JOURNAL

nR

MATHÉMATIQUES

PURES ET APPLIQUÉES

FONDÉ EN 1836 ET PUBLIÉ JUSQU'EN 1874

PAR JOSEPH LIOUVILLE

LAWRENCE MARKUS

On completeness of invariant measures defined by differential equations

Journal de mathématiques pures et appliquées 9^e série, tome 31 (1952), p. 341-353. <http://www.numdam.org/item?id=JMPA_1952_9_31__341_0>

[Article numérisé](http://gallica.bnf.fr/) dans le cadre du programme [Gallica](http://gallica.bnf.fr/) de la [Bibliothèque nationale de France](http://www.bnf.fr/) [http:// gallica.bnf.fr/](http://gallica.bnf.fr/)

et catalogué par [Mathdoc](http://www.mathdoc.fr/) dans le cadre du pôle associé BnF/Mathdoc [http:// www.numdam.org/ journals/ JMPA](http://www.numdam.org/journals/JMPA)

On completeness of invariant measures defined by differential equations;

PAR LAWRENCE **MARKUS.**

Harvard University.

I. - **Introduction.**

Let the real, first order, non-singular, ordinary differential system

(1)
$$
\frac{dx}{dt} = f(x, y), \quad \frac{dy}{dt} = g(x, y) \quad (f^2 + g^2 > 0),
$$

with

$$
f, g \in C^{(\alpha)}
$$
 $(\alpha = 1, 2, 3, ..., \infty, A)$ (1)

be defined in an open plane set R. Then through each point P_0 : $(x_0, y_0) \in \mathbb{R}$ there exists an unique solution curve

> $x = x(t; x_0, y_0),$ $y = y(t; x_0, y_0),$

initiating at P_0 for $t = 0$, and defined for some maximal α time ∞ interval

$$
\tau_{-}(P_{0}) < t < \tau_{+}(P_{0}).
$$

Journ. de Math., tome XXXI. - Fasc. 4, 1952.

 $3₇$

⁽¹⁾ $f(x_1, x_2, \ldots, x_n) \in C^{(0)}$ in R, an open set of Euclidean *n*-space, in case $f(x)$ is continuous, in *n* variables in R: $f(x_1, x_2, ..., x_n) = f(x) \in C^{(K)}$ $(K = 1, 2, ...)$ in R in case all the partial derivatives of $f(x)$ up to and including those of order K exist (are finite) and are continuous in R. $f(x) \in C^{(*)}$ in case all partial derivatives of $f(x)$ exist and are continuous in R. $f(x) \in C^{(A)}$ in case $f(x)$ is analytic in R, that is, near each point in R, $f(x)$ has an absolutely convergent, real, n-variable power series representation. We define $0 < i < 2 < ... < \infty < A$ and also $\infty \pm K = \infty$ and $A \pm K = A$.

The subset of Euclidean 3-space in which $x(t; x_0, y_0)$ and $y(t; x_0, y_0)$ are defined is open and therein these functions, as well as $\frac{\partial x}{\partial t}$ and $\frac{\partial y}{\partial t}$, are in class $C^{(\alpha)}$. The transformations T_t

$$
(x_0, y_0) \rightarrow x(t; x_0, y_0), y(t; x_0, y_0),
$$

from an open subset $R_0 \subset R$ onto open subsets $R_i \subset R$, from a one-parameter local group, or stream, of $C^{(\alpha)}$ -homeomorphisms (²).

Suppose the ordinary differential system (1) were exact, that is, $\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \equiv 0$ and R were a simply-connected region (open, connected set (3)). Then $\{T_t\}$ forms a measure true stream, that is, T_t is measurability preserving $(T_t$ and T^{-1} preserve Lebesgue measurability of sets) and also T_t preserves the magnitude of the measure. In this case, there exists a stream function $\psi(x, y) \in C^{(\alpha+1)}$ in R such that $f = \frac{\partial \psi}{\partial x}$, $g = -\frac{\partial \psi}{\partial x}$ and $\psi(x, y)$ is a principal integral (*) of the first order, partial differential equation

(2)
$$
f(x, y) \frac{\partial \psi}{\partial x} + g(x, y) \frac{\partial \psi}{\partial y} = 0.
$$

That is, $\psi(x, y)$ is a solution of (2) which is constant on no open set and therefore the class of all solutions of (2) are precisely those functions in $C^{(1)}$ in R which are functionally dependent on $\psi(x, y)$.

Even if the ordinary differential system (1) is not exact, there may exist a principal integral $\psi(x, y) \in C^{(2)}$ of the corresponding partial differential equation (a) . Then

$$
\mu(x, y) = \left[\frac{\psi_x^2 + \psi_y^2}{f^2 + g^2}\right]^{\frac{1}{2}} \in \mathcal{C}^{(4)}
$$

⁽²⁾ A homeomorphism T of an open set R_1 of Euclidean n-space onto a second open set R₂ of the same space is called a $C^{(\beta)}$ -homeomorphism, $\beta = 0, 1, 2, ..., \infty$, A in case both T and T⁻¹ are expressed by functions of class C^{β} .

⁽³⁾ For notation, see E. Hopp, Ergodentheorie (Berlin, 1937).

⁽⁴⁾ E. KAMKE, Differentialgleichungen Reeller Funktionen (Chelsea, 1947), p. 323.

is a non-negative integrating factor for (i) , that is,

$$
\mu f = \psi_y, \qquad \mu g = -\psi_x.
$$

In case (1) is exact then $\mu(x, y)$ is a constant.

Because of the relation (5) .

$$
(3) \qquad \frac{d}{dt}\bigg[\iint_{\mathbf{R}_{0}}\mu(x,\,y)\frac{\partial(x,\,y)}{\partial(x_{0},\,y_{0})}\,dx_{0}\,dy_{0}\bigg]=\iint_{\mathbf{R}_{0}}[(\mu f)_{x}+(\mu g)_{y}]\,dx_{0}\,dy_{0}=0
$$

we can define a new « invariant » measure m_{μ} on the σ -ring (⁶) L of Lebesgue measurable sets of R by

$$
m_{\mu}(\Lambda) = \iint_{\Lambda} \mu(x, y) dx, dy
$$

for $\Lambda \in L$. Then the local group of C^{α} -homeomorphisms $\{T_t\}$ is a m_{μ} -measure true stream. Here m_{μ} is a non-negative, completely additive set function on L. For any compact set $K \subset R$, $m_{\mu}(K) < \infty$. m_{μ} is an absolutely continuous measure in terms of the Lebesgue measure m_L , that is, if $m_L(\Lambda) = 0$, then $m_\mu(\Lambda) = 0$, The purpose of this note is to point out that if $\mu(x, y) \geq 0$ and vanishes on no open set, even if $\mu(x, y) \in C^{\infty}$, there can exist a set $Z \in L$ such that $m_\mu(Z) = 0$ but $m_\mu(Z) > 0$. In this case the invariant measure m_μ is not complete since there exist non-measurable subsets of Z. However in case $\mu(x, y)$ is analytic in R, $m_{\mu}(\Lambda) = 0$ if and only if $m_{\mu}(\Lambda) = 0$ and m_{μ} is a complete measure.

$II. -$ Homeomorphisms which preserve measurability.

Any simply-connected plane region R can be mapped by a $C^{(A)}$ -homeomorphism onto the entire plane. Thus we can replace R by the entire plane in any measure-theoretic considerations which are invariant under such a map.

Let θ be a Borel set of Euclidean n-space. Let S be the σ -ring of

⁽³⁾ H. POINCARE, Méthodes nouvelles de la Mécanique céleste, t. III, chap. 26.

⁽⁶⁾ Sometimes called σ -field. For notation, see P. HALMOS, Measure Theory $(New-York, 1950).$

all subsets of θ . S actually forms an algebraic commutative Boolean (idempotent) ring with unity element under the operations of symetric difference \triangle for « addition » and intersection \cap for « multiplication ». Because of the simple, well-known formulae for union, difference, and complementation

(4)
$$
\left\{\begin{array}{l}\varphi\cup\psi=(\varphi\bigtriangleup\psi)\bigtriangleup(\varphi\cap\psi),\\ \varphi-\psi=\varphi\bigtriangleup(\varphi\cap\psi),\\ \varphi'=\varphi\bigtriangleup\theta\end{array}\right.
$$

all of the set-theorelic properties of S are determined by its structure as an algebraic ring under \triangle and \cap . Let B be the σ -ring of Borel sets of θ (smallest σ -ring containing the open sets of θ), with the Borel measure $m_{\rm B}$. B is an algebraic subring of S. The subset $b \subset B$ of Borel sets with measure zero forms an ideal in the ring B. The σ -ring L of Lebesgue measurable subsets of θ (all sets of the form $\eta \triangle \nu$ where $\eta \in B$ and ν is a subset of some set in b) with Lebesgue measure m_{μ} is an algebraic subring of S and a superring of B. The ideal $l\subset L$ of sets with Lebesgue measure zero is a superring of *b*, and consists of all sets of the form $\beta \triangle v$ where $\beta \in b$ and *v* is a subset of some set of *b.*

Let θ_1 and θ_2 be two Borel sets of Euclidean spaces and let $S_1, B_1,$ b_1 , L_1 , l_1 and S_2 , B_2 , b_2 , L_2 , l_2 be the corresponding σ -rings described above. Let T be a homeomorphism of θ_1 onto θ_2 . Since T is a oneto-one point transformation, T induces a set mapping τ from S_1 onto S_2 . Clearly τ is an algebraic isomorphism of S_4 onto S_2 .

THEOREM I. - Let T be a homeomorphism of θ_1 onto θ_2 , Borel sets *of Euclidean spaces. Then the induced set-map* 'î *is an isomorphism of* B1 *onto* B2 • *Furthermore tlte following four conditions are equiralent :*

1. T *is a m_c-measurability preserving transformation;*

2. τ *induces an isomorphism of* L_1 *onto* L_2 ;

3. τ *induces an isomorphism of b₁</sub> onto b₂;*

4. τ *induces an isomorphism of* l_1 *onto* l_2 *.*

Proof. — Since T is a homoemorphism, open sets of θ_1 correspond to open sets of θ_2 under τ and thus there is a one-to-one corres-

pondence between the sets of B_1 and B_2 . Since τ is an isomorphism of S_1 onto S_2 , τ is therefore an isomorphism of B_1 onto B_2 .

Since τ is an isomorphism of S_i onto S₂, conditions 1 and 2 are equivalent by the definition of measurability preserving transformations.

Suppose condition 3 holds; we shall deduce condition 2. If $\Lambda_1 \in L_1$, then $\Lambda_1 = \eta_1 \wedge \nu_1$ where $\eta_1 \in B_1$ and $\nu_1 \in \beta_1 \in b_1$. Then

$$
\tau(\Lambda_1)=\Lambda_2\!=\!\tau(\eta_1)\bigtriangleup\tau(\nu_1)=\eta_2\bigtriangleup\nu_2,
$$

with ·

$$
\tau(\eta_1)=\eta_2\!\in\! \mathrm{B}_2\qquad\text{and}\qquad \tau(\nu_1)=\nu_2\!\in\!\tau(\beta_1)\!=\!\beta_2\!\in\! b_2.
$$

Thus $\tau(\Lambda_1) = \Lambda_2 \in L_2$ and τ maps L_i into L_2 . Using the inverse homeomorphism T^{-1} we see that τ^{-1} maps L_2 into L_1 and since τ is one-to-one on S_1 , τ is an isomorphism of L_1 onto L_2 .

Conversely suppose τ is an isomorphism of L_1 onto L_2 . Suppose $\tau(\beta_1) = \beta_2 \in B_2 - b_2$ for some $\beta_1 \in b_1$. Then $m_B(\beta_2) > 0$ and there exists a set (7). $\chi_2 \subset \beta_2$ such that $\chi_2 \in S_2 - L_2$. But then $\tau^{-1}(\chi_2) = \chi_1 \subset \beta_1$ and thus $\chi_1 \in L_1$. But $\tau(\chi_1) \notin L_2$ and this contradicts the hypothesis that τ maps L_1 onto L_2 . Thus τ maps b_4 into b_2 and, as above, τ is an isomorphism of b_1 onto b_2 .

Since $b_i = B_i \cap l_i$ $(i = 1, 2)$, condition 4 clearly implies 3. Because l_i consists of those sets of L_i which are contained in sets of b_i ($i = 1, 2$), conditions 2 and 3 imply 4. $Q. E. D.$

COROLLARY. — If T is a C⁽¹⁾-homeomorphism of θ_1 onto θ_2 , open sets of an Euclidean n-space, then T is m_L measurability preserving.

Proof. — We need show only that $\tau(b_1) \subset b_2$. If $\beta_1 \in b_1$, then β_1 has a covering by a countable number of compact closed *n*-balls \overline{R}_i with

$$
\sum_{i=1}^{\infty} m_{\rm B}(\overline{\rm R}_i) = \ldots
$$

In \overline{R}_i the continuous Jacobian of T is bounded, $|J(T)| < K_i$ Then

$$
n_{\mathbf{B}}(\beta_1 \cap \overline{\mathrm{R}}_i) = \mathrm{o}
$$

⁽⁷⁾ See P. HALMOS, op. cit., p. 70. The existence of a non-measurable linear set combined with an application of Fubini's theorem gives this result.

and we cover $\beta_i \cap \overline{\mathrm{R}}_i$ by an open set o_i with $m_b(o_i) = \frac{\delta}{2 \mathrm{K}}$. Then

$$
m_{\mathrm{B}}(\tau(\mathrm{o}_i)) \leq \frac{\delta}{2^i}
$$

and thus

$$
\sum_{i=1}^{\infty} m_{\mathrm{B}}(\tau(\mathrm{o}_t)) \leq \delta.
$$

Thus $m_{\beta}(\tau(\beta_1)) \leq \delta$ and therefore, since δ is an arbitrary positive number, $\tau(\beta_1) = \beta_2 \in l_2$. But certainly $\beta_2 \in B_2$. Thus $\beta_2 \in b_2$. Therefore $\tau(b_1)\subset b_2$ and using T⁻¹, which also has a continuous Jacobian, $\tau^{-1}(b_2) \subset b_1$ and therefore τ maps b_1 onto b_2 .

An example of a $C^{(0)}$ -homeomorphism of the linear interval [0, 1] onto itself which is not measurability preserving is given by T

 Q . E. D.

$$
x \rightarrow f(x) = \frac{1}{2} [x + \psi(x)]
$$

where $\psi(x)$ is the continuous, but not absolutely continuous, nondecreasing, Cantor function (8). If K is the compact Cantor set, then $m_{\text{B}}(\text{K}) = \text{o}$ but $m_{\text{B}}(f(\text{K})) = \frac{1}{2}$.

III. - Completeness of invariant measures.

We shall construct a function $\mu(x, y)$ such that :

- 1. $\mu(x, y) \in C^{\infty}$ in the entire plane;
- 2. $\mu(x, y) \geq 0$ and the plane set Z defined by $\mu(x, y) = 0$ contains no interior points;
- 3. $m_{\rm B}(Z) = \infty$.

Let z be a compact, nowhere dense point set of the real line such that the linear Borel measure $m'_B(z) > 0$. A closed point set is nowhere dense if and only if it contains no interior point. Such a

⁽⁸⁾ Р. Натмоѕ, ор. сіt., р. 83.

set s is given in Hobson (9) and can be described briefly as follows.

Let [0, 1] be divided into $m > 2$ equal parts and the last exempted from further division. Then let the remaining $m-1$ parts each be divided into *m2* equal parts, the last of each being exempted from further division. Let the remaining parts be then divided into *m3* equal parts, the last of these in each case being exempted from further division. If this process is carried out a countable number of times, the endpoints of the divisions, together with their accumulation points, form a nowhere dense, compact set z.

This set z has mesure

$$
0 < \prod_{i=1}^n \left(1 - \frac{1}{m^i}\right) < 1
$$

for after *i* operations, the measure of the union of the exempted segments is

$$
\frac{1}{m} + \frac{m-1}{m^3} + \frac{(m-1)(m^2-1)}{m^6} + \ldots + \frac{(m-1)(m^2-1)\ldots(m^{i-1}-1)}{m^{\frac{l(l+1)}{2}}}
$$
r

or

$$
I - \left(1 - \frac{1}{m}\right)\left(1 - \frac{1}{m^2}\right)\cdots\left(1 - \frac{1}{m^i}\right).
$$

Thus $m'_R(z) > 0$ and indeed, may be chosen arbitrarily close to one if the dividing ratio *m* be large enough. The complement of \boldsymbol{z} in [0, 1] is a countable union of disjoint open intervals I_n and \boldsymbol{z} consists of the closure of the endpoints of the I_n .

The distance from a real number x to the compact set z is $d(x) \leq 0$. and $d(x) = 0$ if and only if $x \in \mathbb{Z}$.

Then for any point (x, y) of the plane we define

(9) A. E. HOBSON, *The theory of functions a real variable* (Cambridge, 1921), p. 119 and also p. 164.

where $A_n = b_n - a_n$ is the length of $I_n = (a_n, b_n)$. Then $\mu(x, y) \ge 0$ and, defining the plane set $(x, y) \in \mathbb{Z}$ in case $x \in z$, $\mu(x, y) = o$ if and only if $(x, y) \in \mathbb{Z}$. The set Z is closed and contains no interior points of the plane. Moreover $m_n(z) = \infty$. We shall show that $\mu(x, y) \in C^{(\infty)}$ and then clearly

$$
m_{\mu}(Z) = \iint_{Z} \mu(x, y) dx dy = 0.
$$

If $x < 0$ or $x > 1$, then $\mu(x, y) \in C^{(n)}$. If $x \in I_n$, that is, $a_n < x < b_n$, then

$$
\frac{\Delta_n^2}{4} - \left(\frac{\Delta_n}{2} - d(x)\right)^2 = (x - a_n)(b_n - x)
$$

and thus $\mu(x, y) \in C^{(*)}$ for these regions.

For $x \in I_n$,

$$
\frac{\Delta_n^2}{4} - \left(\frac{\Delta_n}{2} - d(x)\right)^2 = 2\Delta_n d - d^2 < d - d^2 < d.
$$

Thus

$$
|\mu(x, y)| \leq e^{-\frac{1}{d(x)}} < \frac{1}{d(x)^2} e^{-\frac{1}{d(x)}}.
$$

By induction it is easy to show that

$$
\frac{\partial^k \mu}{\partial x^k} = \frac{P_k((x - a_n)), (b_n - x))}{[(x - a_n)(b_n - x)]^{2^k}} e^{-\frac{1}{(x - a_n)(b_n - x)}}
$$

where P_k is a polynomial and since

$$
d(x) \leq |x - a_n| < 1, \qquad d(x) \leq |b_n - x| < 1,
$$

we have

$$
|P_k((x-a_n)(b_n-x))|<\overline{P}_k
$$

an upper bound independent of I_n and thus

(6)
$$
\left|\frac{\partial^k \mu}{\partial x^k}\right| < \frac{\overline{P}_k}{d(x)^{s^{k+1}}} e^{-\frac{1}{d(x)}} \quad \text{for} \quad k = 0, 1, 2, \ldots
$$

For sufficiently small positive d, the function $\frac{1}{d^{2^{k+1}}}e^{-\frac{1}{d}}$ is strictly increasing.

Finally consider a point $(x_0, y_0) \in \mathbb{Z}$. Then $\mu(x_0, y_0) = 0$ and

for $|x-x_0|<\delta$, a sufficiently small positive number, $d(x)<\delta$ and

$$
0 \leq |\mu(x, y) - \mu(x_0, y_0)| \leq \frac{\overline{P}_0}{d(x)^2} e^{-\frac{1}{d(x)}} < \frac{\overline{P}_0}{\delta^2} e^{-\frac{1}{\delta}}.
$$

Thus $\mu(x, y)$ is continuous at each point of Z and $\mu(x, y) \in C^{(0)}$ in the plane. We prove $\mu(x, y) \in C^{(*)}$ by induction. Suppose

$$
\mu(x, y) \in \mathbb{C}^{(k)}
$$
 and $\frac{\partial^k \mu}{\partial x^k}(x_0, y_0) = 0.$

Then for $0 < |x-x_0| < \delta$, a sufficiently small positive number, $d(x) < \delta$ and

$$
\left|\frac{\frac{\partial^k \mu(x, y)}{\partial x^k} - \frac{\partial^k \mu(x_0, y_0)}{\partial x^k}}{x - x_0}\right| < \frac{\overline{P}_k e^{-\frac{1}{\delta}}}{\delta \delta^{2k+1}}.
$$

Thus $\frac{\partial^{k+1}\mu(\gamma_0, x_0)}{\partial x^{k+1}} = 0$. From the inequality $\left|\frac{ \partial^{k+1} \mu}{ \partial x^{k+1}}\right| < \frac{\overline{\mathrm{P}}_{k+1}}{d(x)^{2^{k+1}}} e^{-\frac{1}{d(x)}}$

it is clear that

 ϵ

$$
\lim_{\substack{x=x_0\\y=y_0}}\frac{\partial^{k+1}u(x,y)}{\partial x^{k+1}}=0
$$

and thus $\frac{\partial^{k+1}\mu(x, y)}{\partial x^{k+1}}$ exists and is continuous at each point of Z and therefore at every point of the plane. Since $\frac{\partial \mu}{\partial y} \equiv 0$ we have

$$
\mu(x, y) \in C^{(k+1)}
$$
 and $\frac{\partial^{k+1} \mu(x_0, y_0)}{\partial x^{k+1}} = 0.$

Therefore the induction is complete and $\mu(x, y) \in C^{(*)}$ in the plane.

THEOREM II. $-\text{Let } R$ be simply-connected plane region. Then there exists a real, first oder non-singular ordinary differential equation.

(1)
$$
\frac{dx}{dt} = f(x, y), \quad \frac{dy}{dt} = g(x, y) \quad (f^2 + g^2 > 0)
$$

with $f,g\!\in\!\mathbf{C}^{\scriptscriptstyle{(\infty)}}$ in R, with an integrating factor $\upmu(x,y)\!\in\!\mathbf{C}^{\scriptscriptstyle{(\infty)}},$ defining an invariant measure

$$
m_{\mu}(\Lambda) = \iint_{\Lambda} \mu(x, y) dx dy
$$

Journ. de Math., tome XXXI. - Fasc. 4, 1952.

38

on the plane Lebesgue m_1 -measurable sets, such that

1. $\mu(x, y) \in C^{(*)}$ in R; 2. $\mu(x, y) \geq 0;$ 3. $\mu(x, y)$ vanishes on no open set; 4. $\frac{\partial}{\partial x}(\mu f) + \frac{\partial}{\partial y}(\mu, g) \equiv 0$ in R

and the m_{u} -measure is not complete.

If f, g are only in $C^{(1)}$ *with* $f^2 + g^2 > 0$ *in* R, *and if* $\mu(x, y) \in C^{(A)}$ *in* R *is an integrating factor, that is, satisfies conditions* 2, 3, and 4, *then the m_u-measure is complete, that is,* $m_u(\Lambda) = o$ *if and only* $if m_L(\Lambda) = 0.$

Proof. — We first prove the theorem in the case R is the entire plane and then use theorem I for the general simply-connected region. Consider the differential system

 $\frac{dx}{dt} = \mu(x, y),$ (7)

where $\mu(x, y)$ is the function described above. This system is $C^{(*)}$ and also non-singular since $\mu(x_0, y_0) = 0$ if and only if $(x_0, y_0) \in \mathbb{Z}$ in which case $\frac{\delta \mu}{\delta x} = 0$ and $(-2 \mu_x y + 1) = 1$. Moreover, it is not exact but has an integrating factor of $\mu(x, y)$ since

$$
\frac{\partial}{\partial x}(\mu^2) + \frac{\partial}{\partial y}(-2\mu_x\mu_y + \mu) \equiv 0.
$$

To show the m_{μ} -measure is not complete let $\chi \in \mathbb{Z}$ be a non m_{L} -measurable set. This is possible since $m_{\text{L}}(Z)=\infty$. But

$$
m_{\mu}(Z) = \iint_{Z} \mu(x, y) dx dy = 0
$$

and thus χ is a non- m_{μ} -measurable subset of a set Z of m_{μ} -measure zero. Therefore the m_μ -measure is not complete.

Next let $\mu(x, y) \in C^{\text{A}}$ be any integrating factor of 1 in the plane. Clearly if

 $m_{\rm L}(\Lambda) = 0$

then

$$
m_{\mu}(\Lambda) = \iint_{\Lambda} \mu \, dx \, dy = 0.
$$

Conversely let $m_{\mu}(\Lambda) = 0$. Then there exist two sets Λ_1 , $\Lambda_2 \in \mathbb{L}$ such that $m_{\text{L}}(\Lambda_1) = 0$, and

$$
\Lambda_1 \cap \Lambda_2 = 0, \qquad \Lambda_1 \cup \Lambda_2 = \Lambda, \qquad \text{and} \qquad \Lambda_2 \subset \mathbb{Z},
$$

the set of zeros of $\mu(x, y)$. We shall show that $m_{\text{L}}(Z) = 0$.

Since Z is closed, $Z \in L$. Then for almost all horizontal lines h_c : $\gamma = \gamma_c$, the linear measure of $Z \cap h_c$ exists. If $Z \cap h_c$ contains only a countable number of points, it has linear measure zero. If $Z \cap h_c$ contains a non-countable number of points, then since $\mu(x, y_c)$ is an analytic function of one argument, $Z \cap h_c = h_c$ and thus has infinite linear measure. However there are only a countable number of lines h_c on which $m'_L(Z \cap h_c) = \infty$. For if otherwise, there would be a finite accumulation point γ of the corresponding ordinates and then, for each fixed x_0 , $\mu(x_0, y)$ is an analytic function of *y* and must vanish. Thus $\mu(x, y) \equiv 0$ which contradicts the hypothesis of the theorem that $\mu(x, y)$ vanishes on no open set. Therefore on almost all horizontal lines $m'_1(Z \cap h_c) = 0$. Therefore by Fubini's theorem $m_L(Z) = 0$. Since $\Lambda \subset \Lambda$ ₁ $\cup Z$ and $m_{\text{L}}(\Lambda_1) = 0$, we have $m_{\text{L}}(\Lambda) = 0$.

Next consider any subset $\Lambda' \subset \Lambda$. Then $\Lambda' \in l$ and $m_{\text{L}}(\Lambda') = 0$. Thus $m_\mu(\Lambda') = 0$ and the m_μ -measure is complete. The theorem is proved in case Ris the entire plane. .

Again return to the case of a general simply-connected plane region R. Let $T: (x, y) \rightarrow (u(x, y), v(x, y))$ be a $C^{(A)}$ -homeomorphism (10) of the plane onto the (u, v) -region R. By T the

(10) First map the plane onto the square $|x^1| < 1, |y^1| < 1$ by

$$
x^1=\frac{2}{\pi}\mathrm{tg}^{-1}x,\qquad y^1=\frac{2}{\pi}\mathrm{tg}^{-1}y.
$$

Then use the Riemann confotmal mapping theorem.

differential system (7) is carried into a non-singular C^(*)-differential system defined in R

(8)
$$
\frac{du}{dt} = u_x f + u_y g = F(u, v), \qquad \frac{dv}{dt} = v_x f + v_y g = G(u, v)
$$

where F, $G \in C^{(*)}$ in R and $F^2 + G^2 > 0$. The corresponding integrating factor is

$$
M(u, v) = \mu \left| \frac{\partial(x, y)}{\partial(u, v)} \right|.
$$

with the corresponding integral $\psi(x(u, v), y(u, v))$, as is seen from the following matrix equation

$$
(9) \qquad \begin{pmatrix} \psi_u \\ \psi_v \end{pmatrix} = \begin{pmatrix} x_u & y_u \\ x_v & y_v \end{pmatrix} \begin{pmatrix} \psi_x \\ \psi_y \end{pmatrix} = \begin{pmatrix} x_u & y_u \\ x_v & y_v \end{pmatrix} \mu \begin{pmatrix} -g \\ f \end{pmatrix}
$$

and

$$
\begin{pmatrix} -g \\ f \end{pmatrix} = \begin{pmatrix} y_v & -y_u \\ x_v & x_u \end{pmatrix} \begin{pmatrix} -G \\ F \end{pmatrix}.
$$

Thus

 (1)

$$
(10) \qquad \begin{pmatrix} \psi_u \\ \psi_v \end{pmatrix} = \mu(x(u, \, v), \, y(u, \, v)) \frac{\partial(x, \, y)}{\partial(u, \, v)} \begin{pmatrix} -G \\ F \end{pmatrix} = \pm M \begin{pmatrix} -G \\ F \end{pmatrix}.
$$

Clearly $M(u, v) \ge 0$, $M \in C^{\infty}$ and vanishes only on the set $T(Z)$ which contains no interior points. Since T is a C⁽¹⁾-homeomorphism it preserves the set properties measurability and also of having zero measure. Thus $m_L(T(Z)) > 0$ and thus the m_M -measure is not complete.

A similar argument proves that, in case $\mu(x, y) \in C^{(A)}$ is an integrating factor of (1) in R, a simply-connected region, the resulting invariant measure is complete. 0. E. D.

 Co ROLLARY. $-$ Let

$$
\frac{dx}{dt} = f(x, y) \qquad \frac{dy}{dt} = g(x, y) \qquad (f^2 + g^2 > 0)
$$

with $f, g \in C^{\{A\}}$ in a simply-connected plane region R have a principal integral $\psi(x, y)$ such that

$$
1. \ \psi(x, y) \in C^{\text{A}} \text{ in } R;
$$

 $\pmb{\cdot}$

2. $\psi(x, y)$ is constant on no open set of R;

3. $\psi(x, y)$ is constant along each solution curve of (1).

Then the differential system (1) has a complete invariant measure.

 $Proof. - Let$

$$
\mu(x, y) = \left[\frac{\psi_x^2 + \psi_y^2}{f^2 + g^2}\right]^{\frac{1}{2}}
$$

be the integrating factor corresponding to the integral $\psi(x, y) \in C^{\mathfrak{a}}$. Then $\mu(x, y) \in \widetilde{C}^{(A)}$ and, by the theorem, the invariant measure

$$
m_{\mu}(\Lambda) = \iint_{\Lambda} \mu(x, y) dx dy
$$

is complete.

 $Q. E. D.$

We shall discuss criteria that (1) should have an analytic integral in a later paper.

⊃ەد