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Theory of functions of intervals and applications to functions
of a complex variable ;

By W. J. TRJITZINSKY.
(University of Illinois, U. S. A.)

1. Intropuction. — In this work we shall establish two main
theorems on functions of « intervals » and shall apply them, together
with some other considerations, to problems of analyticity and to
problems of representation of functions (not necessarily analytic)
with the aid of « Cauchy double integrals »; furthermore, we shall
study certain integral equations, leading to some more general
representations of functions of a complex variable.

In the field of functions of intervals reference is made to S. Saks ('),
in the sequel referred to as (S). An interval I in the Euclidean space R,,
is defined in (S57). In the plane of 5 =x + 7y, thatisin R,, [ is a
rectangle with sides parallel to the axes. We shall use regular
sequences of nets [cf. (S, 57)]. A figureis to denote a sum of afinite
number of intervals. Functions of interval, F(I), complex- or real-
valued will be supposed to be additive; that is,

F(Ii+ Ig):F(li)"}—F(Ig)

for any pair of non overlapping intervals. Such functions are extended
in an obvious way to figures. F(I) is said to be absolutely continous
if |R|=meas. R<{38(e) (for figures R) implies that |F(R)|<:.
F(I) is continuous if the relation |I]<(3(e) implies |F(I)|<e.

(*) S. Saks, Theory of the integral, Warszawa, 1937.
* Journ. de Math., tome XXV. — Fasc. 4, 1946. 44
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Clearly I is absolutely continuous ( continuous) if and only if the real
and imaginary parts of F are absolutely continuous (contmuous)

In sections 2,3, 4 the developments relate to the theory of continuous
functions of intervals. Theorem 2.2 constitutes an extension of
a theorem of Ridder, while Theorem 4.8 represents a generalization of
a result of Besicovitch [cf. (S193)]. In section 3 we generalize the
notion of « length of a set ». We introduce w-length (Definition 3. 1),
some of the properties of which are established in Theorem 3.6;
u-length-is used'in Theorem 4.3 and in some subsequent results.

In section 3 we establish conditions under which a function f(s),
continuous in a domain G, is analytic. The theorems are 5.3 and
3.12. The first extends a result of /. Wolff and the other that of
Besicovitch (S, 197). '

In section 6 it is shown that for certain classes of continuous

functions of a complex variable there are on hand representations of
the form

” Q(J)(IJ, dl, + a(s)
[a(5) analytic; J =1J,+iJ,]. Such representations are given (with
the aid of Theorems 2.15, 4.25) in Theorems 6.4, 6.10, 6'.6.

Integral equations of the form (7.2) are then studied. The main-
results are embodied in Theorems 7.12, 8.10, which present
conditions under which (7.2) is equivalent .to a regular Fredholm
integral equation (7.3). These developments lead to certain further
representations (8.14) for functions f(s) belonging to a class R
(Definition 7.1) or to a class B, (Definition 8. 1).

Important developments, relating to the problems treated in

sections 3, 6, are given by V. S. Fédoroff (') along lines different
from those of the present paper.

2. Extension o Rioper’s TrEOREM. — As in (S), a normal sequence
of nets N={N,} is a certain kind of regular sequence of nets N,
(k=1,2,...), the intervals of N, being closed and non

() V. S. Fepororr, Rec. Math. de Moscou, t. 2 (44), 1937, pp. 52: 541; this
work contains an extensive bibliography.
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overlapping; those of Ny, are formed from those of N, by subdivision
[for details see (S,188)]. F(z), F(x) and F'(x) will denote
the ordinary lower, the ordi;w;y upper derivates and the ordinary
derivative, respectively, of any given additive function I’ of intervals
(S, 106); thus

(2.1) F(x)=1Lb. A, TF(x)=u. b A,

~ where A denotes any number for which a ‘“regular’’ sequence of
closed intervals I, containing = and such that

(2.1a) d(1,) = diameter of I, > o,
exists so that
(2.10) lim E) _ o

n l lu i

A sequence of closed intervals is said to be ¢ regular ” with respect to
a ‘“ parameter of regularity " in accordance with the familiar concept

of Lebesgue (S, 106); whenever F=TF, we have '=F =,

We shall establish the following generalization of a theorem of
J. Ridder [ cf. (S, 188)].

Treorem 2.2. — Suppose N =| N, | is a normal sequence of nets:
let g(x) be summable in R,, and let F be a continuous additive function
of an interval such that

(1) ) (N)F(2)> — at all points x,
ecbcept those of a set Dy—=sum of a denumerable infinity (at most)
of hyperplanes H;, parallel to either of the axes, and
(i1) F(z)> g(x) ( almosé everywhere).
Then
(2.3) F(I)é/‘g(x) dx  (forintervals IcP).
I

In (1) (N)F denotes the lower derivate, defined with the aid of the
intervals of the nets (N).

In Ridder’s theorem D, is a denumerable set of point.
" Let P be the set, necessarily closed, so that, if p is a point of P, in
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every neighborhood of p there is an interval I so that
2. F(l) < dr.
(2.4) <[ g
For intervals I, for which I*c CP (I° = open interval) one has

(2.4a) Fil)= [ g dr.
1

The latter fact is established in (S, 189).

If the theorem is not true P is non empty. We shall now proceed
under the supposition that P><0. As in (S), given integers £,
h (o), let ’

(2.:)) N,(.»/‘:: El,
where the sum is over all I of the net N, for which

(2.54a) . F(l)y>—~R|I}.
The product

Ni== TZ.4 Naa
is closed since N, is.

Let x denote any fixed point in CD,; it will be established that

(2.6) N [ho— ho(x) <+ ].

In fact, by (1)
)

lim — —=—~> —w
Ry '

for intervals I of nets (N) not containing .r; thus

l;;([_l')é__.‘,_a [a.e.f.1, of (N), Dr|.

Here and in the sequel (a.e.f.) will mean  for all except a finite
number of . — Accordingly, there exists an integer h,(z)(>y—¢)
sufficiently great so that

7

F(1)> — ho(z) |1 [for all I, of Ng(A = hoy ho+1, ...),D2].

By (2.5) and (2.54) an interval I of N,, involved in the above
relation, is an interval of N,,. Such an I contains z; hence zC N, :
this being true for all k> 4,, = will belong to N, , N, .., ....
Whence (2.6) holds.
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Since every z of CD, is in some N*[ 4= h,(.z)], one has

CDh,c iN"
a=1

and

R,. 't:ZlN"-ﬁ- Ds.
h=1
By hypothesis D, = H,+ H,+. . .; thus
(2.7) PcR.=) F,
=

where F;:=N‘+ H, is a closed set. Terefore by Baire’s theorem there
exists a portion SP, where S is an open sphere with a point P, of P
for center, so that for some 4

(2.8) 0 SPCFy= Nt H,.

‘We shall now prove that a portion SP exists so that
(2.9) o Z SPCN-A,

If H,, does not contain P,, then (2.9) is secured by taking the radius
of S so small that H, lies exterior S and on noting that P, is a point
of P. Thus, consider the case when H, contains P,. The set
H,..CN" is open, when considered as a hyperplanar set (i. e. on H,),
since CN" is open in R,.. Let P’ be any pointof H,.CN"“. Designate
by I’ an interval on H, so that I" (i. e. the interior, on H,, of I )

contains P’, while
I'cH,.CN",

Let I be a non degenerate interval in S so that the intersection of I by
H, is I, I’ not being a face of I, while

1c CN*.
Such a m-dimensional interval I exists since the closed m-1-dimen-

sional interval I lies in CN*. We decompose I into non overlapping
m-dimensional intervals I, I,, I,

I=L+L+1,
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so that I’ is not a face of either I,, I, I, and so that I’ constitutes the
intersectign of I; with H,. Onehas

(a) F(1)=F(l,) + F(Iy) + F(I,).

Since SP ¢ N"+ H,, [ by (2.8)] and since the intervals I,, I, have no
points on H, and lie in CN,, we have

\

L,cCP, 1,cCP.
Thus by virtue of (2. j a)
(8) F(l;)éfg(.l‘)dtr (J =1,2).
Ij

Let I, tend to I'; then by continuity of F it follows that
limF(I;)=F(I')=o.

Hence as a consequence of (a), (§3)

F(I)>lim ‘_ g(w)d.r:/'g(.r)d‘r,

L+1, Jr

This relation will hold for all non degenerate m-dimensional intervals
Jcl, such that, ,J°>P’; by (8) it holds for all intervals in CN*.
Accordingly P’ does not satisfy the conditions stated in connection
with (2.4). Having established that P’ € CP and recalling that P’ is
any point of H,. CN", we conclude that :

1) H,.CNicCP.
Now
SPc N*+ Hy= N*4 H,.CN*;

by (y) no point of SPisin H,.CN*; hence SP cN". We finally recall
that the center P, of S is a point of P.  Consequently (2.9) has been
established. :

As in (S, 189) consider the function of intervals

(2.10) : H(l)=F(I)+h(I)f|g(x)]d.r;
1

here 4 is the integerinvolvedin (2.9). 17 I(cS) és suchthatI°c CP,
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then by (2. 44a)

F(l)éfg(w)dwéf—ig(w)ldw, k(1) +f|g<w>w.r:fo
I 1 ]

and, accordingly,
(2.11) H(I)> h(l)>o.
Now consider an interval 1,(CS) belonging to one of the nets \,,

Jor v h, such that 1} contains a point p of P. Then by (2.9) p is
a point of N*; in view of the définition subsequent to (2.5 «)

[lCN-,’/,.

As a consequence of the statement with respect to (2.5), (2.54)
I, is an interval of the set N, , and

F([‘l)>_’ hIL

by virtue of (2.10) one thus has
2. H(L,) > r(«) | de > o.
(2.12) 10> [ 1gte) dezo

Suppose now that I is any interval in S. One has

(2.13) I=1lim.],
v

where ,I is the sum of all intervals ,I; of the net N, contained in I;
oI is an interval cI. The ,I; for which ,'c CP, will be designated
by .I;; the other ,I;, denoted by ,I;, will contain each a point of P in
the interior; (2.11), (2.12) will apply ta the ,I}, I/, respectively
(for v h). Thus H(,I) > 0. By (2.13) and since H(I) is continuous
as a fuction of interval and thus vanishes on the faces of I one has
H(I)=limH(,J)> o0
and '

(2. 14) F(l)\:-—hlll—flg(w)ld-t
1

Jor all 1 S. As in the analogous situation in (S, 18g) the above
implies that F(I) is of bounded variation and that, in view of (ii) of
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the Teorem,
F(l)}_fF’(.z)dxéfg(z)dx (all IcS).
1 1

This implies that SP =o [¢/. (2.4) (2.4 )], which is contrary to
(2.9). The Theorem is accordingly proved.
A consequence to Theorem (2.2) [ compare with (S, 190)] is

Tueorex (2.15). — Let N be a normal sequence of nets and F(1) be
a continuous additive function for which

(i) —x < (N)F(x) < (N)F(2) <+
at all points xCCD,, where D, is a sum of a denumerable infinity

(at most) of hyperplanes H; (parallel to either of the axes); also suppose
F' () is summable. Then

F(l):[F’(.L‘)d;r.
J

f
3. U-LENGTH OF A SET. — Let u(u) > o for u >o0 and
p(u)—>o '

monotonically as u — 0. We shall generalize the notion of length of a
set in R,, essentially due to A. S. Besicovitch [cf. (S, 53, 54)}.
The p-length, that we shall introduce, will reduce to that of
Besicovitch for p(u)=u* (a > o).

Derinition (3.1). — Given any set E (in the Eaclidean space R.,,),
let
E=)E,
i

be a partution of E into a sequence of sets, possibly denumerable, no two
of which hace points in common. Let

’

(3.3) AY(E)=1. b.z p(9(Ey)) [6(E;) = diameter of E|)

JSfor all partitions (3.2) for which o(E;)<z. The y-length of E is
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defined as
(3.4) A(E) = lim A%(E).
To justify the definition (3. 4) we establish that
(3.5) Af(E) Z A¥(F) (for e > &' > o).

In fact, given & ("> 0), there exists adecomposition E=E,+E,+...,
with 8(E;) < ¢, such that

D (3 (E)) L\ (E) +5,
J

Since 6(E;) < € one also has
AE(E)éz.p.(G(Ej)).
i
Thus
A(E) = A¥(E) +%;

(3.5) will ensue on letting £ > o.
We shall now prove the following [ compare with (S, 53)].

Treorem (3.6). — A(E) és an outer Caratheodory measure [in the
sense of (S, 43)]. When p(u) is such that

(i) "(")‘:[ o : *‘((”’9“)

O<u<2_n] ) -1, (as n—>—+x),

- then- the outer measure A is regular and, in fact, forteach set E there
exists a sej H, product of open sets containing E, so that A\(H)= A(E).

Suppose ECG. Let G=G,+ G,+..., where ¢(G,;)<¢, be a
partition of G so that

(3.7) S D (3(6)) £ A4(G) + .
j

On writing E;= EG;, one obtains

S(E)=<d(G)<e,  p(3(E)<p(3(Gy));
Journ. de Math., tome XXV. — Fasc. 4, 1946. 45
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there is a partition E=E,+E,+. .. on hand for which

A(E) =N p(8(E)) <Y, p(3(G)).
] {
By (3.7)

and, in the limit,

\f(E) = \¢(G)+:

() AY(E). - AY(G) (whenever EcCG).
With | E, | denoting any sequence of sets, let
Ii,:z E;  [o(Ey)<e)
i
be a partition of E; so that
2 p(8(Ey)) = \(E) + 27iz;
i

then

(3.8) N p(3(E) <X A (E) + 5
ij t

Then the set E,+ E, +. . . has the decomposition

D E=E,+E,+E-+..., E=E,
(3-9) : :

E,=E,—E,, E,=E,—(E, +E,),

where no two of the sets E|, E,, ... have points in common, while
E,CE.. Corresponding to the previously given partition of E; we have
the partition

, 2: - N P
Ei: E;I’ L:’: ]L;Eil'clb,'/,
j

for which
(3.10) 3(Ej) <8(Ey),  p(3(E))) = pn(d(Ey)).

In view of (3.9), (3.10) theset E,+E,+... has a partition

215,:2 E;  [8(E))<e];
i /4



THEORY OF FUNCTIONS OF INTERVALS. 35~

4

clearly
A"-(E E.)éz p(3(ED) = ¥ w(3(EN).
[ i i
Hence as a consequence of (3.8)

.,_\e<2 E,)éz A(E) +
i {

and, on letting £ -> o, ‘

(o) As(}: B <X A
Jor all sequences { E; |.

Suppose the distance ¢(E, G) between sets E and G is positive.
With (> o) suitably small, any partition

E+G=‘Qly 6(Q‘)<e’
will imply that either Q;CE or Q;,cG. ForsomeQ,(/=1,2,...),
with 8(Q,) <5, '
(3.11) Z p(8(Q)) = A(E+ G) +¢.

i

On designating the Q;, cE, by E,, E,, ... and the Q,, cG,
by G,, G, ... we obtain

D e(3(Q)) =2, B(3(E)) + X, 1(3(G)) > A(E) + A(G),
i i ]
inasmuch as E=E,+E,+..., G=G,+4 G,+... are parlitions

with 8(E;) ¢, 8(G;)<e. By (3.11) and the above

AS(E) + A5(G) ZAS(E + G) +:
and, in the limit,

(3.12) . A(E) + A*(G) Z A*(E + G),
Conversely, for some partitions
EZZE,, G:ZG, (S(Eg), 6(61) <€),

- where ¢ is sufficiently small, one has

D p(AENZAE)+E N p(3(G)) < A(G) +
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and
(3.13) 2 p.(é(E,))+E #(3(G)) £ AYE) + A(G) + 25

The sequence (E,, G|, E;, G, ...) =(Qy, Q,, .. .) gives a partition

E+G=2Q, (dQ)<e);
hence

¥ p(3QI =Y, p(3E)) Y w(3(G)) = AYE + G).

! t i
Therefore by virtue of (3.13) .
AS(E - G)_Z A(E) 4+ \(G) + 22,
We let here % -» 0 and, on taking note of (3. 12), infer that
(2,) A(E + G) = A(E) 4+ A¥(G),
whenever :(E, G) > o (& suitably small).
On letting : - o, from (a,), («,), (a,) it follows that
(3.14) AE)YZAN(G) (for ECG),

(3.13) \ ( 2 L,)éz AE) (for all sequences E,, E., ...),
)
(3.16) ME+4+G)=\(E)+ \(G) [when o(E, G) > o].

Hence u-length \ is an outer Caratheodory measure.

We now proceed under the condition (i) of the Theorem. The
proof of the remainder of the Theorem we give following the pattern
indicated in an analogous prof in (S, 53).

Given any set E, there exisls a partition

~ o — (n) o ( i L.
(3.17) L__ZEﬁ ;o B(EM) < o
t
so that -
! (n §l71 ) ! P I
(3.17) Ziu(S(Ei ) L ATHE) + - ZA(E) + -

For some open set G|, DE{”, one has

(3.18) 36 < (1 1) 3(EM)
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and

On :2 G"™>E, H =ﬁ 0" >5E,
1]

n—1

where H is a product of open sets. There is a partition of O* on
hand,

om :.z o, o — G,
!
0(211): G(;t)__ 0(‘")’ O(‘n): G(n) —_— (O(IH)_,_ O';: )’

co ey

where O/ € G;". Since for a fixed »n one has Hg O™, by (3.18),
(3.17) we have a partition

H=Y HOw,  3(HOM) -3(G) < -

Thus as a consequence of the definition of A:-'(H) and by (3.18)
J\'l'(H) =) p(3(HOM)) =Y w(3(Gi™)) <) y((- - ’i’) O(E;"';).

i ‘ :

Now (i) implies that ‘

(3.19) o1+ 5 )3 ) <k (30

in view of the inequality (3.17). Thusby (3.17)
A*(H) 2 k() S, w(3(E)) 2 k(n) (A (E) + 1.

- .
On letting » — x, it is inferred that

A(H) < A(E).

The reverse inequality holds by (3.14). Hence A(H) =A(E).
Examples of functions u(u«) for which p-length is regular are

e gy

An example of a function 11(u) not satisfying (1) is exp. (— l;) .
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A. Extension oF Besicovitcn’s taeoreM. — Let (Q) denote a
“ binary " sequence of nets Q,(k=1, 2, ...), défined as follows.
With x==z,, ..., x,) denoting points in R,, a net Q, consists of
closed ¢“ cubes " whose faces ke in the hyperplanes

r=pa* (i=1,...m;p=o0,%1,...).

Thus (Q) is a normal sequence of nets (a regular sequence of normal
nets).
The Lemma in (S, 192) will be extended in the result.

Lewwa (4.1). — Suppose p.(u), used in the definition of y-length A in
accordance with Definition (3. 1), satisfies the condition
(4.2 P = u. b. *’L——(Zmu)
ln <uZ ‘ p(¥)

Given a set E, an integer k, and %> o, there exists cubes Q*, Q?, ..
be longing to the nets Q, (k> k,) so that

(i) 2p(a(Qn)-_é_e"'zm(,\(E)+>;);

<—+®o.

(i) forevery xCE there exists L_I.(x)>l so that all the cubes
of Q,, contarning x, belong to ; Q*, Q*, . .

.‘.

FFor some partition E=E,+ E,+. .. [2CE))< 27~"] one has

(4.3) Zp.(&(Ei))é.\"“u"(E)+'gé:\(E)—+—g
t

Asin (S, 193), define an integer £; so that
(4.3') 7 <H(E)> o

we have £, >k, (=1, 2, ...); also we note that each net Q, has 2™
intervals at most containing points of E;. Let Q', Q?, ... be the
totality of cubes obtained by picking out all the cubes of the net Q,,
containing points of E; (J—l 2, ...); the sequence {Q*, Q2, ...}
satisfies (ii).

By (4.3") 3(Q™)<m length of side of cube of net 0 =ma7;
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here 7 depends on n; thus, in view of the above italics,

(4.4) 2P(a(Q"))énmz""("”-"":‘3'"2H(’)m#),
" . =t -t

Now by (4.2)
p(2mu) Z24, p(u) (0<Uéé>§

. o 1.
hence, inasmuch as 2=~ < g (1=1,2,...),

1 1
v(% m ;W)é)*‘(a—m)

Accordingly, as a censequence of (4.4) and (4.3"),
2 F(B(Qn))é 2" )mzl""( k+1> = aml”‘z l"'(a(E‘))

The result (i) will ensue by virtue of (4.3). This completes the
proof of the Lemma.

Derinition (4.5). — A function F of interval 1 will be said to
satsfy (p+) [or (u7)] at a point x if
R — F(I)_
i omy= | =]
JSor 1 containing x. F satisfies () 1f it satisfies both conditions (4.6);
in this case
(%&.7) lim F(F;(II))):() [as3(1) >0; [>z].

‘We shall now extend Besicovisth’s theorem in (S 193).

(4.6)

THEOREM (48) — Let F(I) be continuous additive and satisfy (p.)
[¢f. (4&.7)] at all points. Suppose u(u) satisfies (i) of Theorem (3.6)
and 1s such that

(%&.9). . An[of (4.2)] <+, h:,p.(u)

m

Let A be the corresponding p-length. Suppose that
(1) (QF(z)>—o  inCE,
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where E is the sum of a denumerable infinity of sets of finite p-length,
and

(i) (Q F(z)>g(x) (everywhere; g(x) summable).
Then
(&.10) F(lu)éfg(a')(l.r
L

Sor all intervals 1,.

It will suffice to prove (4.10) for a cube I, of a net Q,,.
Let V be a minor function of g, in accordance with (3, 190, 191);
that is, V is an absolutely continuous function of an interval such that

4. c(r)de V(L) > [ g(z)deo3;
(411) Jstorar=vaan> [ g ez
(4.12) V() £Vo(0) Z8(x); Vol(a) <+
Asin (5) put .
(4.13) G(1) =F(I)— V(1) +3| 1.
Now V(z)=nu. b. A, where A is any number such that
V(1)
A =lim |

for a regular sequence {I,} - x. Incidentally, here and in the sequel
when swe designate 1 - x it is to be understood that I > x and 3(1) — o.

On the other hand, (Q) V(z)is lim I(Ii) for cubes I of (Q) tending

to x; thatis, (Q)Vis a number A. Thus

(4.14) (Q)V(z) £ V(2),
By (ii)and (4.12) (Q)F > ¢V and
(&.15) (QF —V>o.
We observe that

F(I)

T = (QF@ = [aefl c(Q) g

for x in CE, and -

\’ill)_(Q)v(x)+54V(z)+s [a.e.f. 1, €(Q), »z];
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thus by (4.13)
GI'(III)——[(Q)I« —e]—=[V+e]+: la.e.f. 1, (Q), > 4]

for  in CE; in view of (4. 15)G(l)§ — a¢ for intervals I as
indicated above. Finally, on letting ¢ - o we obtain
(4.16) (QAG(z)>c>0  (inCE).

+ As a consequence of the last inequality (4.12)

(&.17) \I(lll) ZB(r)<+=x= (forall I>.r)
for all o; thus .

vay _vay 1 1y
4.18
(1% T ARLIRETCIT) AR CT I Y
Since

i1 o™ (1) ,
p(3(1)) = p(3(D)

in view of the second relation (4.9) we conclude that the last member

in (4.18) tends to zero with 6(I). Hense lim (V((") = Zo and V(I)
satisfies (1~). Inasmuch as F satisfies (), we accordingly conclude
that G (4. 13) satisfies (p+).

By hypothesis

(&4.19) ECZE” AE) <+ (i=1,2,...).

Let R;, be the set of points = such that for all I of the nets Q,
(k> n), containing x, one has

G(I)

car N S
(4.20) M) R AR AR = Y1)

Consequently CR;, is the set of points = such that for some I of Q,
(k> n), containing z, we have
G(1) .
.——-_— q'.
PG =
Journ. de Math., tome XXV. — Fasc. 4, 1946. 46

(4;21)



364 W. J. TRIITZINSKY.

Since G satisfies (p*)
G

T:Ly.(a(l))é“ (for I > ).
Hence
L G(h) N
!ﬂmé;é [forl, c(Q), —»].
Thus
G(I) , e
m—)>——$ [a.e.t.l, C(Q), a].
Whence

G(1) . X Y
m >.—c¢ [fOI‘ a.ll I, CQ((A én(.r, .)), . .T]
Here we put :¢ =£&gq,, n(x, :)=n;(x) and infer that  is a point
of R; » . Accordingly
Rmzz Rin-

As in an analogous case in (S, 194) R, is a product of open sets.
We have a decomposition of E; without common points,

E=E X Rn=3E.y  E.i=E(R,—Ri), Ri=o.

Since the R;, are Borel-measurable and the E; are A-measurable,
the E, ; are A-measurable. Clearly

(&.22) .\(E,.):ZA(E,-,,).

n

Applying Lemma 4.1 (with £ =27") to E;,,( €R,), corresponding
to7>o0, n >0 we find a sequence of cubes {Q\{(j=1, 2, ...) of
the nets Q,(4 > n) so that

=) X e(3(Qi)) = 2" A\ (Bia) + 277

(B) for each x of E;, there exists £ = k(z)> n so that each 1.CQ,,
containing z belongs to the sequence { QY };

in §9

(v) each QY contains points of E;, (and hence of R;,) and conse-
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quently {by (4.20)] satisfies |
Gl .
pe@) !
~ Asin (8S) let I, be said to have property (A)if I, is a finite sum of
non overlapping intervals I, where I is either a cube QY or G(I)>o.
If R is a figure consisting of a finite sum of non overlapping Q/, then

by (4.23)

g

(&.23)

G(R)>—2 Y qu(3(Q)).
* inj

On using (4.20), summing first with respect to /, taking account

of (), then summing with respect to », in consequence of (4.22) we

obtain
G(R)> — 245

Hence
(&.24) G(I)> — 27m4,,% [for all 1 with property (A) |;
in particular this will hold for [ = QY.

Suppose 1, (a cube of the net Q, ) does not have the property (A).
Then G(I,)<{—2™An5. Accordingly for a sequence {I,} of cubes

belonging to various nets, we have

I,oI,>L.o..., G(I,) < —amA,t.

Let x, be the common point of the I,. If , CE, then by (4.19) and
the decomposition preceding (4.22) z, belongs to some E,;: thus
by () amongst the I, there are some Q./; in view of (4.24), where
we replace I.by one of these' ’, a contradiction arises. If z,cCE,

in?

then by.(4.16) lim 11m , I = =0 >o(forl. c(Q), > x,); furthermore,
lim %‘7) ~ 0. Hence Gl‘l"'l) 2 (a e f. p.) and G(I,)>o (all
— 1, »
p>p,); this again presents a contradiction. Hence I, has the
property (A); by virtue of (4.24) (with I=1,) and (4.13), (4.11)
an inequality is obtained for F(I,) which, on letting & - o, yields
(4.10). The Theorem is accordingly proved.

A corollary to Theorem 4.8 is as follows.
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Tueoren 4.25. — Let a continuous additive F (1) satisfy condition (1)
(A.7), while u(u) satisfies (1) of Theorem 5.6 and (A.9). Let

(4.26) —o<(QFZ(QF<+x  [in(E)),

where E == FE, + E,+. .., with A(E;)+o (j=1,2,...). Then
4.27 F(l)= F'(x)dr

(4.37) = [(QF @)

Jor all intervals 1 in any portion of R, in which (Q)F'(x) exists
(almost everywhere) and is summable.

Under conditions of this Theorem F(1) will be absolutely conti-

nuous in the indicated portion of R,,; accordingly in (4.27) (Q)F'
may be replaced by F’.

3. CoNDITIONS FOR ANALYTICITY. — In this section ve let
(8.1) f(s)=u-—+iv (s=x+1))
be a function continuous in the complex variable 5 for s in a domain G.

Correspondingly there is on hand a function of an interval (rectangle)

(5.2) Y= [ f(z)ds=3,(1) + iJa(1),

h

continuous and additive, as a function of I. Asis well known, f(3)is
analytic in G if F(I)=o for all T in G. b
We extend a theorem of J. Wolff (S, 196) as follows.

Tueorrm 3.3. — f(3) is analytic in G, {f

(1) hm—

1]

Jfor almost all 5, in G and zf

(ii) Iim mlﬁ)/d:.

except at most at points 3, of a set E consisting of a denumerable infi-
nity of rectilinear segments parallel to the axes.

<4+ ®» (1>3),
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In consequence of (ii)

(8.4) —=o<J,()—l|m'-"1(24l —-(——) =J (z) <+ o

|
(for ID3) in G—E. Itis known [¢f. (S, 141)] that, if F is an
additive function of an interval, on has

(5.5) F'=(F,=F,=)F,

almost everywhere in any set in which the derivates F,, F, are finite.

Since m(E)=o0, (8.4) implies that the strong derivates of J, are
finite almost everywhere in G. Hence by (8.5) J ,=17J, almost
everywhere in G and

(5 6) lim 32(1)

T =1, (I-3)

l)lJ(l )l

for almost all 5 in G. In view of ( tends to zero, for some

sequence I,, I,, ..., tending to 3, almost everywhere in G; thus

(5.7) limJllﬁ—L{) =zo=],,

for I,, and 3 as stated above.  Hence

(5.8) , Ji=o (almost everywhere in G).

Let '(N) denote a normal sequence of nets as in section 2. The
numbers (N)J,(3), (N)J,(5) are derivates formed with the aid of

special sequences of intervals, tending to 3, while the strong derivates
are formed with the aid of arbitrary sequences of intervals tending
to 3; hence

L (N <N £J,

" Thus by virtue of (8.4)
(5,8) — o< (NI (NYi< + 0

in G—E. Consequently (i) of Theorem 2.15 holds for J, (with
D,=E). In view of (5.8) the ordinary derivative J| is summable



368 W. J. TRITZINSKY.

in G. Thus Theorem 2. 15 applies and one obtains
Ju(DHh= || J,(z)dxdy =o.
(1 flf (3) dwdy =o

Similarly it is shown that J,(1) =0. Whence J(1)=o0 for all |
in G; f(5) is analytic. Our theorem is proved.

Let (N) be a binary (normal) sequence of nets | Def. in (S, 191)],
consisting of squares. We shall prove the following modification of
Theorem 5.3

Tueorem 3.3'. — f(5) s analytic in G, if (1), (ii) of Theorem 5.3
hold, as stated, where 1 denotes squares of the above (N).

In fact, bi (it) of Theorem &.3’

—-x\(\)l,,__(\)Jv<+'20 (inG—E;v=r1, 2).

Now in (3; 192) it has been noted that, with (N) denoting a

binary sequence, (N)F’ exists almost everywhere where
(N)F>—», or (N)F<+ .
Thus the above implies that
(N)J, (v=r1,2) exist almost everywhere in G.

We note that (i) of Theorem $.3’ implies that for almost all z,in G

there exists a sequence |I,} of squares of (N), such that I,>3,,
5(1,) = o, so that .

lim

”l"'Jv(ln)=0 (v=r, 2).

Clearly (N)J, (5,)=o0 almost everywhere in G. By Theorem 2.15,
applied with the binary sequence (N)), one has

3= ﬂ (NI, (5)de dy =0, J(I)=o
w’)
for all intervals I in G. The conclusion of the Theorem ensues.
In the above Theorem one may replace (ii) by the requirement that

— 1
lim — <+
1]
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for 5, in G — E, where I denotes any square containing 3,( > 3,).
Before we apply section 4 to functions of a complex variable we
shall investigate the connection between property (i) ofJ,, J, and
the “ modulus of continuity ” of /().
If f(5) is not uniformly continuous in G, we replace i by any
domain (open), whose closure lies in G; in such a domain f(5) will
be uniformly continuous and, for 3, 5’ in it, one will have

(5.9) If(5") = f(5) 1 Ln(ls'—31),

where v(x) (n>o0 for u>o0; 10 monotonically with u) is
‘““modulus of continuity ” of /. We shall consider the case when f( )
is uniformly continuous in G; thus, in G we shall hace (3.9).

Consider an interval I, whose left lower vertex is § =2, + 19,
and whose horizontal and vertical sides are of length @ and b, respec-
tively. By (8.2) one has

=

g‘—o—a
f-;} [(f(x +iF) — f(r +i(F2+b)|dr

g,+ b
+Lf f(Fatiy) — (ot atix)]dy
Ye=2,

Hence in view of (8.9)
1I(1) | < an(b) + bn(a) Z25(1)n(3(1))

and . '
I 233y .
#OM) = "rm) )

On taking account of Definition 4.5 we thus infer the following.

Lemma 8.10. — J,(I), J,(1) [¢f (B.2) satisfy the condition (1), 1f
the modulus of continuity n(u) of f is of the form

(5.11) n(u) = w(u) 2L,

svhere w( ) tends to zero withu sufficiently fast, sothatv(u) -~ owithu.

The following is our extension of Besicovitch’s theorem (S, 197).

Taeorem 35.12. — Let |, used in the definition of y-length A,



370 W. J. TRITZINSKY.

satisfy (i) of Theorem 3.6, (4.2), (4.9) (with m=2). Suppose
that the modulus of continuity v [cf. (8.9)] of f(3) is of the form
(8.11). Then f(3) is analyuc in G, if f''(3) exists almost every-
where in G and if

i S+ h)— f(5)

(5.13) 7 <+
h>o l
in G — K, where
(5.14) |«:=2 E, AME)<+o (=12 ...)
j=1

If 5, is a point at which £1*'(,) exists, then as indicated in (S, 196),
one has

5.15) —_— ———>0 uny square I — z,).
( ) 3

Let now 3, be a point in G — E; then by (8.13) [also ¢f. (S, 190)]

i) (D]
7 T

< q (%)

for all sufficiently small squares I containing 5,. Accordingly

(5.16) — 0 < (Q)J1(50) £ (Q)J1(30) <+ o0
inG—E. Now (fors,in G—E)
L J()
(Q)J4 (=0 =h—m_u_l (for squares I of (Q), — z)
and
Jl([n)

T, *(Q){[(SO)

for some sequence of squares {I,}, of (Q), ->5,; hence by (8.15)

(Q)J.(5,)=o at every point of G — E at which f'") exists; since f*

exists almost everywhere in G and m(E) =o, wehave (Q)J,(5,)=0

almost everywhere in G. A similar result will hold for (Q)Ji(zo).

Hence ' B
QY=o (almost everywhere in G).

In view of the assumption regarding the modulus of continuity of
f(z) it follows by Lemma 3. 10 that J, (1) satisfies the condition ().
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’By (8.16), (8.15) from Theorem 4.25 we accordingly infer that
L= (), (s)dedy =0
(1) ﬂ,u)) () dudy

for all intervals Iin G. Similarly it is shown that J,(1)=o0. Thus
¢ J(I) vanishes on all I in G. The theorem is proved.

We shall give some examples of functions p, v that may be used in
the Theorem. Let yu be termed admissible if p.satisfies the conditions
of the Theorem. Furthermore, in the remainder of this section
limits will be understood to be atiained monolonically.

(8.18). The function p.(u) = ur(u) is adnussible, (f 1.(u)( ——1., >0)
i1s monolone non decreasing, as u — o, and is such that p(u) > o: in
this case no condition is required on the modulus of continuity (u):
thus, when L(u)=1, Theorem 5.12 reduces to Besicovitch’s theorem

(S, 199).

In fact '
plva) _ Avu)
(@) =0 T W)

Hence £(n) of (i) of the Theorem 3.6 satisfies

Zv (for v>1,u>o0).

1Zk(n) L1+ L lim k(n)=1;
n nye

(@), with v= 4, will imply (4.2). Moreover,

u® u 7
—_— L
pa) — Mu) =K

whence (4.9) holds.” * Accordingly 1. is admissible. By (8.11)

o u o n(u) _n(a),
w(u)= H(u)n(u)— 7.(u)é—7.,—’

1(u)— o in conséquence of the continuity of f(s); hence w(u)-»o
with u; thus no condition on 7 is needed.

(8.19). The function p(u)= (%;) is admissible provided

(5.19 @) o(u)—o, oLu)_H) (with «);

Journ. de Math., tome XXV. — Fasc. 4, 1946. - 47
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correspondingly in the Theorem one may use any modulus of the form
u
(5.19 b) n(u):w(u)(-;—(-l-‘—).
where w (u) < 0) > with u.
To establish the above we first not that

L R(ve) o(u) s
(rts) 1 = ) =v o(vu)él (for vx1, u>n).

Heuce, on letting v =1+ n"', one oblains

|ék(n)é(l+’%>?, :i:ll.‘(n)zlz
(a,) also implies (4.2). Moreover,

u? .
m:o(u)—)o (with «) '
by hypothesis, whichimplies (4.9). Thus uis admissible. Finally,
(8.19 b) is inferred from (3. 11).

The set E, involved in the Theorem, contains by hypothesis all

. T (s +h)— f(s .. . . .
the points at which lim (fz + 2 it ))l is infinite; in this sense E

may be termed ¢¢ singular . In view of the condition (5. 14), satis-
fied by E, one may assert that in a certain sense the following holds.
The faster u(u)—>o (subject to the conditions of Theorem) the
¢ greater " one may allow the singular set to be. Accordingly, the -
case described in (3.18) presents nothing essentially different from
the situation involved in Besicovitch’s theorem (S, 197). By the
same token the case presented in (3.19) is essentially distinct from
that in the theorem in (S, 197).

6. REPRESENTATIONS OF FUNCTIONS OF A COMPLEX VARIABLE. — We write

(6.1) F=F+iJ., J()Y=| f(s)ds=J,+iJ,
) )

(1
and recall the definition of upper and lower derivates and derivatives

(N)Jy, (N),, (N)J, Q) Q) (Q)J5,
b, J,, L (v=r1, 2),
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with respect to a normal sequence of nets (N ), with respect to a binary
sequence of nets (Q) and ordinary, respectively.
We shall make use of the following theorem of N. Théodoresco(*).
If ¢(J) is measurable and | 9(F)| is bounded almost everywhere in
a domain G then, on letting

(6,2) &s)=—
one obtains

6.3 g(3)ds= || ¢(F)dI,d3,
(6.3) Lo() j[u( el A

1 [e3dridy.
ari J, J—-: ’

for intervals I in G (we stated the theorem in a slightly different
form). Here and in the sequel an expression like *‘ |F(})| is bounded
almost everywhere in G is to signify that

swhere mG,= o.
‘We shall now prove.

THEOREM 6. 4. — Suppose (1) [(5) is continuous 1n G and

(6.5) lim T;—,I JE)ds| <+ x (intervals 1>3)
o

Jor all 5 in G, except perhaps on a set D, consisting of a denumerable
infinity of rectilinear segments parallel to the axes: furthermore,
assume (i1) that |J'(J)| s bounded almost ecerywhere in G. Then
J (&) will have a representation

(6.6) f(‘):_ﬁ ﬂfJ'(ﬂj)iJ;dsf: +a(s)
[a(5) analytic in G|, o

Form the function
(6.7) 4(5)=f(s)+#iﬂc__"'(?‘?;"5=.

.J’(j) is measurable in any case; thus in view of (ii) and by

(1) N. Tutoooresco, La dérivée aréolaire et ses applications @ la physique
mathématique ( Thése, Paris, 1931).
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Théodoresco’s theorem

HI(3)d3. 4T,
. ds = 3 — — [ == s
6.8 [oerd=f e |- = [P B2

=30 — [[ () d3, dgs = F (D).

1

If it is shown that F(1)=o for all intervals I in G, then ¢(3) is
analytic and the theorem is proved. Now (6.5) implies that
(6.9) —a <(N)Jy = (N)Jy<+

in G — D, ; this fact has been established subsequent to Theorem 5.3

[text from (B.4) to (3.8)]. Inequalities (6 9), together with the
condilion (ii) which implies summability of J’ on every lin G, enable
application of Theorem 2.15; accordingly

J,(l)—_—ﬂ‘.l.’,(g)dgidg, (v=1, 2), J(l):ﬂJ’(;})dg,d;}lg
1 1

and F(I) =o.
Another representation is as follows.

Tueokem 6.10. — Let p(u) be and ¢ admissible  function in the
sense of the preceding sections. Suppose f(3) satisfies
(1) ﬁ f_(i"_‘i____)_f(") <+ o *
axo h

for 5 in G except perhaps on a set E=E,+ E,+. . ., where the E; are
each of finite p-length; assume the modulus of continuity n(u) of f(z)
of the form

(1) n(u):m(u)g%u—) [n(w), w(u)->o0 with u).

Then, provided (iii) |(Q)J'(F)| is bounded almost everywhere in G, one
has a representation

(6.11) J(5)=—— + a(s)

ﬁ‘(Q)J’(J)d.‘J« d3-

ane

[a(3) analytzc in G).
We form again ¢(3) asin (6.7), where J' is replaced by (Q)J".
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By (6.2), (6.3) and (iii) we obtain

(6.12) fq(z)dst(l)EJm—[f(Q)J'(g)dg.dg,.
U] o

It will suffice to prove that F(I) = o for all intervals I in G.
Subsequent to Theorem 5. 12 it has been established that (8.13)
implies (8.16). Thus in view of (i),

(@) —o<(Qh=(Q).<+=  (inG—E).

As a consequence of (ii) and Lemma 3. 10

B) J,(I) satisfies condition () (Def. 4.5).
By virtue of (iii)
Il (Q)J, is summable on every lin G.

By (a), (), (7) from Theorem 4.25 we infer
L()= () d%dF. (v=1,2), JN)=[[ Q¥F) d3, 4%,
W= [[@u@ gz o=ua. In=[[ermdn i

Hence F(I) (6. 12) vanishes on all [ in G.
In the representations (6.11)(Q)J'(J) may be replaced by J'(J ).
Theorems 6.4, 6.10 may be extended somewhat if in place of
Théodoresco’s Theorem (6.3), we make use of Moisil’s ( ) extension
of the latter result.
- The representation in Theorems 6. 4,6. 10 are unique in the sence that
if f(3) is representable in the form
(6.13) f(s)=— 2mﬂ'g—(5)d—m+b(s)
[6(3) analytic], where j¢J)| is bounded almost everywhere in G,
one necessarily has ¢(3)=1J'(3) (in case of Theorem 6.4) and
2(F)=(Q)V'(F) (in case of theorem 6.10) almost everywhere.

(1) G. C. MoisiL, Sur un systéme d'équations fonctionnelles (C. R. Acad.
Sc., t. 192, 1931, pp- 1344-1346).
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It will suffice to establish this for the case of Theorem 6.4. Subtract
(6.13) from (6.6); one obtains

-—l——lf (3;([5‘ dds =c(3) |¢ (=) analytic]
ame . J—==z
and

J—:s

f—am ulf______(;'l)d}.dﬂ, ds—=o (y=J—9).
L

Since |J'— 3! is bounded almost everywhere, from (6.2), (6.3)it is
inferred that

ﬂ.q’(ﬂ)dfh djs=o
1

for all Lin ;. Thus $(J)=o0 and ¢ =J’ almost everywhere.
Thus under conditions of Theorems 6. 4 or 6.10 (whichever i is the
case) the equation

(6.1%) ! ﬂM&. S(5) = a(3)

arni 3

| (3) analytic, not assigned beforehand: ¢(}) the unknown] has a
unique inversion, bounded almost everywhere,

(6.17 ) e(I)=¥)  lor a(F)=(Q)I(I")|

6'. REPRESENTATION OF FUNCTIONS OF A COMPLEX VARIABLE (CONTINUED). —In
this section we shall obtain a representation of f(3)=u(x, y)+iv(z,y)
without recourse to Théodoresco’s theorem. In this the result to be
established will be similar to a number of representations the author
had obtained in a previous work ('), in the sequel referred to as (T).

We assume f(5) continuous in G, such that

, —_1 .
(6'.1) Ium“'l/(;j( ) ds

Sor all 3, in G, except on a denumerable infinity ( at most) of segmcnts
parallel to the azes; moreover, the partial dericatives

<+ (intervals 1> s,)

(6'.32) Upy My, Oz Oy

(") W.J. Tanrzinsky, Problems of representation and unfgueness for func-
tions of a complex variable (Acta Mathematica, t. 18, pp. 97-192.)
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are assumed to exist almost everywhere in i, say in G — G,, with

mG,=o.
Differentiability of u, v, as postulated above, implies the following.

Let F, be the set of points such that

,;l-(u(a:+ b, y) — u(.r, J'))|, }Ilz (e, y +h)y—u(r, y))l;
(6".3) . . :
,Z(V(‘T-i- h, )’)—' v(x, y))l ’ I’"'(t'(,r’ ¥+ /l) — (., )))lén,
whenever |h| < ,17 (the only points, considered, are of course in G).
Clearly F,, F., ... are closed sets and

FicF.c...; Golim F,>G — G,.
We write
(6'.4) p(r)=m(G—F,)
and note that
(6'.5) limo(n)=o.

n

We establish that if 5(n) tends to zero sufficiently fast with = then
/() has a ¢¢ Cauchy double integral " representation.

TuEOREM 6'.6. — Suppose f(z) is a function as described in connec-
tion with (6'.1), (6'.2). 1If a sequence of integers 0 < j, < jy< ..
may be found so that the two series
(6'.7) r1=2j3 l-(:;ﬂ’ ,—2 lovvz 59(s)

v >/,
converge, then
(6.8) f(s)=—

ani

ﬂ"'(ﬂ)dgadgs - a(s),

with a(3) analytic in G.

Note. — (6'.7) can be satisfied if
(6'.9) p(s)Les  (a>4).

We shall use the following result due to D. Menchoff {*). Let

(*) D. Mencaokk, Les conditions de monogénéité, Paris, 1936, See p. 10,
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w(z, v) be real valued and such that

VI w(rs, 30) — Wy, ) | L rloey— xn),

(8.10) | 10w (ay, ¥2) — (@, 1) [ Z 0l ys—= 1]

whenever (z,, y,). (z,, y,) are points in a square Q, while (z,, Y
isin FQ, where Fis closed. If

l'=(a,Lax.2b;a. Ly Lbs)

is the least interval containing F(), one has

\ ' f W(Zy be) — (.1, a,)](a-.— wy(x, y)dedy | L5 |Q—FQ|,
(6'.11) oF
\) [ [w(by, ) —w(ay, ¥)]dy —[f we(r,y)dedy| 50| Q—FQ|.
QF :

As remarked by Menchoff, (6'.10) implies that w., w, exist almost
everywhere in QF.
As before, we write

J(l)=ff(:)d:.=J.(l)+iJ,(I).
T

Let Q be a square, the length of whose side / does not exceed — —» such

that F,Q >£0. It is then observed that if (a:,_y) is in F, Q and
(z,v),(x, y,)are any pomts of Q we have

|Ze— x|, '.)"-’—)’lé'—z'

Thus, by (6'.3) the inequalities (6'.10) will hold for u, ¢, F=F,.
Let I', as designated previously be the least interval containing F,Q.
By (6'11) we obtain

J(N=— (Ur+y)drdy) —Eus—"Z0y: [Zusls 1201 ZL5n|Q— QF,|.
QF,

Now, in view of (6'.3)

('6'.12) lur!, luvi, (vel, lovl<Zn (in Fp).

_Thus

(1) <L23r|QF, [+10n[Q — QF,| Z10n]Q|.
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Similarly | J,(I')| does not exceed 1on| Q. Hence
(6".13) [J(I')|L30k|Q].
. for any square.Q (in G) the length of whose side 1s = % while QF , o

and 1 is the least interval 5 QF.,.

As a consequence of (6'.1) the lower and upper strong derivales
of J, (L), J5(I) are finite almost everywhere in G. Hence the strong
arrd ordinary derivatives of J(I) exist and are equal,

.6'.14) I (3 =3(3)

for 7 in G—H,=o0, where mH,=o0. Let H, be the set of points
of F, which are not points of density of F,; necessarily mH,=o;
moreover,

(6'.15) -1 (¥in F,—H,)

as interval I, containing 7, tends to J. 'We observe that

(6'.16) limF,,:Z(F,,—- F._y), Fo=o,

Since m (G — limF,) = o and

-
mH,— o, m E H,=o,
1

by virtue of (6'.14), (6'.15) it is inferred that

(6'.17) G =E + G, mG°=o,

where E consists of points ¥, such that

0 gclimF,  [cf. (6.".16)],

29 8=,

30 IIH:’," -1 (as interval [ > J),
|

where »n is any integer for which J belongs to F, [as a consequence
of (1°)]. Corresponding to (6'.16) we have

(6/.18) E=Y, (F,—Foy)E,

n=t
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Lemma 6. 19. — For § in (Fy— F,._\)E one has

(6'.20) | F (3 p= 1 T(F) Laon.
In fact, by (2°) the limit
(2) L= =lim T

exists (and is unique) for any sequence of intervals I,, containing J
and tending to §. Let Q, be a square with J for center and having

the length of its sides equal to ; With ¥ in (F,—F,_)E, J is
apoint of F,. Hence Q,F,50(v=1,2,...). By(6.13)
(8) J(L) L20n]Q|  (vn),

where I is the least interval containing Q,F,; clearly I, contains ¥
and the diameter of I} tends to zero with : Thus by ()

Iy ,
- tim =) =33y =1(9).

Now, by (B) and since |I,| > | Q,F,/,

) Qv Qv
| v _ v v
T Z20n ] Z 20 N e 0,F, ] (v n),

In view of (3°) (with I == Q, and v — ) the last member above tends
to 20n when v > . Thus, as a consequence of () '

() 1==13(3) < 20n,

which establishes the Lemma.
Convergence of the series

I‘,:Z sp(s),
1

-

which is implied by (@'.%), signifies that J'(J) is summable over G.
In fact, by Lemma (6'.19), (6'.18) and (6'.17) it is inferred that

WW)KWMQW¢IN%%ﬂﬁZﬂW%#ﬁn
E . n=1" E,

where
* g=g1+ ijg, En:(Fn‘_‘Fn'—i)E;
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and

[ @ dpdzsz a0 i
G

moreover, E, is a subset of G — F,,_, so that
(6'.22) |Es|ZLple—1)ZLp(n);
" thus
[[1y@agag.zaor..
G

As a consequence of (6'.1) and of the established summability
(over-G) of J'(¥) an application of Theorem 2. 15 will yield

6'.23 s = fl 3y dy, a3
(6.93). (1) ﬁ. ()3, dy
for all intervals I in G. The additive function
(6'.24) : J(e):ﬂ'y(g Vd, dYs

of measurable sets e (in G) is obviously absolutely continuous; futher-
more, this function coincides with J(1) on intervals; J(I) is absolutely

continuous as a function of intervals.
‘With e denoting a measurable set in G, in place of (6'.21) we have

Jveniapaz. = [ vy anan=3 [ yidz .

Thus, in view of (6'.20),
[ 143, d0: 2T 20n 1 eE
Let j denote a positive, as yet undefined, integer. On making use of

the inequalities
leE | Z|e| (n<£)), |eE, Z|EjZLp(n) (r>))

[cf. (6'.22)]itis accordixigly inferred that

h=1 n>j

ﬂ|]’(j)]dg1 dj,ézh 20h}e|+z 20 hp(h).
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Thus by virtue of (6'.24)
(6.25) 1J(e) | Zetle] + 30 Y np(r)=w(J, |€]),

n>j

where ¢ is positive and independent of j, e
Let /be a segment in G, parallel to one of the axes-say, the axis of
reals, its end points being p+ iy, h+in (p>h). Let I, be the

. - . . . . . T
interval containing / and having sides in the lines y=v =%

r=p— %, .r_h+ (suitable r,>o0). It has been established
in (T) that
h

¥ fd|_f dr o'l inI,— I,
=[5 = | e =lsy @bl

for>. 3. By (6'.25)
(6".26) Hi(e)l<w(y, le])  [I(e)!=Zw(/,|e])

Designating by
: Ve, V-, V=V+—V-
the upper, lower and total variations, we have
V+J,(e)=u.b.J,(e), V—Ji(e)=1Db.Ji(e,) (for e,Ce).
In view of (6'.26)
o= Vli(e), —=V-l(e)w(y,lel), VI(e)=2w(/,|e|)

There are similar inequalities for J,(¢). We define the total variation
ofJ=1J,+1], as
V:I(e)=Vi(e)+ Vi:(e);

by the preceding
(6.27) Vi(e)<bhw(/, |el)-

‘We want to secure
’ J’(‘I)dgldg ’
(6'.38) m[ G ] —ﬂ[ ‘llﬂ]umdzidgz

for all intervals I in G. Thus, together with our other conside-
rations, would enable us to dispense with Theodoresco’s theorem.
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Inasmuch as by (6'.24) \

V(@) dgdds _ TP o iable boint of intecrati
A ¥z ﬂ“;_‘ (¥ variable point of integration),
it is observed that (6'.28) is secured provided the integral
Jv@ravice)

exists. Itis sufficient to prove existence of
'[':ﬂy(j)d\/'.l(ej) (suitable v,).
Ly

Now in view of the inequality preceding (6’.206)
T:Zﬁ 2@ D logg VI (ly— 1,0
g2yl 7=V,

Utilizing (6'.27), with e =I,— I, andj = j,, we obtain

Té4 C',Z logq w(jq. I ll/_ lt/+! l)'

“f =V,
‘With the aid of the definition of w(/, |e|) in (6’.25) and since
11— gt | Zeo -q'—,,

it is inferred that

Té[;cocc'z‘/q Zlongn,o(n)

T2 I=Ve > -

Here the integers j,<j.< ... are at our disposal. If the j, can be
chosen so that the séries involved above converge, then T exists
and (6'.28) will hold. Accordingly we observe that the condition
(6'.7) implies that a relation of the type involved in (6.2), (6.3)
hold in the present case; thus -

©20) [ |- [[THE e = 134,43

for all intervals 1 in G.
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Form the function

_ LIS dYd.
1@ =rc)+ 0 ||

—5
By (6'.29) X
fq(z)dmus)—-j (3)d3, d3..
[t} 1

In view of (6'.24) on accordingly obtains

g(s)ds=o,

U}

Hence ¢( 3) is analytic and the conclusion of the Theorem ensues.
7. INTEGRAL EQUATIONS ON THE BASIS OF THEOREM 6.4. — Ve introduce

Deriximion 7. 1. — A continuous function f(5) will be said to be of
clusse R( fCR)1f

(7.1ra) ml;_,lff(z)dsloa-w (for 123, 3, in G —D,),
1 ' 1\l

where D, is sum of a denumerable infinity (at most) of segments
parallel to the axes, and if

(7.1 ) J'(3)<LB (FinG—G,; mG,= o),

J(I)::ffd-:-.
1]

We shall study integral equations
[z I e(d)a.dd.
I

where a(s) s a generic designation for a function analytic and not
asstgned beforehand; here o( j) is the unknown. Put

k(s J)— k(= =)
J—=
and assume k(3, 3)=1, Thus the equation is

dy,d
o) [[HL L K(5.3) 0(3) 3 dat /() = ()
G

where

+ f(5)=u(3) (Jc Ry,

Kz 3)=
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that is,

ch—————?‘f’;f‘;dg" + (3 =a(s),

(7.2") _
Foy=r@)+s).  s)=[[ K Do) dbd
G

In the sequel K(z, J) will be subject to suitable conditions.
Associated with (7.23) is the integral equation

(7.3) amig(a) = [[ @z, D)o AR dF =15,
G

where ®'(z, ) is the ordinary derivative (supposed to exist) of the
interval function

(7.3a), (I, 3)=| K(s, 3)ds;

h
we shall write
@ (z, 3)=D.@(l, J);

in this section D; (or D) will designate ordinary derwation of interval
functions.

Lemma 7.%4. — Every solution 3(F) of (7.2), bounded almost
everywhere in G, will be a solution of the regular Fredholm integral
équation (7.3), and conversely, provided f(3), K(s,F) satisfy the
conditions
(7.3) f(z)cR (Definition (7.1);

(7.6) s(:)= [[ K(z, ) 9() dy, d-c R

G
JSor all p almost everywhere bounded in G
7. TR endyay. | = ([eq, d¥, d¥,
@5 [ | xeDendnan|a= o0 ne@
[® from (7.3 a)] for all p almost ecerywhere bounded in G
(7.8) [Fe e dzaz,
bounded almost everywhere in G;

(7.9) Dsﬂcm, m&wm&:ﬂw(s, 3) 9(F) 4% d%
G
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Sor all g almost everywhere bonded in G.
The condition (7.8) may be replaced by

(7.8) I L1932 vy g, dye)
G G

exists. In view of (7.16) the condition (7.8) implies that every
(regular) solution of (7.3) is bounded almost everywhere in G.

Suppose 3 is a bounded solution of (7.2). — By (7.5),(7.6) fof
(7.2") belongs to R. Consider (7.2) in the form (7.2') and apply
the inversion (6. 14), (6.14 a) (where fis replaced by /); thus

1
¥(F)= 2_1:;"]“,(3 )s
where

o)== [ f(3)ds=J(l)+J,(1), Jo(l)zjﬂg(:)d;.
i\l

I
In view of (7.7), (7.3 a) vne may write ¢ in the form
ani9(=)=xr(=)+n,ﬂc ®(1, ) 9(3) dF: ds;

hence (7.9) will yield

(7.10) zﬁiq(s)=J’(:)+ﬂ¢’(s,j)(p(g)dg, d¥.;
G
that is, ¢ will be a solution of the Fredholm equation (7.3).
Conversely, suppose ¢ is a bounded solution of (7 .10). — By (7.9)

it is inferred that ¢ will satisfy the relation preceding (7.10), which
as a consequence of (7.7) yields

2ﬂi9(:>=~"(s>+sz[ﬂK(r;5>q(s>d3,dzg]dr
(I G

=J¥(s5)+D: | g(z)dr =V (5)+I,(5).
i

Integrating over I and utilizing (7.5), (7.6), with the aid of
Theorem 2.15 we obtain

(7.11) 2n’iﬂq(:)dxdy:ﬂy(z)dxdy+ﬂ‘J’o(z)dxdy
) 1 1

=J(I)+J(Io)=f(f+g)dz=f7(z)dz.
m <0



THEORY OF FUNCTIONS OF INTERVALS. . 38,
Since ¢ is bounded, by (6.3) it is inferred that

- s — g (T e3> 4343, ,.
2nz£q(.)dxd)_znzﬁ[—aﬂi T3 ]d...

Thus from (7.11) it follows that

f(.,[ﬂcﬂ;i—“f’—;ﬁ:’-* +7(=)] =0

for all I in G; hence [...], above, is analytic; accordingly ¢ is
a solution of (7.2'), that is of (7.2). The proof of the Lemma is
complete.

TueoreM 7. 12. — The integral equations (7 .2), (7. 3) are equivalent
in the sense that a solution ¢ of one, bounded almost everywhere,
is a solution of the other, provided : f(3)CR (Definition 7.1) and

[with ®(, g)=£1((z, g)ds]

@ (1,
- T IO
[for all1>3; h(3)Zx in G — D,; ¢(F) integrable over G);
(1, §) — o1, )
- { PED2C PN kg 3)
(for all 155; q(F, ¥) >0 with |§—F;
ﬂl K(b,3)d3 dJ. <+ (some b in G);
(3) ¢
[k 3~ K, 3)1d3,d3s >0 with 1z —<
G
(4°) ﬂ“b’(s, F)1*dF.dF. is bounded almost everywhere.
‘ G

The proof of this result is based on Lemma 7.4. Let / denote
a segment, which with its end points lies in G and is parallel to one
of the axes. To establish (7.7) it will suffice to show that

fl[ﬂam, 5)?(5)d51dj,]d‘t:ﬂ[[[{(n5)dr]q,(a)dgldgz
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for | ¢ | <~ c (almost everywhere in G). We have

K(r, d%, dY, | de| < ¢ K(r, 3)|d9, d%, |1 de);
[j[l (5, 3)1 19(F) | dFs dFs | de | f[ﬂcl (v, 3)| ¥ J]I z|

now by (3°)
Jike sz < [[1KG )~ Ko 3114343
+ [ 1663143, 4. <+
for = in any closed Subset of G-hence on /; thus the last member in

the preceding formula is finite and (7. %) holds.
In view of (3°) g(5) of (7.6) is continuous. On writing

()= | &(s)ds,

D

by virtue of (7.7) it is deduced that

(7.13) L= [[eay e dgdz.
. G

Accordingly, by (1°), for any I containing = one obtains

Jo 1) |¢ I. |
' I:l)léﬂ‘ (;nm"?(5)'d3ﬂd5aécc'h<s)<+oo
G

[ here ¢’ is the integral over G of ¢(J)] for all :in G — D, ; hence

(7.13a) Tim —

T <+ (for ID 243 3, in G — D).

g(s)ds

M

Now ¢(J) can be éssumed as finite for every J in G since, if
.necessary, the values of ¢(J) can be suitably assigned on a set of zero
* measure. By r° ’

M 20D ch s <= (159)
for all J in G and for z in G—D,. Hence the lower and upper

strong derivates of the real and imaginary parts of ®(I, &) are finite
for 5 in G — D, (for all ¥ in G). Accordingly

P (5,I)=D¥(5, F (forsin G—GJ),



THEORY OF FUNCTIONS QF INTERVALS. 389

where G, is some set of zero measure, possibly depending on F.

Let{J,}(v=1, 2, ...) denote a set of points everywhere dense in G.
In view of the above the derivatives .

(7.14) Y, (3, F)=D¥'(3, Fv) (v=r1,12,...)

exist for 3 in G — G°, where

G'= D°+Z G‘.,v, m(G*) =o.

Let J denote any point in G and the I,(r=1, 2, ...) denote any
sequence of intervals tending to 5 (zin G— G,). By (2°)

l= m(ulfn’ lg) = (D(ul?; 1‘1) a1 ranl Zh(3) (S Fo).

In view of (7.14) all the limits / of the sequence /,, /, ... satisfy
[ — @ (5, J) | < h(5)9(F: Fv)-

The numbers / are independent of the J,. Let J, (v, <v,<...)be
a subsequence of { [, ] converging to J. Replacing, above, J,by 7.,
in the limit we obtain

(1,) ‘ . Lim®; (3, J.,) = .

Necessarily /is unique, that is the limit
L. 3)_,

]ir:n ln: li/fn ” n]
exists and is independent of the choice of the sequence {v;]. We
repeat now the above argument with {I,} replaced by any other
sequence of intervals {I;}, tending to 5. It is found that all the
limits * of the sequence

e ®0% 9)

= 7] (n=1,2,...)

satisfy )
P —® (5 )| <L h(5)9(F, Fv)
and
Lm® (5, Jv)=01*  (as v~ F).
Vi

By (1°) I*=1; that is, / is independent of the choice of the sequence
' 49-
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t1,1.  Consequently the strong derivative

(7.14 a) P, (3 )=/ =lim® (3, J.,)=¥(, ]J)
vi

exists (and is finite) for all : in G—G° and forall 3 inG. ltis
essential to note that G° is a set of sero measure independent of .
In view of the relation preceding (7 .13 a)

m-‘—h <+ (forI>5,; 50 in G — D).

[l o Mo iz

Thus the strong derivates of the real and imaginary parts of
[[ o D2 ax a.
G
are finite in G — D, ; accordingly
(715 D. [0, 330 3, dfa=Ds [[ @1, 33 3.3,
46 G

for almost all 5in G (here D,. ... denotes the strong derivative at z).

To prove (7.9) let 5 denote a point at which (7.14 a), (7.15)
hold (necessarily A(5)5% «). It will suffice to secure
7.9 D, || ®(, ¢ dj.dy.= || ¥, (s, d¥,dy,.
o) D ff ot e dridr= [[ @ Do ag.az
Let { I,! denote a sequence tending tos. We have

D.. f] (1. D) dy, dy.=tim [[-2CD g (5 ag. ay,
g

n g ‘l’l‘

.o ®(1,, ¢ =
= lim __(ll l‘”cp(j)dj, dy,

G n n .

= [[ ®(z Do) d. ag.
G
In fact, by (1°) and since |@| ¢,

I‘b(illn,:aj)' 9P <eh()9(F) (=12, ...);

the last member is independent of » and is integrable in ¥ over G;
this justifies transition from the second member, above, to the third.
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- The transition to the last member ensues by (7.144). Consequently

(7.9) holds. '
It remains to establish (7.6). By (7.13)and (7.9)

Y@= [[ @ D9 dr dgs
‘ G
Thus in view (4°)

CT(2)|<e id»'(s,mldmd;héco“fm:,5>l=d5.d:f:]
H G

G

(c, someconstant). Whence |J (5)|is bounded almost everywhere;
together with (7.13 a) this implies that (7.1 &), (7.1 b) hold for
8(z). Since g(3)iscontinuous, g(3)CR;(7.6)holds. Now (4°)is
identical with (7.8) and f(z) belongs to R by hypothesis. Thus,
under the assumptions of the Theorem, the conditions (7.5)-(7.8)
of the Lemma all hold. The theorem is proved.

8. INTEGRAL EQUATIONS ON THE BASIS OF THEOREM 6. 10. — We introduce

Derinition 8. 1. — A continuous function f(3) will be said to be of
class B,. provided
(8.1 a) E’%—ﬂ‘) <+=x (inG—E),

;Where E=F +E;+..., plength of E, <+ o(=1,2,...),
w(u) being admissible, and the modulus of continuity v(u) of f(3) is
-of the form

(8.1 5) n(u):m(u)-‘# [n(a), w(u)—>o withu]
dhdproqzded |

(8.1¢) HQI'(F)<LB  (in G—Gy; mGoe=o0),
where

‘J(l):ff(z) ds=1J,+il,.
)

The class B, is additive in the sense that ¢ fi+ ¢y fa (e, e, constants)
belongs to B, with f,, f.. Furthermore, in accordance with a
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remark subsequent to Theorem 6. 10, (8. 1 @) implies that

(8.2) — o< (Qh=(Q)Iy<+»  (inG—E;v=r1,2).

Also, if fcB,, J(I) will satisfy the condition (i) [ Definition (4.5)];

this ensues by Lemma 8.10. Consequently by virtue of Theorem
A .25, applied to J,, J,, one obtains ‘

(8.3) ﬂ(Q)J’(J)d;L d.=J(1) (alllin G)
1

whenever [ belongs to B,.

Lemma 8. 4. — Every solution 9(F) of (7.2), bounded almost ecery-
where in G, will be a solution of the regular Fredholm integral equation
(7.3) [with (Q) derivation] and conversely, provided f(z) k(s, )
satisfy conditions (1.5), (7.9), where R is replaced by B, and ordinary
derication is replaced by (Q) derivation. We designate the modified
conditions (7.5)<(7.9) by (8.5)(8.9), respectively. :

This result is established following the lines of the proof of Lemma
7.4, on making use of (8.3) (for f and g) and of Théodoresco’s
theorem (6.3).

Tueorem 8.10. — The integral equations (7.2), (7.3) [with (Q)
derivatives | are equivalent in the sense that a solution o of one, bounded
almost ecerywhere, is a solution of the other, provided f(5)CB, (Defi-

nition (8.1) and provided (m’th @(I, j,)=£)K(s,31)dz) one has :
(1) B L v@qw,
[for all1>3; h(5) 2 o in G —E; q(J) integrable over G|;
710, 3) — (L 3) | <h(=)9 (5, F)
[forall1>z; q(F, F)>owith|J—3'|]:
(2°) v:jl‘]l\'(z',g):dj,d;‘],<+oc (for somesz' in G);

(3°) jf‘l QD' (3, )2 dFy, dF, boundest almost everywhere;
(¥

(4°) ﬂ]K(sl,;})—K(z,j)]dj,djgéau,—s{ (constanta).
G
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In the above E is a sum of a denumerable infinity (at most) of sets of
finite p-length.
‘We write
' I ()= [ g(s)ds.
fe

By (4°) and the definition of g(s) in (8.6)
(8.11) 0 18(3) —g(s) | LK 5 — s
hence (with s, denoting a point interior I)
B =1=| [ (s(e) ~stz0pds | <k [12 = ailidsl 2411
n m

(k, ' constants) for squares I. Since (Q)J), is defined with the aid
of a particular sequence of squares, the above implies that

Q) (I <

Thus (8.1 ¢) holds for g.  Also, by (8.11) it is observed that (8.1 a)
is valin for g. The modulus of continuity n,(«) of g(3) is ¥ u; thus,
with (8.1 ) in view, on writing

/c’u:wo(u)@

and on noting that on account of (4.9) (where m=2)

w,,(u):/r’—fﬁ—)—)o (with u),

it is inferred that g satisfies (8.1 6). Hence g B, and (8.6) holds.
As a consequence of (4°), (2°)

ﬂtK(z, J)Idﬂidzeév+ﬂlK(5’,.‘J)—K(S,J)IdZad:}’aéV+als’-5l--
w6 G

Accordingly (8.7) is valid,
In view of (8.7)

(8.12) I()= ﬂ O (L, 3)9(F) dY, dF..
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By (1) and inasmuch as | 9| < ¢ (almost everywhere), we have

[J‘l)(lll)" el I."(lll'ig)“ d¥ dJsZed h(z)<+%  (in G—E]

for all interval 1D 3 (¢’ a constant). Thus

m_‘_‘%&<+w, m lJ"'(lll)‘ <+ [I>5; 5i0 G —{E).

Now m(E) =o0; hence the extreme strong derivates of the real and
imaginary parts of @, J, are finite almost everywhere. By a known
theorem this implies . '
O (. 7)=¥(s5 ) [for sin G — Gy ; m(Gyg) =o].
Jo(3)=J4y(3) (almost everywhere in G).

The assertion for ®, holds for 5 in G — G°, where G° is independent
of 3, contains E and has sero measure; this is established with the aid
of the second condition (1°), following the corresponding lines of
reasoning in section 7. Clearly

FZF Z(Q)F<(Q)F<F<F,

for any real valued interval function IF(I). Accordingly the above
yields
(8.13) {(QO' (5, J)=P, (5 F) (for zin G — Gy; all Fin G),

) | Q) (5)=1J,,(5) (almost everywhere in G).

We proceed to prove (8.9). Bjr (8.12) and (8.13) it will suffice
to establish :

(8.9) [J3,(3)=]Ds:ﬂ¢(l, Fe(F)dF d212=ﬂ®é (s F)o(F) dJdF»
G G

(D.....=strong derivative at ) for almost all . Let sbea poinl
for which 2(5)>£ and (8.13) holds. Let {I,} be a sequence of
intervals containing 5 and -~ s. 'We have
, . @1, ) . 0L, )
Jos(s) =1 S dj,d¥.= || 1 < F)ajiag.
(o) =tim [[ %G Do) ag, dpa= [[im 2 Do (3) dy, ay

G n

=ﬁ:®; (5, )0 (F) dFada.
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Here passage to the limit under the integral sign is justified since

lim __""';’f” =@ (5, )

and since, by (1°), one has
lll_nl"."(‘m5>II¢<J)téciz<=)q<;1) [h(s)<+wo],

where the last member is independent of n and is integrable in ¥
over G. Thus (8.9'), (8.9) hold. The theorem is accordingly
~ established.

Theorem 7.12, 8. 10 furnish the following result regarding repre
" sentations of functions f(z) of a complex variable.

If /(3)CR and k(3, J) satisfies the conditions of Theorem 7.12,
while the regular Fredholm integral equation (7.3) has a solution ¢
(necessarily bounded almost everywhere), then /() has the repre-
sentations

k 3, 0 5 (F) d¢ |d '
(8.14) f(:):—l ( ‘”f’(i”_ J1dJ —a(s);
A J—s
a(z) analytic
' k(s, ) 1
= k(s, 3).
F—z 3 +k(z,J)

A similar statement can be made for functions f(z)CB,.
-An analogous study of integral equations can be developped on
the basis of section 6.



