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Polynomial expansions of functions defined
by Cauchy’s integral;

By J.L. WALSH.

In the plane of the complex variable z, let the analytic Jordan
curve C contain the origin in its interior, and let the function f(z)
satisfy a Lipschitz condition on C. Then, as Plemelj has shown
[1908; compare also Privaloff 1918], there exist functions f,(z) and
f2(z) analytic respectively in the interior and exterior of C, conti-

nuous in the corresponding closed regions, C, and C,, such that on C
we have f(z)==f,(3)— f2(z) These functions are represented by
the Cauchy integral of f(z) over C. The function fi(s) can be

expressed in C, as a uniformly convergent series of polynomials
in z, and the function f,(z) can be expressed in C, as a uniformly

. . 9 . 1 ;
convergent series of polynomials in _; consequently f(z) can be

expressed on C as the difference of these two series. It is the object
of the present paper to study under various hypotheses on f(z) the
"definition of these two series directly in terms of f(z) rather than in
terms of f,(z) and f,(z), and where the series are the classical ones
of Faber and Szego. Thus we study expansions of the cormponents of
a given function f(z). A corresponding study has previously been
made by the present writer [1924] for special series of polynomials
artificially defined for the purpose.

To be more explicit, in Section 1 we consider the boundary values
of the Cauchy integral over C of an arbitrary function f(z) either of

Note. — The research here presented was accomplished in part under a contract
between Harvard University and the Office of Naval Research. Responsibility
for the wiews expressed lies wholly with the duthor.



222 J. L. WALSH.

class L? (that is, f(z) and [f(z)]* are Lebesgue integrable with
respect to arc-length on C) or of class L(%, «), namely a function
‘whose £" derivative with respect to arc-length on C satisfies a
Lipschitz condition of order ¢, 0 << 1. We include the study of
a useful class of functions recently introduced by Zygmund. In
Section 2 we expand these boundary values by the Faber polynomials
and associated functions, and in Section 3 by the Szegd polynomials
and associated functions; this treatment seems to be the first proof of
. the convergence on C of a development in Szegd’s polynomials without
- assuming analyticity on C. In Section 4 we show that except when
C is a circle there exists no weight function with respect to which the
two classes of functions f,(s) and f,(z) are mutually orthogonal
on C. In Section 5 we discuss briefly degree of convergence.

It is especially appropriate that this article should appear in a
volume dedicated to M. Paul Montel, for his work [1910] on series of
polynomials has been the immediate inspiration for the greater part
of the subsequent work on the subject,, his study of degree of conver-
gence [1919] is classical, and his theory of normal families of func-
tions is one of the most important tools in the study of expansion
problems. '

1. Bounoary Varues. — For the case of the unit circle C: |3|=1,
explicit formulas can be given for the functions f,(z) and f,(3); we
use.polar coordinates (7, 6).

Taeorem 1.4. — Let the function U(8) be of class L* on C, let V(9)
be the function conjugate to U(8) on C with f V(0)db=o, and let
C

- u(z) and ¢(z) respectively be the functions harmonic interior to C
defined by Poisson’s Integral, taking on the boundary values U(0) and
V(6) almost everywhere on C. Then we have

1.1y fi(s)= z%m I#_E_—)gsi[u(z)+iv(z)+u(o)], z interior to C,
c . )
2) fim= o [BOL

[

e LOR

) — u(o)] sz exterior to C.

[SNIRE
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In these formulas 0 is a function of ¢, and in both (1.1) and (1,2)
as in all subsequent formulas, all integrals over C are to be taken
counterclockwise. It is natural here, although by no means neces-
sary, to interpret U(0) as real. The conjugate function V() can be
defined on C either by means of Fourier series or the Poisson integral,
and is of class L.? on C since U(8) is of class L on C.

We denote by H, the class of functions Z a,s" analytic interior to

0
)

C with Z | @.|? convergent, and by G, the class of functions 2 a_,z "
[}

1

0

analytic exterior to C and vanishing at infinity with Zla_n 2

1
convergent. For an analytic function F(z) to belong to H, or
G, it is respectively necessary and sufficient that the integral

f“]F(rem) I d9 be uniformly bounded as rapproaches unity, »<1

orr>1. It then follows [Fatou; see for instance Walsh 1935,
Sec. 6.10] that boundary values for approach ¢ in angle” exist
almost everywhere on C, are of class L* there, and that Cauchy’s
integral formula is valid in terms of these boundary values. |

The Taylor expansion of a function of class H, converges in the
mean (of order two) on C to the boundary values. If a sequence of
functions of class H, converges in the mean on C, the limit function
is necessarily of class H,, and the sequence converges to the limit
function throughout the interior of C, uniformly on any closed set
‘interior to C; compare Seclion 3, lemma 1 below.

The funcuon u(z)+1¢(zs) of theorem 1.1 is of class Ha, 50 we
have

(1.3)  w(s)4+iv(s) = —

2T

; .
(1.4) fL(O +LV(O) z exterior to C;
= omi 5

U(0)+ zV(O)

s interior to C,

each of these formulas can be established by expressing U(8) 42V (0)
as the limit in the mean on C of its formal expansion in positive
powers of z.

Journ. de Math., tome XXXI. — Fasc. 3, 1g52. 26



224 J. L. WALSH.
‘We can reflect the function u(z) 4 ¢v(z) in the circle C; the func-
© tion u<é) —iv (é) is analytic exterior to C and takes on C the

boundary values U(0) — 'V (8); the function u ( > -1y (i) — z)(o)
is of class G,, whence as in the proof of (1. 3) and (1.4) '

(1.5) u(é)—iv(i)—u(o)sz,fwdt s exterior to G,
z z 27Tt Je t—2

.0

(1.6) . u(o)z—-l—-.f-U(o)_—lV(o)dt, = interior to C.

27l c t—‘z’

121

~+ Equation (1.1) now-‘flollows from (1. 3) and (1.6), and (1.2)
follows from (1.4) and (1.5). The boundary values almost every-
where on C of f,(z) and f,(z) are given by

[ = LU0 +iV(0) + (o),

¢ ) : ‘fz(z)———[U(O)—zV(O)—u(o)],v

- We have alsb on G

{f’i() Ja(z) = U0),
Si(z +fz(Z)—lV(0)+u(0)1

- Following Zygmund [1945], we define U(0) as of class A* or A*(0)
_on Cif, on G, U(6) is continuous and we have -

(1.8)

(1 9) U0+ k) + U0 —h)—2U(0) | <M 4|

where M is independent of 6 and 4. If U*(9) satisfies a condition
on C similar to (1. 9), we say that U(0)is of class A*(4) on C. We

have

Tueorem 1.2. —Ifthefunction U(0) is of class L(k, oc), ol a1y
on C:|z|=1, so also are f,(3) and f.(5), the latter functions being
continuous in |3| <1 and |3|>x1 respectively. If U(8) is of class
A*(k) on G, so also are f,(z) and f,(z), the latter functzons being

continuous in |z |1 and | 3| > 1 respectively.
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Itis a well known theorem due to Privaloff [1916] that if U(6) is
L(o, a), so also is V(0); the first part of theorem 1.2 then follows
readily [compare Walsh, Sewell and Elliott, 1949; th. 3.1]; indeed
it follows [Sewell, 1942, p. 29] that f‘f’(z)‘ and f(s) satisfy
Lipschitz conditions of order « in the respective closed regions | z | <1
and |z|>1. Zygmund [1945] shows that If U(0) is of class A*
on C, so also is V(0), so the second part of theorem 1.2 follows
[compare Walsh and Elliott, 1950; theorem 2.2]; here too the func-
tions f1”(z) and f""(z) satlsfy conditions in z similar to (1 9) in the
respective closed regions | 5| < 1 and |z|>s1.

We proceed to extend theorem 1. 1 to an arbitrary analytic Jordan
curve C. For such a curve, the class of functions H, is defined as
the transform of the class H, under a conformal map of the interior
of y : |[w|=1 on to the interior of C. Let F(z) be a function of class
H, with respect to C. In the w-plane there exists a sequence of
functions analytic in the closed interior of y converging interior to y
to the function F[®(w)] and in the mean on y to the boundary
values of F[®(w)], where w=09(z), 3 =®(w) maps the interiors
of C and y on to each other. Thus in the z-plane there also
exists a sequence of functions analytic in the closed interior of C
'converging in the mean on C to the boundary values of F(z) and
converging interior to C to the function -F(s ) Consequently
Cauchy’s integral formula is valid :

F(s)= 2; F(e) de
LIWA t—z

A similar proof and conclusion hold for the class G, for C, defined
as the transform of the class G, under a conformal map of the exterior

of y on to the exterior of C with the pomts at mﬁnlty corresponding
“to each other. Let us prove

s 5 interior to C.

- Tueorem 1.3. — Let C be an analytic Jordan curve, and let the func-
tion f(z) be of class L? on C. Then we have
flsy = & (L0

zm c t—=5

Sfo(5) = J()de
| 2

t— s

» % interior to G,

(1.10)

—"——, sz exterior to C,
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where f,(3) and f,(3) are respectively of classes H, and Gy Jor C; the
boundar Y values almost everywhere on C satisfy the equation

(1.11) Ji(z) = fa(5) = f(5). a
In particular if f(z) is of class L(k, a), o < a <1 0or A*(k) on G, so
also arefl(z) and f,(z).

With the map w=o(z) already 1nLr0duced the function f[®(w)]
is of class L* on vy, and we have by (1.8) almost everywhere on y

FI®(9)] = 04 (w) — @s (),

- where 9,(w) and o¢,(w) are of classes H, and G, for y.  Under the
map w = ¢( ), a certain closed annulus A in the z-plane, bounded by
C and by an analytic Jordan curve C, containing C in its interior, is
transformed one-to-one and conformally. If z is an interior point
‘of A, we have

(1.12) ‘ cp(z)]—’—co-,( ) =4 ¢ (5),
ps(3)=— f(P" ;P_(_t)z a, s interior to G},

1.13)
( cp,,(z) = / CP"[;P_(_tl s & exterior to (,
where C, and C' are analylic Jordan curves interior to A near C,
and C respectively. These integrals may be taken over the curves
C, and C themselves; for instance choose C/, as the image of a variable
circle | w, | =r< 1 under the conformal map of the interior of C, on
to the region |w, | < 1; then the first integral in (1.13)is a Stieltjes-
Lebesgue integral with respect to the parameter argw,; =10, an
integral which is constant for fixed z as 7 varies and approaches
unity, and whose integrand converges in the mean to the integrand
for =1 (compare the w,-plane); the integral approaches the corres-
ponding integral taken over C,. The integrals (1.13), now taken
over the curves C, and C, define functions ¢,(z) and ¢,(z) analytic
respecuvely throughout . the interior of C, and throughout the
exterior of Cj; on the curve C the function ¢,(z) is analytic and for
the boundary values @,(w), 9,(2), 9.(3), equation (1.12) is valid.
‘The function 9,(w) has boundary values almost everywhere on v of
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class L?, as has the function ¢,[®(w)], and f}cpg(rei"') ]5 df and
f|¢4[¢(re€°)]|2d6 are uniformly bounded (r>1), so ¢.(z) is of

. class G, for C; the equation ¢,( o )= o follows from (1.13).
‘We now introduce the definitions

Sfi(z)=qi[q(z)]+ 03(2), zinterior to C,
L) =9.(2), . . z exterior to C,

from which (1.11) follows. The functions f,(z) and fg(z) are -

respectively of classes H, and G, for C, so we have (1.10). -

_ The remainder of theorem 1.3 is an immediate consequence of
theorem 1.2; compare Walsh and Elliott [1950], theorem 3.4.

Compare also Davydov [1949] ‘

Q. Faser poysomurs. — If C is an analytlc Jordan curve of the
z- plane, Faber [19o3] maps the exterior of C onto the exterior of y :
|w|=1 by the transformation s ={(w), w="W(z), with $(0)=oc, |
and studies the kernel of Cauchy’s integral

dt V' (w)dw
t— =z KP(W

(201) _zf‘ (z)yw—"=* dw,
where I¥,(3) is a polynomial in z of degree n, and the development 1s
valid for z interior to C and w on y. Indeed, if we set s =4 (),
we have ’ '
i ’ N o , . ‘ kl} (W’o)(w—“v(\).,
(2.2) (@)= d(wo) + ' (00) (W — o) + —— T
Ve Y ey
G (w) 1 : 2! 3!

T (w) — b () T, = 7 (wy) (w0 — wyg)
. v ————2,

+en,

(2.3) O(w)=
d/(w )+ —+...

The last member of (2.3) is uniformly bounded for all w, on v and
for all w on v, and even for all |w,|>r<1 and for all {w|> 1,
provided $(w) is analytlc with .[/(W\;éo for ]w1>r The coef-
- ficients of the expans1on v

@(&V):j}——}- é}—:—F
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are uniformly bounded for |w,|>r, A,=O(r*). We have also

I I wo Wy
=1+ — 4 —=+... ), lowe | << | ),

W — Wy w w W

whose coefficients are O(r") if lw,|Zr. Thus it follows from (2.1)"
that the coefficients F,(s) are uniformly O(7) if 5 lies on C,:
[ [=r<1.

We are now in a position to prove

Turorem 2.1. — Let C be an analytic Jordan curve of the z-plane,
and let f(3) be L? on C. Then for the functions o f theorem 1.3 we
have

©

( R ., ST ()] dw,
(2.4) Ji(z) =3 anFala), an—mf

WIL+1
0

where the expansion is valid uniformly on any closed set interior to C,
and

@.5) Jo( )—Ea_nw' YW (3), = %fcf(Z)Fn_i(Z)dz,

where the expansion is valid uniformly on any closed set exterior to C.

Equation (2.1) is valid uniformly for z on G, and w on vy, so (2.4)
follows from the first of equations (1.10) by integration. Equa-
tion (2.1) is likewise valid uniformly for s on C and |[w|>R>1,
and can be written in the form

(6) [W (&)1 Fa(s) ds,

so (2.5) follows from the second of equations (1.10).

Equations (2.4) and (2.5) are expansions of f,(3) and f,(z)
directly in terms of f(z) without the explicitintervention of Cauchy’s
integral formula.

Equation (2.5) has the disadvantage of being an expansion in
terms of the powers of the mapping function W(z) instead of poly-
nomials, a disadvantage that we now overcome by mapping the
interior of C onto the interior of y, with the mapping function
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w=10(3), 3=0(w); we suppose s==0 to lie interior to C, and
assume 9(0)==0. A procedure entlrely analogous to the one just
used defines an expansion

| dr @ (w)dw oy
(2.6) | T (D(w)—— ZF_,z <Z>v 1a'w‘,

where F_, ( > isa polynomlal n ~ = of degree n Wlthout conslant lerm,

“and where the convergence propertles of (2.6) are similar to those
of (2.1). From the second of equations (1. Io) we have at once
the second part of

Tarorem 2.2. — Let C be an analytic Jordan curce of the = -plane’
containing the origin in its interior, and let f(z)be of ¢lass L on C.
Then in the notation alieady zntroduced we have

(27) ﬁ(z)EZ anFn(Z), ap— f( )w,( )d"’

;?2 Pn+i(z)

where the expansion is valid un formly on any closed set interior to G,
and ‘

(2.8) -ﬁ(z)sg‘ aFa(3) o= f F&9 ()0 () s

2Tl
1

where the expansion is valid uni formly on any closed set exterwr to C.

The function f,(z) vanishes at infinity, as does each of the poly-'
‘nomials F_n(—>, Both (2.7) and (2.8) are expansions expressed

~ directly in terms of f(z) without exphclt use of Cauchy’s integral.
“We emphasize the fact that the expansion (2.8) is derived from the
Cauchy integral itself, and -is not merely a transformation of the
expansion (2.7); such a transformation would have the disadvantage

I
for our present purpose of yielding polynomials in - of degrees
S0, 1,2, ) .. with constant terms not necessarily zero, instead of poly-
nomials in - ! of degrees 1,2, ... with constant terms zero ; the formal

expansion of a non-zero constant (a function of class H,) in terms of
the transformed polynomials would not vanish identically.
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From known propertles of the Faber polynomlals [Faber, 1903;
Sewell, 1942] and from theorem 1.3 we have the first part of the

CoroLLARY. — [f the functzon [1(z)is analytic throughout the interior
of the Jordan curve Cy : |W(z2)|=R>1, then the expansions (2.4)
and (2.7) are also valid throughout the interior of Cy, uniformly on
any closed set interior to Cy. If the function f,(z) is analytic
‘throughout the exterior of the Jordan curve C, : |9(3)|=r< 1, then
the expansions (2.5) and (2.8) are also valid thwughout the e:vzerzor‘
of C., uniformly on any closed set exterior to C,.

1f the function f(z) is of class L(o, @), on C, 0 < a < 1, the expan-
sions (2.4), (2.5), (2.7) and (2.8) are also valid uniformly on C.

To prove the second part of this corollary we use theorem 1.3.
Only equation (2.5) requires supplementary discussion; interpreted
in the plane of w="W(3z), this expansion is a Laurent development
of a functlon analytic |w|>1, known to be valid for |w|>1; the
function developed is of class L(o, @) on v, so the development is also
valid uniformly on y.

If C is itself the, unit circle, theorems 2.1 and 2.2 are 1dent1cal with
each other and with classical theorems

5. Szecd’s poLyNomiALS. — In our study of orthogonal polynomials,
it will be convenient to prove several preliminary propositions,

Lemma 1. — Let C be an analytic Jordan curve, and let 9,(z) be of
class H, for C. If the sequence of functions ¢,(z) eachof class H,
converges in the mean to ¢,(z) on C, then the sequence 9,(z) converges
to ¢o(3) throughout the interior of C, uniformly on any closed point set
tnterior to C. ‘

Cauchy’s integral formuld is valid for C and each of the functions
©0(2) and ¢,(z); the conclusion follows from Schwarz’s inequality.

If we assume here that ,(3) and ¢,(3) are of class L* on C but not
necessarily of class H,, it remains true that the functien ®01(3)
defined as the limit interior to C of the functions ¢,,(z) is also of
class H, "

Po1 (2 )‘"27”‘/‘%“)(” © om(s )—sz%(t)dt z interior to C.
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For the case that C is the unit circle, this-conclusion follows from the
equation 9,(2)=9,,(5) — ¢02(2) on C, where 0,,(z) and ¢,,(z)
may be found from the formal Laurent expansion of 9o(3) on C and
are of classes H, and G, respectively; for the case that C is a
more general analytlc Jordan curve, this conclusion follows from
theorem 1. 3.

Lewma 2. — LetC be an analjt,z'c Jordan curve, and let F(z)be of
class Hg for C. Let Z a,p.(3) be the formal expansion of F ( )on C

in terms of the polynomzals pn(3) normal and orthogonal on C with
respect to the weight function n(z) positive and continuous on C. Then
“this formal development converges to ¥ (z) in the mean on C, and
converges to F(z) throughout the interior of C, umformly on any
closed set interior to C.

If the fl]IlCthI’l w=9(3), 5= ®(w) maps the interior of C onto the
interior of y : |w| =1, the function F[®(w)] can be approximated in
the mean on y as closely as desired by a polynomial in w=0(z).
Any polynomial in w = ¢(z) can be uniformly approximated on C as
closely as desired by a polynomial in z [Walsh, 1935, p. 36], so on C

“the function F(z) can be approximated in the mean as closely as
desired by a polynomial in z, whether approximation is measured
with or without the weight function. Hence the measure of approxi-
mation to F(z) on C by the polynomial of degree n of best approzi-
mation in the sense of least squares, namely by the sum of the first
n—+1 terms of the formal expansion of F(z), approaches zero as n
becomes infinite; the remainder of lemma 2 follows from lemma 1.

Lemma 3. — Let C be an analytic Jordan curve, and let the norm
function n(z) be positive and analytic on C. Let the function F(z) be
continuous in the closed interior of C and of class L(o, a)on G, o < a<1.
" Then'the formal expansion of F(z) in the polynomials p,(z) normal
and orthogonal on G with respect to n(z), converges uniformly to F(z )
in the closed interior of C.

Szegd has shown [1939,‘p. 365] that under the conditions of
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lemma 3 we have the formula

3 ECE [\F’(z)];‘[‘v(z)]"mw)]—w0<h"),

(am)?
uniformly in a nelghborhood of C, where o< lz< t and 4 is inde-
pendent of z, where A(z) is a function analytic and different from
zero in the closed exterior of C, with A(w) >0, where |A(3)[? is
equal to n(z) on C, and where w = W (z) is the mapping function of
Section 2. © 'We write (3.1) in the form -

(3.2) pn(z) =N(5) wr+ O(hn),

where we have w=""(z). The formal expansion of F(s) on Cin
the polynomials p,(z) can'then be written :

(3.3) F(s)~Sp (-)fF(zoEn(zoldzir
EZ IN(2) w0, (1)) fF(M)[N(k,)w"ﬁuo (]| ds .

The subscripts 3 and 3, serve merely to indicate functional depen-
dence. We express the last member of (3.3) as the sum of four
infinite series, which we study in order Wlth‘ w,=W(z,), the
coefficient

< = F(5,) N(z1) | dow, | /F(z,)i\f(zi) dw,
F(sz z 7 P — . = S - -
J PR wt ds f W W ), 1)

where v is |w, | =1, is except for the factor 27 the coefficient in the
F(z)N(s) .
TG
necessary for the present purpose to relate this latter function to the
boundary values of an analylic function; it is sufficient merely that
this function is of class L (o, @) on y. It then follows from the corol-
lary to theorem 2.2 applied where C (notation of theorem 2.2) is
identical with v, that the series

formal expansion of the functlon in powers of w. Itisnot

Zw."ch(z,)'l\Tul)E?wzn
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and hence also the series
BN wr [ Fa) Nie) ot dai|
C
0
converges uniformly on C. It is obvious that the three series

.‘ ;oz(/zn)fCF_(z.)I\J(zi)wudz1 b
’;N(z)w"‘ch(zi) 0u () |, |
- zolO;(h") ch(z,)Oz‘(hn) \ds, |,

‘also converge uniformly on C, so the series (3.3) converges uniformly
on C and therefore converges umformly in the closed interior of C.
Interior to C the sum of (3.3) is F(z), by lemma 2. Lemma 3
follows.

We are now in a posmon to estabhsh the analogue of theorem 2.1 :

- Tarorem 5.1. — Let the norm Junction n(z) be positive and of class
L(o, a), 0 < « < 1, on the analytic Jordan curce C and letf(z) be of
class L2 on C.  We introduce the notation

4

| NI OTC, La} o
(3-4) gu(z) = ;Ef—-l——_—— dt, z interior to C.,
(3.5) Gr2(5 ):;‘n—lf,—l——(tt—)_—fﬂ Idt' dt, s exterior to G,

- and also use the notation g,“'(z) and gis(3) for the boundary values
. on G of thése functions; by theorem 1.3 the functions g, () and q,‘,(z)‘
- are of class L(o, «) on C. .

Iff(z) is of class L2 on C then we kave (notation of theorem 1.3)

3.6 =S ) [ Fergator s
o 0 ¢

8
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uniformly on any closed set interior to C,
(3.7) £ =Xgn(=) [ FOpode
. N 0 C

uni formly on any closed set exterior to C.

Wlth the notation (3.5), we have [Walsh 1935, p. 137

(3.8) —

Ezm}_“pk(z)qm(t),

0

| uniformly for z on C and for ¢ on any closed set exterior to C.
Equation (3.7) follows at once.
By theorem 1.3 we have on C

3z dsz
(3.9) I (5) = gus(s) = 2L o]

and by lemma 2 we have

@

B0)  fils) =Y apes), ru-fn( ) £i(5) pil=) | ds

uniformly on any closed set interior to C. But we have [comparev
Walsh, 1935 p- 145]
(2) gu(2) ds = o, 2(2) gre(3).dz = o,
| jcf()t/k(z) 0 Lf()w() o
whence from (3.10) and (3.9)
(p—— 1(z 2 (5)ds =— o dz,
” £f()‘]k()( ff()qu)

“and (3.6) is a consequence of (3.10). There follows 1nc1dentally

CoroLrLarY 1. — If in theorem 3.1 the only lequzrement on n(z) s
that of being positive and 'measurable, with n(z) -and — ( ) bounded
then (3.6) and (3.7) persist.

To prove corollary 1, we note (Joc. cuz.) that the second member
of (3.8) is dominated by a geomelric series of constant terms, uni-
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formly for z on C and for ¢ on any closed set exterior to C, so (3 7)
- follows. The identity of (3.6) and (3.10) follows as before from
the fact [compare Walsh, 1935, p. 145] that the integral over C is
zero of the product of any two functions of class H, or of class G,.

CoroLtarY 2. — If in theorem 3.1 the function n(z) is analytic
on G, and if either f(z) or fi(z) is assumed of class L(o, a) on C,
then (3.6) is valid uniformly in the closed interior of C.

Corollary 2 follows from lemma 2

‘We have not shown (3.7) to be valid umformly in the closed
exterior of C.- To obtain an expansion of f,(z) valid in that closed

exterior, we introduce the polynomials P ( ) in ;I of respective
degrees n orthogonal on C with respect to the norm funcuon n(z).
We prove

TueoreM 3.2. — Let the norm functz'on n(z) be positz've and of
class L.(o, @), 0 < a < 1, on the analytic Jordan curve C, let the origin
be interior to.C, and let f(5) be of class L? on C. We introduce the
‘notation '

YT : Fpya a4 s interior to G,

n(t)l—)k -}
(3.12) P“( )___I_ <t> | de |

2T t—3 de -

(3..“).' Pau(s) = L .n(t)Pk<Z> | .

dt, s exterior to G,

and. also use the notation P,\.i(z) and P, (z) for the boundary values
on C of these functions, boundary values of class L.(o, ) on C. .
If f(3) is of class L on C, then we have (notation of theorem 1.3)

(3.13) fis) = PM( >ff(z>Pk()

\

~ uniformly on any qlosed set interior to C,
' = S 1
(3.16) £(2) E—zolpk(;>£f(;) Pu(t) dt,

uniformly on any closed set exterior to C.
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The expansion propertiés of the polynomials Pn<§> are readily
deduced from the classical results by the substitution s = Thus
we have [ Walsh, 1935, p. 137]

(3.1.5) » _—szPk< >Pk, (1),

uniformly for z on C and for 7 on any closed setinterior to C. Equa-
tion (3.13) follows. '
By theorem 1.3 we have on C

' 'l()Pk< );dq
Pu(s) —Pr(s) = e )

VA -

and by lemma 2 we have

G16) A =Ynr(l) fn(Z)fz ()P} ) a1,

uniformly on any closed set exterior to C. We have also
ff,(z)Ph(z)dz:o, /fz(z)Pk,(z)dz:o,'
c - c

whence we have

bk:—ff(z) Pr(z) dz,

’

50 (3.16) is essentialy (3.14).
Although f,(z) vanishes at infinity, the individual terms of the
second member of (3. 14) do not necessarily vanish atinfinity. Here

three remarks are appropriate. First, let Q,(G) denote the poly-

nomials in = of respective degrees & obtained by orthogonalizing and

- normalizing on C the functions 7, 272, .. .; it is still true [compare

Walsh, 1935, p. 310] that the formal expansion of f,(z) on Cin
terms of the Q, (é) converges in the mean to f,(z)on C. If we set

Que) = 1m; | "‘”Qk( ) de]

2T t— 23 S dt

z interior to G,
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and use the notation Qy, (z) also for the boundary values on C of this
function, the method of proof of (3. 14) establishes

Bay) f=(_z>——),Qk( )ff(t) Qui (1) e,

uniformly on any closed set exterior to C; each term of the second
member of (3.17)vanishes at infinity. Second, the function 5 /,(3)
is analytic exterior to C, and we have the expansion

(3.18) ;ﬁ(z)Eipk(;>£}z(s)zf2(z)?k(%>Ia’z1,»

uniformly on any closed set exterior to C. The coefficient in (3. 18)
cannot necessarily be written asj 5 f(5) P, (3)ds, however, for the
¢ R

equation fzf,(z) P.(z)dz = o may not be valid. ’
C ’ .
Third, suppose n(z) continuous on C and so chosen that the func-
tion unity is orthogonal with respect to n(a) on C to each of the

I
funcnons—, — et
-4

(3.19) jc‘n—('-z)zl—dzi—:o (n=1, 2, ...).

For this it is necessary and sufficient [ Walsh, 1935, p. 41] that there
exist a fuction analytic exterior to C, continuous in the closed exterior

“of C, zero at infinity, with the boundary values —(—l,ld—”' on C. A

consequence of (3.19) is that the polynomials Pn( ) obtained by
orthogonalizing and normalizing with respect to n(z) on C the

functions 1, -, é, -+, satisfy the equation P,(0o)=o0 for n>>o0. In

the notation previously introduced we have P,( - )= Q,( - Jforn >0,
P y : z z

and (3.17) holds. Moreover in the expansion (3.16) known to be
valid for z = o0, we set 3 = o and deduce b,= o, the proofof (3.16)
is valid, and establishes (3.14), now in the form

(3.30) £i(3) E—im(;)fﬂz)m,(z)m,
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uniformly on any closed set.exterior to C. It will be noticed that
like f,(z), each term of the second member of (3.20) vanishes at
infinity. \

~ Equation (3.19) is both necessary "and sufficient that we have
P.(o)=o for >0, and (3.19) itself is not difficult to study. As
before we set z= L[J(W), dz ={'(w)dw, whence on y:|w|=1 we
have dw =iw|dw|.” Thus (3.19) becomes

n(s) | (w)].jdw| - i
ﬂ (G0 )] =o0 (n=1,2, ...).

On v any function of the set 32 - can be umformly approximated

by alinear combination of functlons of the set [P, [L(M] 3, ...,
and conversely, so (3.19) is equivalent to

(3.21) ° ' fn(z)i¢’(w)|.|dw)1 =o0 (n=1, 2, ...),v
Y

wr
-and by taking conjugates we have also
(3.22) fn(z)lq)'(w)]wn;dcv'l;—o (n=r1,2,...).
s ‘ ‘

It follows from (3.23) and (3.22) that all the coefficients on y of the
function n(z)|{/(w)| vanish, for the expansion in terms of the complete
set of normal orthogonal functions e"® (n=...,—2,—1,0,1,2, ...),
except the coefficient corresponding to n=o0. Consequently the
formal expansion on y of that function reduces to a constant, so we
have n(z)|{’ (W) |= const. Except for a multiplicative constant we

have n(z) = - » an equation which thus is essentially necessary

W(W)i
and sufficient for (3.19) and (3.20); the function n(z)i is uniquely
determined except for a multlphcatlve constant (').

To theorem 3.2 we add the

(*) This method establishes also the following result :

Let G be an analytic Jordan curve containing the origin in ils interior,
and let the polynomials p,(z) (n=o0, 1,2, ...), of respective degrees n, be
normal and orthogonal on C with respect to the positive continuous norm
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COROLLARY. — Under the conditions of theorems 3.1 and 3.2, i 2, 1f n(3)
is positive and analytic on C, and if f(3) is of class L(o, oc) on C,
then (3.6) and (3.14) are valid lespectzvely in the closed interior and
the closed exterior o f C.

This corollary follows from theorem 1.3 and lemma 3. Under the
~hypothesis (3. 19), équation (3.14) can be replaced here by (3.20).
Although we have used the same notation, the norm function n(z)

need not be the same in theorems 5.1 and 5.2 norin equatlons (3.6)
and (3.14). .

4. OrrnoconaLity of Inner.anp Outer Fuwcrions. — Each of the
theorems 2.1, 2.2, 5.1, 5.2 furnishes a sieve for the separation of
“a given function f(z) of class L? on C into its two components f,(z)
and — f,() of respective classes H, and G.; the sieve involves inte-
gration over C with respect to dz. The question naturally arises as
to whether there exists a similar sieve involving integration over C
with respect o |dz|, corresponding to orthogonalization with a norm
function on C. The answer here is negative unless C is essentially
the unit circle :

Tueorem 4.1. — Let C be an analytic Jordan curve containing the
origin in its interior, and let there exist a positive norm function n(s)
continuous on C such that we have

k-

(5.1) Jﬁ(—f)—w—s—:o (n=o0,1,2, ...; k=1, 2, ...).
: c

Then C is a circle whose center is 3 =0 and n(3z) is identically constant

on C.

function n(z). Then a necessary and sufficient condition for the equation
pr(0)=o(r=1, 2, ...), is that n(s) be a constant multiple of the function
| o'(z)|; where w=—9(z) with ¢(0)=o0 maps the interior of C onto the interior
of v:|lw|=1.

Of course the mapping function w =¢(z), 53 = ®(w) is not uniquely deter-
mined by the condition ¢(0) =0, but any two functions ¢(z) differ only by a
multiplicative constant of modulus unity, and | ¢'(z) | is uniquely determined.

Journ. de Math., tome XXXI. — Fasc. 3, 1g52. ) - 27
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‘We treat first the case that C is the unit circle [z|=1. On C we

have z = El, 30 (4.1) can be written (z =€)

b, s)zk|ds| = kO + isinkf) db = k=1,2,...).
( ‘2) '/C‘n( ) ak| dz | L"n(z)(cosr lsm';) 0 (k=1,2 )
Here we set v :
c= ;T_rfn(z)de, '. no‘(z)En(z)—c,

whence fno( )db=o. It follows from (4.2) that no(z), a real

continuous function on C is orthogonal on C to each of the func-
tions 1, cos k0, sinkl (k=1, 2, ...). Thus n,(z) vanishes identically
~and we have n(z)==c on C. Incldentally, this conclusmn is a conse-
quence of (4.2) rather than (4.1). Lo -
Let now C be an arbitrary analytic Jordan curve in the z—plane

whose exterior is mapped onto the exterior of y : [w|=1 by the
transformation z={(w), w= 1IJ'(z), with ¢(w)=w. We set
n(z)|dz|=n,(w)|dw|, so (4.1) now becomes

(k.3) ‘[r‘n1(w)[np(w)]"[$(w5]“k|dw[::o (n:o,ll,z,..‘.;/f::,z, )

The function w™ (m1), can be uniformly appro‘ximated‘[Walsh,k
1935, p.37]onybyalinear combination of the functions | {(w)|(kxx1);
it follows from (4.3) with n.= o that we have

fni(w)gg—m]dqv]:o, (m=1,2,...).
-
This equation is essentially (%4.2), so we conclude that ni(w) 18
identically constant.
From (4.3) with n =1 we now write

fq)(w)_w_)—k-ldwlzo, (k= 1,72, ...), | o
. Y ' . .
(b.4) ' .fr.p(w)'wkv dw —o, (k=o, 1,2, ...)..
Y ]

It is a consequence of (4.4) [ Walsh, 1935, p. 40] that there exists a
function ¢, (w) analytic in |w| <1 and continuous in |w |1 which
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coincides with ¢(w) on y. The function {(w) already defined
for |w|>1 and now defined as ¢, (w) for |w| <1 is uniquely defined
and continuous on_y, hence analyticalsoony. Thus{(w)isanalytic
at every finite point of the plane and has a simple pole at infinity, so
we have { (w)= Aw, where A is anon-vanishing constant. ThenC:
ny(w)| dw|

| W(z)|==1 is a circle whose center is 5 =0 and n(z)= I

is identically constant, so theorem 4.1 is established.

5. Decree oF ConvVERGENCE; summMABILITY. — If the function f,(z) is
analytic|z | <1, continuous | z| <1, and of class L(%, «)on G : | z| =1,
then it is known [Sewell, 1942, p. 9o, 112] that there exist poly-
nomials 7,(z) of respective degrees n such that we have

) M
(8.1) lfi(z)—%(éﬂé;ms z on G,

where M is independentof zand 5. Moreover, the polynomials =,(s)
can be found as a Jackson summation of order £ of the Taylor deve-
lopment of f,(z). For the partial sums of the Taylor development,
polynomials p,(3) of respective degrees n», we have the weaker
inequality [ de la Vallée Poussin, 1919, p. 27; Jackson, 1930, p. 21]

B.2) A5 —pa(e) = O, s on G

These known results extend directly to the polynomial expansions
of Sections 2 and 5.

From the results of Sewell [ 1042, loc. cth and Zygmund [r945]
we have at once -

Taeorem 5.1. — If C is an analytic Jordan curve and if f(z) is of
class L(k, a) on G, o < a <1, then for the expansions (2.4) and(2.7)
we. have the inequalities (5.1) and (5.2), where p,(z) denotes the sum
of the first n— 1 terms of the expansion and =,(z) denotes the sum of -
the first n—~1 terms of the Jackson summation of order k; we also have

' M
(5.3) lﬁ(z)"ﬂn(zﬂémi zon G,

M, lob
nkt+a

(5.4) 1 fe(5) = pals) | £ —2"s zon G,
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in analogous notation for the expansions (2.5) and (2.8). Iff(z) is
of class A*(k) on C the inequalities (5.1)-(5.4) are valid with a =1.

Sewell [loc. cit. p. 100] proves essentially that if a series converges -
like a convergent geometric series, then its J ackson summation of
arbitrary order % converges to the same sum, with an error o(n %),
o< a<1. Consequently the results of Section 3 yield

Taeorem 8.2. — Let C be an analytic Jordan curve containing the
origin in its interior, let the norm function n(z) be positive and analytic
on C,and let f(z) be of class L(k, a) on C, 0 < a<1. Then for the
expansion (3.6) we have the inequalities (5.1) and (5.2), where p,(3)
denotes the sum of the first n+1 terms of the expansion and m,(z)
denotes the sum of the first n—+1 terms of its Jackson summation of
order k; we also have (5.3) and (5.4) in analogous notation for the
expansion (3.14). If f(3) is of class A*(lc) on C, the znequa-
lities (5.1)-(5.4) are valid with a =1.

This conclusion relative to (3.14) applies also to (3.20) under the
hypothesis (3.19).

Inequalities (5.1) and (5.2), valid for z on C, are also valid for 3
in the closed interior of C, and inequalities (5.3) and (5. 4) are valid
in the closed exterior of C. Corresponding inequalities, obtained by
addition of (5.1) and (5.3) and addition of (5.2) and (5.4) hold
for f/(z) on C.

If the given function f(z) is itself analytlc on C, so also are the
functions f,(z) and s,(zs). To be more explicit, let #(s) be analytic
in the annulus bounded by the Jordan curves C; : |W(z)|=R(>1)

~and G, :|¢(8)|=r(<1). The Cauchyintegrals(1.10)defining f,(z)
and f,(z) may be taken over any Jordan curve interior to C, but
containing z, and exterior to C, and having  in its exterior, respec-
tively. Thus fi(z)1s analytlc throughout the interior of C; and £, (3)
is analytic throughout the exterior of C,. From the general theory of
the Faber polynomials we then have for (2.4)

1

fi(z)—va,(l*ll( z)|, 5 on C] éﬁ

0

lim sup [max
ny-w
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convergence is uniform on any closed set interior to Cy; and for (2.8)

we have
1

n ' - \
! ' 1 "
Ja(z) _chF—n<E> ) 500 _C] <r;
: o0 : K :
convergence is uniform on any closed set exterior to C,.

From the general theory of the Szegd polynomIals we also have-
for (3.6)

lim sup [max
nyw

o -Snt

convergence bemg umform on any closed set interior to C and
for( 3.14) :

i

lim sup [max
n>w

1
R
, 50on C] £y T

So(z )_vkaL< >I. 5 on C]i/r,

lim sup [max

" convergence being uniform on any closed set exterior to C,.
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