complété par Réponse aux intervenants. Data mining et statistique
@article{JSFS_2001__142_1_53_0, author = {De Veaux, Richard D.}, title = {Discussion and comments. {Data} mining et statistique}, journal = {Journal de la Soci\'et\'e fran\c{c}aise de statistique}, pages = {53--58}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {142}, number = {1}, year = {2001}, language = {en}, url = {http://archive.numdam.org/item/JSFS_2001__142_1_53_0/} }
TY - JOUR AU - De Veaux, Richard D. TI - Discussion and comments. Data mining et statistique JO - Journal de la Société française de statistique PY - 2001 SP - 53 EP - 58 VL - 142 IS - 1 PB - Société française de statistique UR - http://archive.numdam.org/item/JSFS_2001__142_1_53_0/ LA - en ID - JSFS_2001__142_1_53_0 ER -
%0 Journal Article %A De Veaux, Richard D. %T Discussion and comments. Data mining et statistique %J Journal de la Société française de statistique %D 2001 %P 53-58 %V 142 %N 1 %I Société française de statistique %U http://archive.numdam.org/item/JSFS_2001__142_1_53_0/ %G en %F JSFS_2001__142_1_53_0
De Veaux, Richard D. Discussion and comments. Data mining et statistique. Journal de la Société française de statistique, Tome 142 (2001) no. 1, pp. 53-58. http://archive.numdam.org/item/JSFS_2001__142_1_53_0/
[1] Quasi-Regression. Journal of Complexity. To appear. | MR | Zbl
and (2001)[2] Variable selection with optimal cell damage". In Maria Marinaro and Pietro G. Morasso, editors, Proceedings of the International Conference on Artificial Neural Networks, volume 1, pages 727-730. Springer-Verlag.
, , and (1994). "[3] Neural Networks for Chemometrics : A critical evaluation", Talk given at the Fall Technical Conference, American Society for Quality, Houston, October 1999.
, and (1999) "[4] Data mining and Statistics : What's the difference?" Technical Report, Stanford University available at http ://www-stat.stanford.edu/ jhf/.
(1998) "[5] Tutorial : Getting started with MART in S-plus" Technical Report,Stanford University, available at http ://www-stat.stanford.edu/ jhf/.
(1999) "[6] Greedy function approximation : A gradient boosting machine". The Annals of Statistics Vol. 29, No. 4. | MR | Zbl
(2001) "[7] Additive logistic regression : a statistical view of boosting (with discussion)", Annals of Statistics, 28 : 337-387. | MR | Zbl
, and (2000) "[8] Boosting a weak learning algorithm by majority', Information and Computation 121(2), 256-285. | MR | Zbl
(1995), '[9] A decision-theoretic generalization of online learning and an application to boosting', Journal of Computer and System Sciences 55, 119-139. | MR | Zbl
and (1997), '[10] Hierarchical Mixtures of experts and the EM algorithm" Neural Computation 6, 181-214.
, and (1994) "[11] Optimal Brain Damage in Advances in Neural Information Processsing Systems 2 (D.S. Touetzky, Edl.), San Mateo, CA, Morgan Kaufmann, pp. 598-605.
, and (1990)[12] Quasi-Regression and the Relative Importance of the ANOVA Components of a Function" To appear in proceedings of MCQMC-2000, Harald Niederreiter and Fred Hickernell, editors, Springer. | MR | Zbl
and (2001) "[13] Orthogonal Arrays for Computer Experiments, Integration and Visualization". Statistica Sinica. Volume 2, Pages 439-452. | MR | Zbl
(1992) "[14] Lattice Sampling Revisited : Monte Carlo Variance of Means Over Randomized Orthogonal Arrays". Annals of Statistics, 22, 930-945. | MR | Zbl
(1994) "[15] Assessing linearity in high dimensions. Annals of Statistics, volume 28, number 1, 1-19. | MR | Zbl
(2000)[16] The strength of weak learnability', Machine Learning 5(2), 197-227. | Zbl
(1990), '