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On completeness of invariant measures defined

by differential equations;

Par Lawrenee MARKUS.

Harvard University.

I. — Introduction.
Let the real, first order, non-singular, ordinary differential system

d. d
(1) F=l@y,  Sh=s@y)  (frg>o)
with '
| /,8€C%  (a=1,2,3, ..., @, A) (1)

be defined in an open plane set R. Then through each point P, :
(#,, ¥,)€R there exists an unique solution curve

=2 (t; Zoy Yo)y Y=Y (& Zoy Yo)s

initiating at P, for =o0, and defined for some maximal « time »
interval
—(Pg) <t <t (Py).

(M) f(xr, ®3 ..., x,)€C® in R, an open set of Kuclidean n-space, in
case f(x) is continuous, in n variables in R : f(2, 2y, ..., 2,) = f(2)€ C¥)
(K=1, 2, ...) in R in case all the partial derivatives of f(z) up to and inclu-
ding those of order K exist (are finite) and are continous in R. f(z)e€C*) in
case all partial derivatives of f(z) exist and are continuous in R. f(z)e Cl*)
in case f(x) is analytic in R, that is, near each point in R, f(2) has an abso-
lutely convergent, real, n-variable power series representation. We define
0<CI< 2<...<w<A and also o= K =00 and A =K =A.
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342 LAWRENCE MARKUS.
The subset of Euclidean 3-space in which z(t;20,Y0) andy(t- xo,yo)
are defined is open and therein these functions, as well as d and

are in class C®. The transformations T,
(24, Yo) —>2(8; %0y ¥0), ¥ (£ Zoy Vo),

from an open subset R,CR onto open subsets R,cR, from a
one-parameter local group, or stream, of C*-homeomorphisms (*).

Suppose the ordinary differential system (1) were exact, that

is, g£+gg—o and R were a simply-connected region (open,

connected set(*)). Then{T,}forms ameasuretrue stream, thatis, T,
is measurability preserving (T, and T~ preserve Lebesgue measura-
bility of sets) and also T, preserves the magnitude of the measure.
In this case, there exists a stream function ¢(z, y)eC*" in R

such thatf—- 5’ 8= —LP and y(x y)isa prmmpal integral (*) of
the first order, partlal dlfferentlal equation
(2) | S N9+ gt 1 9 =o.

That is, $(x, ¥) is a solution of (2) which is constant on no open
set and Lherefore the class of all solutions of (2) are precisely those
functions in C'" in R which are functionally dependent on {(z, y).

Even if the ordinary differential system (1) is not exact, there may
exist a principal integral ¢(x, y)€C® of the corresponding partial
differential equation (2). Then

p(2z, y) = [q" - %] eCw

S+g

(*) A homeomorphism T of an open set R, of Euclidean n-space onto a second
open set R, of the same space is called a C ﬁ)—homeomorphlsm, B=o0,1,2,..., 0,
A in case both T and T—* are expressed by functions of class C'B.

(®) For notation, see E. Horr, Ergodentheorie (Berlin, 1937).

(*) E. Kauke, Differentialgleichungen Reeller Funktionen (Chelsea, 1947),
p- 323.
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is a non-negative integrating factor for (1), that is,
=1y pg=— Y=

In case (1) is exact then p.(z, y) is a constant.
Because of the relation (*).

' dt[ ﬂu( ,y) j,/))dxod}’o]:{[[(Pf)x—*“(l";é’)y]dxodyozo

Wno

we can define a new « invariant » measure m, on the o- rmg (*) L of
Lebesgue measurable sets of R by

my (A) :ﬂ&p.(x, y)dz, dy

for AeL. Then the local group of C*-homeomorphisms {T,}1is
a my-measure true stream. Here m, is a non-negative, completely
additive set functionon L. For any compact set KCR, m,(K) <.
m, is an absolutely continuous measure in terms of the Lebesgue
measure my, that is, if m,(A)=o, then m,(A)=o0, The purpose
of this note is to point out that if p.{z, y)> o and vanishes on no
open set, even if p(x, y)&€C”, there can exist a set Z€L such
that m,(Z)=o but m,(Z) >o0. In thiscasethe invariant measurem,
isnotcomplete since there existnon-measurable subsets of Z. However

in case p.(a:, y) is analytic in R, m,(A)=o0 if and only 1me(A) =0
and m, is a complete measure.

I1. — Homeomorphisms which preserve measurability.

Any simply-connected plane region R can be mapped by
a C"-homeomorphism onto the entire plane. Thus we can replace R
by the entire plane in any measure-theoretic considerations which
are invariant under such a map.

Let 0 be a Borel set of Euclidean n- space Let S be the c-ring Qf

(*) H. Poincark, Méthodes nouvelles de la Mécanique céleste, t. 111, chap. 26.

(°) Sometimes called o-field. For notation, see P. Hatmos, Measure Theory
(New-York, 1950).
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all subsets of 6. S actually forms an algebraic commutative Boolean
(idempotent) ring with unity element under the operations of symetric
difference A for « addition » and intersection  for « multiplication ».
Because of the simple, well-known formulae for union, difference, and
complementation

‘ oU=(0AY)Alen{),
(4) o—d=oA(en),

1 =00

all of the set-theorelic properties of S are determined by its structure
as an algebraic ring under A\ and Nn. Let B be the o-ring of Borel
sets of 0 (smallest o-ring containing the open sets of 6), with
the Borel measure m;. B is an algebraic subring of S. The
subset 6C B of Borel sets with measure zero forms an ideal in the
ring B. The o-ring L of Lebesgue measurable subsets of 6 (all sets
of the form n A v where € B and v is a subset of some set in ) with
Lebesgue measure m, is an algebraic subring of S and a superring
of B. The ideal IcL of sets with Lebesgue measure zero is a
superrm0 of b, and consists of all sets of the form 3 /\ v where Beb
and vis a subset of some set of b.

Let 6, and 0, be two Borel sets of Euclidean spaces and let S,, B,,
by, Ly, I, and S,, B,, b,, L,, /, be the corresponding o-rings described
above. Let T be a homeomorphism of 6, onto 0,. Since T is a one-
to-one point transformation, T induces a set mapping T from S,
onto S,. Clearly = is an algebraic isomorphism of S, onto S,.

Taeorem I. — Let T be a homeomorphism of 6, onto 0,, Borel sets
of Euclidean spaces. Then the induced set-map < is an isomorphism
of B, onto B,. Furthermore the following four conditions are
equivalent :

-

1. T is a m-measurability preserving transformation
2. t induces an isomorphism of L, onto L, ;

3. = induces an isomorvhism of b, onto b, ;

4. T induces an isomorphism of l, onto I,.

Proof. — Since T is a homoemorphism, open sets of 8, correspond
to open sets of 0, under © and thus there is a one-to-one corres-
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pondénée 'betwee;n the sets of B, and B;. . Since 7is an isomorphism '
of S, onto S,, 7 is therefore an isomorphism of B, onto B,.

Since © is an isomorphism of S; onto S,, conditions 1 and 2 are
equivalent by the definition of measurablhty preservmg transfor— v
‘mations.

Suppose condition 3 holds; we shall deduce condition 2.
If A,eL,, then A,=mn, Av, where n,€B, and v,cf,€b,. Then

T(A) = Ae=7(m) AT (1) = m v,
with - :
t(m)=mn.€B, ~ and r(vi)::v._,cz'(ﬁi):ﬁggbg, B
Thus ©(A,)=A,€L, and v maps L, into L,. Using the inverse
homeomorphism T-' we see that t=* maps L, into L, and since < is
one-to-one on S,, T is an 1somorphlsm of L, onto L,.

Conversely suppose T is an isomorphism of L, . onto L,.
Suppose t(B,)=B,€B,— b, for some 3,&€b,. Then my(B, )>o
and there exists a set (7). "y,CfP, such that y,€S,—L,. But
then v=*(%,)=1y.Cp, and thus y,€L,. But <(y,)€L, and this
" contradicts the hypothesis that « maps L, onto L,. Thus~= © maps b,
.into b, and, as above, 7 is an isomorphism of b, onto b,.

Since b;=B;n!;(=1,2), condition 4 clearly 1mphes 3. Because/;
consists of those sets of L; which are contained in sets of b; (i =1, 2),
conditions 2 and 3 1mply 4, —- - Q.E.D.

CoroLuary. — If T is a CY'-homeomorphism of 0 onto 62, open sets
o f an Euclidean n-space, then T is my - -measurability pleservmg :

Proof. — We'need show only that w(b)cb,. If 3, € b, then Bi has
- a covering by a countable number of compact closed n-balls R; with

imB(ﬁ,): I.

In R; the continuous Jacobian of T is bounded, |J(T)|<K; Then
' .mB(ﬁif\E,):O’

(") See P. HaLnos, op. cit., ;;.--70. The existence of a non-measurable linear
set combined with an application of Fubini’s theorem gives this result.
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and we cover B, NR; by an open set o; with m,(0;)= ;K—- Then
i

ma(<(0) < 5

and thus

}:mn(r(oi))éé.

i=1
~

Thus my(7(B,)) <3 and therefore, since & is an arbitrary positive
‘number, t(B,)=03,€/,. But certainly 3,&€B,. Thus §,&b,.
. Therefore © (b,)C b, and using T—*, which also has a continuous
Jacobian, 7='(b,)C b, and therefore T maps b, onto &,.
: Q. E. D.
An example of a C!*-homeomorphism of the linear interval [o, 1]
onto itself which is not measurability preserving is given by T

1
z>flz)=lz+¢(=2)]

where § () is the conlinuous, but not absolutely continuous, non-
decreasing, Cantor function (*). If K is the compact Cantor set,

then my(K) = o but my(f(K)) :;

I1I. — Completeness of invariant measures.

We shall construct a function (@, y) such that :

1. uw(z, y)€C" in the entire plane;
2. (&, y)> 0 and the plane set Z defined by p.(x, y)=o contains
no interior points;

3. my(Z)= oo.

Let z be a compact, nowhere dense point set of the real line such
that the linear Borel measure m;(z) >0. A closed point set is
nowhere dense if and only if it contains no interior point. Such a

(®) P. Harmos, op. cit., p. 83.
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set 3 is given in Hobson (°) and can be described briefly as follows.
Let [o, 1] be divided into m > 2 equal parts and the last exempted

from further division. Then let the remaining m — 1 parts each be
divided into m* equal parts, the last of each being exempted from .
further division. Let the remaining parts be then divided into m?
-equal parts, the last of these in each case being exempted from
further division. If this process is carried out a countable number
of times, the endpoints of the divisions, together with their accumu-
lation points, form a nowhere dense, compact set z.

- This set z has mesure ‘ S -

"°<.ﬂ(‘f“ ;:7><‘

i=1

1

for after 7 operations, the measure of the union of the exempted
segments 1is

1 m—1 m—1)(m?—1 m—1)(m*—1)...(m1—1
=4 — o )(6' ) o ! A i.) ( )
m - m m°. (i--1)

(2o 2

Thus my(z)> o0 and indeed; may be chosen arbitrarily close to
one if the dividing ratio m be large enough. The complement
of 5 in [0, 1]1s a countable union of disjoint open intervals I, and 5
consists of the closure of the endpoints of the I,.

The distance from a real number « to the compact set zis d(@)> o
and d(x)=o if and only if z € 3.
Then for any point (2, y) of the plane we define

or

w(x, y)=o - in case z € z.
( ) -4 in case x << 0.
plz, y)=e *
1
(8) ' pl(z, yy=e ==17° in case & > I.

1
Ai (A, >
c =B _(La_ay .
wlz, y)=e * ( 2 r)> in case z € I,

(.9) A. E. Hossox, The theory of functions a real variable (Cambridge,
1921), p. 119 and also p. 164.
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- where A,= b,— a, is the length of I,= (a,, b,). Then w(z, y)>o0
and, defining the plane set (2, y)€Z in case x €3, p(x,y)=o if
and only if (x, y)€Z. The setZ is closed and contains no interior
‘points of the plane. Moreover my(Z)=ow. We shall show that
w(z, y)€C™ and then clearly

m@(Z)=ﬂ'p(x,y)dwdy=o-

Ifx<o or z >1,then p(z,y)€C. Ifzel,,thatis an<x<b,,,
then "

5—(5~dwﬁzﬂx—%xg—m

4 2
and thus p.(z, y)& C* for these i‘egidns. '
Forzel,, » :
% ~_<% — d(x)) =add—d<d—d<d.
Thus | '
— I -
d{x) (x)
(@, y)l=e @9 < e AT
" By induction it is easy to show that
Op __ Prl(z—an), (ba— @) —mains

02F ~ T[(@ — an) (bn— @)

where P, is a polynomial and since
d(w) Lz —an| <1, d(@)L|by—mz| <1,
we have '
| Pi((# — ) (bn— 2)) | <Py
an upper bound independent of I, and thus

ot
0zk

Plik-r—l e—d("-')
d(z)*

(6)

for k=o,1,2,....

‘ 1
For sufficiently small positive d, the function #e ¢ is strictly

mcreasmg

Finally con51der a point (aco, yYo)€Z. Then p(x,, yo)_o and
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for |# —x,| <8, a sufficiently small positive number, d(2) <8 and

N EO __1..... .P-O __..1

— ; d(x) 90 3
Oé]u{w,y) H(xo, Y < giye <z:e ’

Thus p.(a:; ¥) is continuous at each point of Z and w(z, y)€C® in
the plane. We prove w(z, y)€C by induction. = Suppose

o
(2, y)eCw and ﬁ(wo, Yo)=o.

Then for o< |@—a,| <3, a sufficiently small positive number, -

d(x)< ¢ and : .
: Fu(z, y)  0* (e yo)
ox* oxk

z — x,

o

Fk e
Y Ea

Thus Ie(Ye @) o From the inequality

dwk+1 \
ok+t n ﬁlc—q—i _ d(—ix’)
dxk+i d($)2k+i
it is clear that
A dk—,m u(x, )’)
ll:H;‘ dxk"" =0
Y=o
gr+1 , . . . - i
.and thus % exists and is continuous at each point of Z and

therefore at every point of the plane: * Since g—‘;z— o we have

g (2o, ¥o)

OzF+ = 0.

w(z, y)€Gk  and

._Therefore' the induction is complete and \w(z,y) € C in the plane.
Tueorem II. — Let R be simply-connected plane.region. Then there
exists a real, first oder non-singular ordinary differential equation.

d. dy -
(1) F=l@y, =gy (f+g>0)

with /> 8€C" in R, with an integrating factor p(z, y) € C', defining
an invariant measure _ “ '
ma(8)= [[ i ) ey
A

Journ. de Math., tome XXXI. — Fasc. 4, 1952. - 38
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on the plane Lebesgue my-measurable sets, such that

‘ 1.'p(w,y)éC‘“’inR; /

2. (@, y)=0;
3. (w, ) vanishes on no open set;
4

N+ (k) =oin R

- and the my-measure is not complete.

If f, g are only in G with f* + g* >oin R, and if p(z, y)e C®
in R is an integrating factor, that is, satisfies conditions 2, 3, and &,
~ then the my-measure is complete, that is, m,(A)=o if and only

.z"me(A)=o.

'Proof We first prove the theorem in the case R is the entire
plane and then use theorem I for the general SImply-connected region.
Consider the differential system
. d dy __ _op
() C=we ), F=—2Fy+r
where w(z, y)is the function described above. This system is C
and also non-singular since p(x,, y,)= o if and only if (2, y,)€Z

v - . . 8;1. .o e
in which case 5~ =0 and (—2p,y+1)=1. ‘ Moreover, it is not

~ exact but has an integraling factor of (x, y) since
| 0, . d, :
g;(p’) + @(-—?umw-i- p)=o.

To show the my-measure is not complete let y€Z be a non-
m;-measurable set. Thls is possible since m, (Z)=cw. But

ma(2) =ﬂy(w,y>dw,dy:o

and thus ¥ is a non-m, -measurable subset of a set Z of %—measure
zero. Therefore the m,-measure is not complete..
Next let u(x, y)&€C™ be any integrating factor of 1 in the plane

Clearly if
my(A)=o
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then

my(A) :ﬂ;pdx dy =o.

Conversely let m,(A)=o0. Then there exist two sets A,, A,€L
such that m (A,) == o, and :

.l‘i nAtl: 0, A1UA2= /\, . and J&QCZ,

the set of zeros of p.(x, y). We shall show that m;(Z)=o.

Since Z is closed, ZeL. Then for almost all horizontal
lines A,y =y., the linear measure of ZN A, exists. If Znh, con-
tains only a countable number of points;-it has linear measure zero.
If Znh. contains a non-countable number of points, then
since w(x, y.) is an analytic function of one argument, ZN A, == A,
and thus has infinite linear measure. However there are only a
countable number of lines A, on which m (Znh,)=ow. For if

otherwise, there would be a finite accumulation point y of the corres-
ponding ordinates and then, for each fixed «,, p(z,, y) is an
analytic function of y and must vanish. Thus p.(z, y)=o0 which
contradicts the hypothesis of the theorem that w(x, y) vanishes on
no open set. Therefore on almost all horizontal lines m(ZNnh;)=o.
Therefore by Fubini’s theorem m;(Z)=o0. -Since ACA,UZ
and m(A,)=o0, we have m (A)=o.

Next consider any subset A’CA. Then A’€/ and m, (A')=o.
Thus my(A’)=o0 and the m,-measure is complete. The theorem is
proved in case R is the entire plane. _

Again return to the case of a general simply-connected plane
region R. Let T: (=, y)—>(u(z, y), ¢(x, y)) be a C*-homeo-
morphism (*°) of the plane onto the (u, ¢)-region R. By T the

(%) First map the plane onto the square |z! | <<1,|y!| <1 by
. 2 = ’
xi‘: E t_g’“w, yl f— p tg_i}’.

Then use the Riemann conformal mapping theorem.
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differential system (7) is carried into a non-singular C'-differential

' system defined in R

. du ‘ Iy
(8) -'E:l‘xf+uyg:F(u: 9)y Zl_ =of+ o8 = G(u,v)

where F, GeCin R and F’—l— G“>o The correspondmg inte-

grating factor is

(= y)|.

M(u, V)= (u, v)|

with the cOrresponding integral (= (u, ¢), ¥(u, v)), as is seen from
the following matrix equation ‘

(@)= )= )5
and : o
| ()= ()
- Thus o ‘ :
(10) (%) wamxﬂmvnﬁjix )=#M(}f}

Clearly M(u, o)>o Me G and vanishes only on the set T(Z
which contains no interior points. Since Tisa C(“-homeomorphlsm
it preserves the set properties measurability and also of having zero
measure. Thus m (T(Z)) >0 and thus the my-measure is not
complete. | :

A similar argument proves that, in case p.(x, y)€C" is an inte-
grating factor of (1) in R, a simply-connected region, the resulting
" invariant measure is complete. ' Q. E. D.

COROLLARY. — Let
: {. d
(1) . ff—ﬂ,w D =g@y) (S+g>0)

with f, g€ C* in a simply-connected plane regwn R have a prznczpal
integral Y(z, y) such that. :

1. Y(z,y)€CP inR;
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2. Y(x, y) is constant on no open set of R ;
3. Y(x, y) is constant along each solution curve of (1).
Then the differential system (1) has a complete invariant measure.
Proof. — Let

#(w,y):[wfx]'

be the integrating factor corresponding to the integral {(z, y)e€ C'".
Then p(x, y) € C* and, by the theorem, the invariant measure

mu(x.\):‘ﬂ[;p.(x, y)dzdy

is complete. : Q. E. D.
We shall discuss criteria that (1) should have an analytic inte-
gral in a later paper.




