interesting fact
regarding the solution (7 . 9.) of the differential equation (2.1) for the
case when It is an Odd integer. Let us put
(8.1) [ =G“‘+II.I‘+IQP+ItJ“+….(jh—2

which definesô as an analytic function of the normal coordinatesy“
Journ. de Math.. tome XVIII _ Faso III. …3.. 31
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in a neighborh00d N of the origin. In fact since the exponcnt n — 2
is an Odd integer 0 will be defined uniquely in N and will have the
value 1 at the origin since G(O)= i. Hence w“: 6(y)y°‘ will
define an analytic coordinate transformation in a neighborhoodV(P)
of the origin P of the normal coordinate system. We observe that

. . à "‘ \ . . .the derivatives
d—WÎ3

have the values oË at the origin P. With respect
to the coordinates w“ in V(P) the solution il given by (7.2) will
become '

1(8.2) ”:_—Tm,
[(é’afi )pw°‘u-Ë$

_|

_
where the coefficients (gag)p are the components of the metric tensor
at the point P.

The above coordinates w“ have a unique determination when the
underlying a: coordinate system and the origin P are specified [in
fact the only arbitrarinessentering into this determination is involved
in the arbitrary constant Q in (5.4) and we have fixed the value of
this constant to be 1 in paragraph 7]. To deduce the behaviourof
the coordinates W“ having a fixed point P as origin when the under—
lying coordinates æ°‘ undergo arbitrary analytic transformations we
observe first of all that the quantity F is a scalar under such transfor—
mations, i. e. F is a scalar function of the coordinates with respect to
arbitrary analyticcoordinate transformations in a neighborhood V(P)
when the initial point P entering into the definition of the function I‘
is kept fixed. Similarly Al” is a scalar under such transformations
by the definition of the operator A and the scalar character of the

. . . . . àI‘ .function I‘. A Similar remark applies to the quantity c°‘W since
the 0“ are the componentsof a contravariant vector. Hence

‘

()I‘
(l_l"‘
 M*= AF + r“ ——- 2 11

is a scalar function. lt follows that the function G defined in para-
graph 5 and hence its inverse G”' are scalars under the above coor-
dinate transformations. In a similar manner we observe the scalar
character of the successive coefficients uk defined by (7.1) which
occur in the solution (7.2). Hence u defined by (7.2) is a scalar
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function of the coordinateswith respect to arbitrary analytic coordi—
nate transformations in a neighborhood V(P) and hence the above
function 0(y) is a scalar under such transformations. _

Now under au arbitrary analytic transformation x—+æ of the
underlying coordinates a:“ in a neighborhood V(P), the normal
coordinates y°‘ and ;“ which are determined by the a:“ and :Ë°‘

coordinates and which have the fixed poind P as origin undergo the
transformation

. _ ()æaN‘: a? 't“, (L‘} = —: '
e _s) [ ; < 013 )p]

Hence if we multiply each member of this equation by the above
scalar 6 we have

9(y>y°‘=aëë(ÿ)ÿfi;
or
(8.3) w“:aäËfi.

The results which we have now obtainedare stated in the following
theorem.

Tunonm Ill. — If n is an add integer it is possible to define in a
neighborhoodV(P) ofan arbitrary point P a system of coordinatesw°‘
with origin at the point P and related analytically to the underlying
coordinatesæ°‘ in V (P) such that the equation (A) with respect to the w°‘
coordinate system has the solution

1"_ |!!—-2>’
[(ga3)pw°‘wfî

_|

2

where the coefficients (g…)p are the components of the fundamental
metric tens0r with respect to the w“ coordinate system and evaluated at
the origin (or these coefficients are the componentsof the fundamental
metric tens0r with respect to the underlying x“ coordinate system
evaluated at the point P). The coordinates w°‘ which can be so intro-
duced are determineduniquely by the underlying æ°‘ coordinate system
and the point P as origin and when the coordinates x“ are subjected to
an arbitrary analytic transformationa: —> 5 in the neighborhoodV (P)



236 T. Y. THOMAS AND E. W. TITT.

the coordinatesW“ undergo the linearhomogeneous transformation (8. 3)
dac“With coefficients a#“equal to the deri'—-—vatwes
ô_:l5

evaluated at the poznt P.

9. Tm: CASE OF EVEN VALUES OF n. — lf nê/; and even we note
that (7.1) fails to define the coefficient u,,. For these ofn we are
again led by analogy With ordinary equations to look for a solution
of the form
(9.1)

za=<2wl"‘)logl‘+<ZU4]“>P“'Àk=0 l-'=0

where the a,— and v.— are analytic functions of y°‘ in a neighborhood of
y“ = 0. When we substitute a function of the form (9. 1) into (2. 8)
the terms containinglogl‘as & factor are

(9.2)
32k1‘*—‘[4°—+v;.(4A—4+M]+ZI‘AF(…

logI‘.
\k=o  

The rest of the terms are given by

(9.3)
Ê<k

— q)l‘*—fl— {4y°%“â + …… —4q —4+ n)}

+Azol‘k—VF(llk)HÊ)rk_1{4V°À—k+
v;_(8k— [; + M)}.

When we equate to zero the coefficients of like powers of [‘ in the
bracket expression in (9.2) and also the coefficients of like powers
of I‘ in (9.3) we obtain
(9-4) 4y'f%+uoir=o,
(9-5) (A‘—q)[4)d°‘-—'—"‘+uA4k+\l*)]+F(zq-,)=o

(l\—l, 2, 3, ...,(/—1),
(9-6) 4)"‘ %+«..(4q+M*)+F…,,_,):…
(9-7) k[4y°%+m<4k+4q+M*)]+F<w-_.>=u «A-=x,z,3..... >,.

(9-8) (l-‘— (1) [4y°%Ê + uk(4k+ M*)] + F(u,Ç_,)

+ 4)"’
ddV;_—ï

+ “A—vl8Ur—q)+4q+ M‘l=°
(À=q+l, q+2. .)
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where the quantity M* = M — 2n is introduced. When use is made
of equations (9. 7) these last equations become

(9-9) (k— (1)
[4_r°%ï—â

+ uk(!.k+ M‘)]
+ F<u,…— ‘Î£_—I_—ql>

+4(/.‘— q)v,…,=o (k=q+1,q+2, ...).

Now equation (9.4) is identical with the first equation (5.2)
withp ;£ 0 and the equations (9 . 5) are identical with the first q — 1

equations of the second set of equations (5.2). Hence the solution
of (9. 4) is given by u = G“ where G is the function defined in
paragraph 5. We now define the spherical neighborhood U‘ (P) as
in paragraph 7. Also as in paragraph 7 we use the equations (9. 5)
to define functions u,, . . ., II,… of the y“ which admit power series
expansions about y“ = o convergent in U‘ (P). ln particularifn: 4
we have q = 1 so that there are no equations in the set (9. 5) and this
step is to be omitted. ln integrating the equations (9.6), (9. 7) and
(9.9) it will follow by augument used in paragraph 6 that we must
take zero for the values of our constants of integration. We then
have

]
a

(9.10) (\,——
lel—l_G—£

87 lGlî(ll,/_l)dî,

(9.11) “1-=— lÎ/fÏî’:+—q(Ïf sk+‘I—‘GF(vk_l)ds (k=1, 2, 3, ...),
0

__ __l__ "
k_| ? __ :fl1(9.12) u;.._ !.(_/f—f/)S"G£s Gl(uk—1 A__q)ds

“3%f 8k“‘G‘r‘k—ads (k=q+x,q+2, ...).

From (9. 10) and (9. 1 1) we determine vo and the v,. as analytic func—
tions of the y°‘ admitting power series expansions about y“ = o con-
vergent in U.(P). Defining uq by an arbitrary power series about
y°‘ = o convergent in U, (P) we arrive at a similar conclusion
regarding the functions uk determined by (9. 12). In view of the
convergence proof in paragraph 10 we are now able to state the
following theorem.
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Tnuonw IV. — Let the y°‘ be normal coordinateswith origin at the
(. n — 2) . . .pomt P and let u,, where q _
——2—— be an arbztrary analyttc function

of they“ admitting a power series expansion abouty“ = o convergent
in a sphericalneighborhoodU1 (P)Ç U(P) where U(P) is defined in
paragraph 5. Then for even values of nî4 the diflerential equation
(“2 . I) will admit the solution
(9.13) U=Jbgl‘+ (ll—‘ll’

r_?“
where

J =Ë v,.l‘k and K : G—'+Ëuk1"‘,
k=0 k=1

the coefficients vk and uk being analyticfunction of the coordinatesy“
withpower series expansions abouty°‘: o convergent in U1 (P). The
vk are determinedby (9. 10) and (9. 1 1), the u,.(lc= 1, .. . , q—— 1) are
determinedby (7 . 1) and the uk(k = q + 1, q + 2, . . .) are determined
by (9 . 12). The above functions J and K admit power series
eæpansions in the y°‘ about y“= o convergent in a neighb0rhood
U,(P)ÇU,(P).

If n = 2 the value ofp| considered in paragraph 7, namely p, = @,

leads to p=o. Hence (5. I) assumes the form (6.2) and we are
back to the theory of paragraph 6. However for n = 2 we can have
a solution of the form (9. 1) where q = o. Taking q = 0 and equa-
ting to zero the coefficients of like powers of I‘ in (9. 3) and in the
bracket expression in (9. 2) we now have 0‘ .(9.14) 4y°d)‘,g+voM =n,

(9.15) k[4y°âä% +vk(4k+M*)]+F(vk_l)=o (k=1, 2, 3, ...),

(9.16) k[4y°% + nk(_’|k + M‘)] + F(uk_, ) + 4y‘ÎZ—Ï_Ê+ vk(8/f + M*) = o.

(k=I, 2, 3, …)
From (9. 14) we have v() = G”'. The function u0 can now be taken
arbitrarily; we take u0 to be defined by an arbitrary power series
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convergent in the spherical neighhorhood U1 (P)Ç U (P) where P is
the origin of the system of normal coordinatesy“ and U(P) is deter—
mined as in paragraph 5. Since (9. 15) and (9. 16) are the same as
(9.7) and (9.8) with q=o it follows that the v., v2, .. ., and the
u., ua, ..., will be determined by (9. 1 I) and (9. 12) with q = 0 and
will be given by power series about y“ = o convergent in U‘ (P).

Tascam V. — If n = 2 the dfi"erentialequation (“Z. 1) will admit
the solution
(9.17) u:Jlogl‘—l—K,

where

J =G“‘+Xfil“' and K=EuJ"‘,
À=0[:=l

the coefjicients vk and uk being analytic functions of the normal coor—
dinatesy°‘ with origin at the point P and havingpowerseriesexpansions
about y“ =o convergent in a suitably chosen neighborhood U. (P).
The above functions J and K admit power series expansions in the y°‘
{about y“ = 0 convergent in a neighborhood[} (P)C U, (P ).

The solution u given by Theorem IV and Theorem V will be
analytic at all points of the neighhorhood U,,(P) with the exception
of the origin of normal coordinates at which Pis equal to zero. Since
G(O)= 1 the neighhorhood U3(P) may be chosen so that in this
neighhorhood K 56 0 for even values of n24. Also for even values of
n 24 the value ofJ is uniquely determinedby the choice of the arbitrary
constantQ (taken to be equal to 1 in paragraph 7). For the ordinary
Laplace equation (with n24 and even) the value of J is easily seen to
be zero from the equations determining the coefficientsvk in the expres-
sion for .] ; moreover taking the arbitrary function u., to be identically
zero the funktion K in the solution (9. 13) has the value one and hence
the solution (9.13)reduces to the solution (3. 1) treated in paragraph 5.

Similary for it: 2 the neighhorhood U2(P) can be takenso that J #0
in U2(P) and .] is uniquely determinedby the choice of the constant Q.
When the equation(A) is the ordinary Laplace equation (n = 2) and
the arbitrary function u0 is taken to be identicallyzero, the function K
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will be identicallyzero and J will have the value one; hence(9. 17)
reduces to the first equation (3. 1).

10. CONVERGENCE raoors. — Before proving the convergence of the
series appearing in the solutions (6.2), (7.2), (9. 13), (‘.). 17), it will
be convenient to make a change of unknown u in the differentialequa-
tion (2.1), which Will give us a new differential equation with its
corresponding function G equal to unity. Let us consider the diffe-
rential equation
(10.1) F,(ä):GF(%>:.._

where F is defined by (2. I) and G as in paragraph 5. The equation
(10. 1) can be written

(, —l\ _ _010À Êl+dlu=0,(10.2) F,(ä) E Au + (C°‘+ 12h13
()),? dy“

where a'‘ depends on the coefficientsofF(u), the function G, and their
derivatives. Note that the metric associated with (10. 1) or (10. 2)
is the same as that associated with (2.1). Let the functions corres-
ponding to M* and G when constructed for the equation (10.1) be
denoted by M: and G, . Referring to the definition ofM(= M* + 2n)
as given in paragraph 2 we have 0_ . “_|

M: =)”
d;îzh + (C°‘+ 2h°‘i$

QI—°äî%>
2haa(°))fi

OP

'dlotïG*'(10.3) Mî .=M'+4J’°—vÏ.—a—'

Along any geodesic issuing from the origin of the normal coordinate
system the second term in the right member of (10.3) is equal to 43
d log G“1

ds
to-—M* in a neighborhood of the origin and-hence in this neigh-
borhood M: = 0. From this it follows that G, = 1.

Let us now examine the relationship between the solutions (6.2)
constructed for the equation (2.1) and the corresponding solution

and this in turn is equal to — M*. Hence this term is equal
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for the equation (10. 1). In (6.2)_the function u., is arbitrary. We
define the corresponding function u,, for the solution of the equation
(10. !) to be given by u,,= Gu,. The formulæ (6. 1) can be writen
in the form

! 1
.—

_ ] 'Gu_(10.4) uk: '(î1_ W[ si+q—.GF(_G£_')ds}.

We shall use Ît,, to denote the functions of the form (6.1) when
constructedfor(10. 1) with the assigned arbitrary function LÎ,. Assu-
ming that Îzk_, : Guk_. it can be seen from (10.4) that ü,.= Gu,,.
Making use of the definition of F. (17) and the fact that G. = 1, the
equation (10.4) can be written

.SI ._‘ _— k+ —1 ‘ __(Jltk—M m] $ '/ r1(l(k_l)dÏ—Ilk.
0

Hence mere multiplication of all of the coefficients in the series defi—
ning the solution (6.2) by the quantity G yields the corresponding
solution for the equation (10. 1). A similar statement can be made
for each of the solutions (7 . 2), (9. 13), (9. 17).

In the following we treat the series appearing in the solutions (6 . 2),
(7.2), (9.13), (9.17) when constructed for the equation(10.1). We
show that these series define functions of y“ which can be represented
by power series convergent in a neighborhood U,(P) of the origin of
normal coordinates; the same can he said for the corresponding
series constructed for the equation (“Z. 1) since G“' has a power series
expansion convergent in U,(P) and by the above the series for(2. I)
can be obtained from the series for (10.1) by multiplication by the
function G“.

For convenience in what follows we drop the subscript on F,( )
and the bar on zÎ,_, i.e. we treat (2. 1) under the assumption that G = 1.

Let us recall that a power series p(y“) is said to be dominated by a
power series ‘F(y°‘) having positive coefficients, if each coefficientof cp

is in absolute value less than or equal to the corresponding coefficient
of «la. If we put

a :_)" + )"? + )"' + . . . + y",

the positive constantsm and rcan be so chosen that all the coefficients
[nurn du Mail]… Inm— Y\'lÎÏ _ l'«‘aan l" .n'ln 32
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of F(u) will by dominated by
m

.
O'

(* — »)

Let w(y“) be any function analytic in the neighborhood of y“ = o
such that
(10. 5) w <

where 12 is zero or a positive integer and where the sign < means
« dominated by ». Then it follows that âw < Mh d'-’ w (; M [t(/t + 1)— —————» , & +=-r(l_;\“' W ral—f)"/ !‘

These relations and the relation (H). 5) will still hold if we increase
the exponent 12 in the right member for none of the coefficients in the
power series expansions of these right members will be decreased by
this operation. When we take account of this fact and also the
number of terms in the expression F(w) we see that we can write

(10.6) F(w) <%|__ _.

< r)
, n n'—’m=m1+——l—_ -,. ,,.-

,

where

Let us now consider the question of the convergence of the nume—
rator in the formal solution (7 . 2) of the equation (2. 1) for Odd values
of the integer n. In this numerator the functions u4 (y), u2(y),
u,(y), . . . , admit power series expansions about the values y°‘ : o
convergent in the neighborhood U1 (P) as shown in paragraph 7. Let
us now assume that

Mk—l

for some value of the integer kg 1. Since no: 1 the relation (10. 7)

(10.7) ((À-_,<<_
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can obviously be satisfied for lc = 1 by taking M0 = 1. We are going
to show that we can write

Mk

where the constant Mk Will be defined later. If in (10. 5) we take
w = u,._., M: Mk_. and h : 2(lc— 1) we have from (10.6) that ’

m'Mk_l(2k——2)(2k—— !)
O' 2k+1

.

l.._ i.( .)
Hence from (7. 1), recalling that G = 1 , we have

m’ M;…(zk— 9.)(2k — 1) "
sk—‘

,.

Let us now consider only geodesics (2 . 2) along which n : BGE“ is
different from zero. Along such a geodesic we have a=*qs. To
avoid confusion we introduce the lettert as the variable of integration
in the right member of (10.10). Then along such a geodesic we
have

1
“' s"—‘ 1

..— ( M )k_'(10.11)
—ÿîf

(——Û-md8:g_—,£f(
“I]t zk+lndL

0 0 l——)I‘ I‘

(10.8) llk'<

\(10.9) F(uk_l) \ 
(10.10) (tk-< 
Upon making the substitution : : nt the right member of (10.1 1)
becomes

.O' k—ll0. ?. —l— ___—__? 7_( l )
Uk£ ([ T)2k+l

d
,.

Now consider the following relation involving the integrand function
of(10.12)
(10.13) “" < T“—' <,+î).:— :k+1 ‘L' ‘:k+l ,.

l — — 1 _ _
I‘ [‘

Using differentiation it is easily seen that the integral of the right
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member of (10. 13) is given by
6

“:"—‘ r :" a"

f<—T>z—kfi[<I—r>+ZFJŒ=—<——a—gk'" l—; ' [{
I———>,.

Combining the above results we can now replace (10.10) by the
following relation

m’ MH2/r — 2) (24° —— |)

4<k— q) k(r— ;)"
 (10.14) uk :

In deriving (10. 14) let us notice that we have shown that along geo-
desics for which ?] # 0, the right memberof( 10. 10)is actuallyequal
to the function (10. 12) multiplied by a certain constant, and this in
turn is dominated by the right member of (10. 14). Since the domi-
nating property depends only on the coefficients of power series, the
relation (10. 14) is generally valid irrespective of whether or not the
condition vq # 0 is satisfied. Defining Mk by

_ m’Mk_1(2k——z)(2k—l)(10.15) Mk_ 4(k——q)k
 ’

the relation (10. 14) yields the desired relation (10.8).
This completes the induction. Hence (10.8) is valid for k = o, 1,

2, 3,. . . With M0 = 1 and the successive values of the constants M,.
given by (10.15).

Let us now select a set of n positive constants a“ satisfying the
conditions Z.. a“ < r and

m’lha3(o)alafil<m’|h«p(0)laïafi_ [_

<‘* ,. > <‘— . )

such a choice of the a“ is evidently possible. In view of (10.8), each
term of the power series expansion for u,_. will be in absolute value
less than the corresponding term of the expansion of

 (10.16)   
M,€
EqŒ“ ak

! .— ,. 
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for values ofy“ satisfying | y°‘

i < a“. Hence for the same values ofy“,
each term of the power series expansion for ukF“'(k not summed)
will be in absolute value less than the correspondingterm of the series
for

1
, °‘ 15 "

(1047) ___—“"…”(0W” ' .
23an :k[_ _,.

The series of positive constants, the terms of which are the constants
(10. 17) fork= o, 1, 2, . . .,is convergent in view of (10. 16) and the
fact that I.;irn MTL

:m' (ratio test).
Now let us consider the double array, that has for its k th row

the terms of the power series for u,, l"‘(k not summed) arranged in
some order, it being understood that the terms in any one column
involve the same y’s raised to the same powers. Due to the convergence
of the series of constants (10.17), this double array is absolutely
convergent when summed by rows for values of {y°‘ | < a“. Making
use of the theorem on double arrays ('), we will also have absolute
convergence when summing by columns. However this is nothing
more than a statement of the fact that the series appearing in the
numerator of the solution (7 . 2) defines a function ofy°‘ which can be
represented by a power series convergent in the neighborhood
y°‘| < a“. By taking the positive constants a“ sufficiently small the
inequalities |y°‘|< a“ will define a neighborhood U,(P)Ç U,(P)
as defined in paragraph 7. <

Let us now consider the case of even values of nê 4 i.e. the conver—
gence of the series mentioned in Theorem IV. As before for k = 1 ,

. . ., q — 1 the relation (10.8) is valid; in particular
M,_1

0-
!”,—|| .

l — _,.

Making use of (10.6) and (9. 10) we have

PO<[};/M7_1(2q—2)(2q_1)f3
sq__‘

â_g'/ O'
‘ 24/+1

d$‘
] _ .,.

(‘) E. Uounsn, Cours d’Analyse mathématique, 1927, p. 409-414.

(l,/__, < 
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Using the process to obtain a dominant function for the above integral
which Was previously used to obtain a dominant function for the
integral in (10. 10) we have (10.13) v..<

(,_ €)….,…

where
N=gfiMHüq—mwq—n_

0
411

Making use of(10. 18), (10.6), and (9. 1 1) we have

(10.19) ' pk< Nk (I:=o, 1, 2, ...),
O'

2(k+q;
[ __ _.,.

provided we choose
m’Nk_12(k+q—l)[2(k+q)—ll

QI:(I.-+w (/f=1,2, ...). (10.20) N;_-=

Let us now select the positive constant M,, such that the arbitrary
function u,, satisfies the condition

(10.21) u,,<

From (10. 19) and (10.6) we have
: ’N._,_ 2k—2 2k—1)

)”w—«—»<'”
…),. ..ï.‘ , 

Û']_._( ,-)

Vk—l/<—_—l_'m (k=q+l, (/+'Z....).
0-21—;

\
I

Making use of (10.21), (10.22), (10.9) and (9.12) we have for
k=q+1mæ

Nk_q_1 m’(2k—2)(2k—1) s
sk—1

W<(…“+k—q) Mk—w“ o

@—ŸÏ…ds,.
S .

Nk—l/ SL+1 ds+
.t—

\ 2k+1 '
"° ° ( °)

(10.22)   
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Using the above process to obtain dominant functions for the

integrals in the above expression we are led to (10. 8) for If = q + 1 .

In fact it is readily seen that we can continue our induction to obtain
( Ill.8) for all values of [: provided we take (10.23) …: (Ml.-. + l‘,"“"“) '" …" _ 2) (“i _ 'l + “"—"

A—q 4k(k—q> ;.—

lÀ'=q—l—l,(]+fl. ...).

From (10.23) we deduce that
Nid—Ai

—> m' as I: —> oo making use of

—'+ m' as lc —> oo from (10.20). Using (10.8) andNI.-

Nk—1

(10.19) and the theorem on double arrays as above, it therefore
follows that the functions J and K in (9. 13) admit powers series
expansions in y“ abouty“: o convergent in a neighborhood U;.(P) of
the origin of normal coordinates. This completes the convergence
proof required for Theorem IV.

With slight modificationsthe above prooffor even valuesofnê4 will
include the case n = 2 covered by Theorem V, the formulae (9. 1 !)
and (9. 12) now being the only ones involved in the determination of
the functions vk and u,_… The proof of the convergence of the series
(6.2) is very similar to the one given above for cdd values of n. We
might point out that in each of the solutions just mentioned u0 is
arbitrary and this leads in place of (10.8) to a dominant relation of
the form

 the fact that

Mk
lIÂ.-<“Ç_——ÎÎ_+—l

(k=0,.1,2, ...).
l_. _( ,.)

14. REMABKS ON THE INDEFINITE CASE. -— If R or 311 is a pseudo-
Riemann space in which case the fundamental quadratic form is
indefinite we cannot choose the vector E in equations (2. 2) in such a
manner that the parameter s will represent the arc length measured
from the origin along all geodesics passing through the origin. These
exceptional curves are the so-called geodesics of zero length. Any
neighborhood N of the origin of normal coordinates will contain a
real hypersnrfaceF = 0 which will separate N into a portion Np over
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which I‘ is positive and a portion N,, over which F is negative. By
multiplying the differential equation (A) through by — 1 the two
portions N, and N,l will be interchanged.

If we take the neighborhoodN to be spherical (Euclidean definition
of distance in the normal coordinate system) any point in N,, can be
joined to the origin of normal coordinates by a geodesic lying entirely
in N,, and this geodesic can be determined by a vector of unit length
as in paragraph 2 and hence admits a parameter 5 which can be inter-
preted as arc length. Confining our attention to the portion N,, of
the neighborhood N all expressions in the preceeding sections will
retain their real meaning, viz. log F and I‘" in (3. 1), etc. will be real
functions. An inspection of the formulæ definingG, the u,_… and the vk
reveals that for the indefinite case under consideration they are
likewise expressible as analytic functions of the y“ admitting power
series expansions abouty“ = o convergentin some neighborhoodof the
origin of normal coordinates. Also the convergence results of para-
graph 10 remain valid without modification. Hence Theorem 1 is
valid for the indefinite case as are also Theorem 11, IV and V these
latter theorems giving real solutions of the difierential equation (A)
in N,,. It is evidentalso that the special coordinatesw°‘in paragraph 8
can be defined for the indefinite case and lead to the special form of
the elementary solution (real in N,,) which is given by Theorem Ill.


