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MODEL BUILDING USING COVARIATES 
IN NONLINEAR MIXED-EFFECTS MODELS 

José C. PINHEIRO * 

ABSTRACT 

Nonlinear mixed-effects (NLME) models are useful in describing nonlinear relation-
ships between a response variable and parameters and covariates in data that are 
grouped according to a classification factor. Examples of such grouped data include 
longitudinal and repeated measures data, which frequently arise in many areas of 
application, such as pharmacokinetics, biostatistics, and économies. By associâting 
common random effects to observations sharing the same level of a classification 
factor, NLME models flexibly represent the covariance structure induced by the 
grouping of the data. The random effects in an NLME model account for différences 
in the parameter values among groups. In many applications, additional covariates 
are collected along with the response and model covariates and can be used to 
explain, at least partially, the variation among groups. Including covariates in an 
NLME model to explain inter-group variation generally leads to simplifications in 
the random effects model and to a better understanding of the model producing 
the response. This paper describes a model-building strategy for identifying and in­
cluding covariates in an NLME model, using the capabilities available in the NLME 
library for S-PLUS and R. The use of the proposed methodology and the capabilities 
in the NLME software are illustrated with real-life examples from ecophysiology and 
pharmacokinetics. 

RÉSUMÉ 

Les modèles non-linéaires à effets mixtes (NLME) sont très utiles pour décrire des 
relations non-linéaires entre une variable réponse et des paramètres ou covariables 
lorsque les données observées sont groupées selon un niveau de facteur. De telles 
données englobent entre autres les données longitudinales, les mesures répétées et 
concernent beaucoup de domaines applicatifs telles la phamaco-cinétique, la bio­
statistique, l'économie. En associant aux observations des effets aléatoires communs 
à chaque niveau au facteur de groupement, la structure de covariance associée est 
aisément représentée par les modèles NLME : les effets aléatoires caractérisent les 
différences des valeurs des paramètres entre groupes. Dans beaucoup d'applications, 
des covariables additionnelles sont mesurées parallèlement à la variable réponse et 
elles peuvent être utilisées pour expliquer des variations même partielles entre les 
groupes. Inclure ces covariables dans un modèle NLME pour expliquer des varia­
tions inter-groupes amène généralement à une simplification de la modélisation des 
effets aléatoires et à une meilleure compréhension du modèle explicatif. Ce papier 
décrit une stratégie de modélisation pour l'identification et la prise en compte de 
covariables utilisant les capacités de la librairie NLME disponible sous S-PLUS et 
sous R. La mise en œuvre de sont cette méthodologie est illustrée sur des exemples 
concrets en écophysiologie et en pharmo-cinétique. 
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1. Introduction 

Nonlinear mixed-effects (NLME) models are useful in describing nonlinear 
relationships between a response variable and parameters and covariates 
in data that are grouped according to a classification factor. Examples of 
such grouped data include longitudinal and repeated measures data, which 
frequently arise in many areas of application, such as pharmacokinetics, 
biostatistics, and économies. NLME models assume that the form of the intra-
group model relating the response variable to covariates is common to ail 
groups, but some of the parameters that define the model are allowed to vary 
with group, through the use of random effects. By associating common random 
effects to observations in the same group, NLME models flexibly represent the 
covariance structure induced by the grouping of the data. 

The random effects in an NLME model account for individual déviations in 
the parameters among groups. In many applications, thèse déviations can be 
at least partially explained by différences in covariate values among groups. 
Including covariates in an NLME model to explain inter-group variation often 
leads to simplifications in the random effects model and generally allows a 
better understanding of the mechanism producing the response. 

During the process of adding covariates to an NLME model, several model 
building questions need to be addressed, such as : 

- Among the candidate covariates, which are potentially useful in explaining 
the random effects variation? 

- Which random effects hâve their variation best explained by covariates ? 

- How should the potentially useful covariates be tested for inclusion in the 
model ? 

- Should random effects be included in, or eliminated from, the model, after 
covariates hâve been included ? 

This paper describes a model-building strategy for addressing thèse questions 
in the context of NLME models, using the capabilities available in the NLME 
library for S-PLUS and R (Pinheiro and Bâtes, 2000). The use of the proposed 
methodology and the capabilities in the NLME software are illustrated with 
real-life examples from ecophysiology and pharmacokinetics. 

The rest of the paper is organized as follows. The nonlinear mixed-effects 
model is described in Section 2. Section 3 introduces examples from ecophysi­
ology (CO2 uptake) and pharmacokinetics (clinical study of Quinidine) which 
are later used to illustrate the model building methodology, described in Sec­
tion 4. Conclusions and suggestions for further research are presented in Sec­
tion 5. 

2. A nonlinear mixed-effects model 

Nonlinear mixed-effects (NLME) models are mixed-effects models in which the 
response function is nonlinear in at least some of the underlying parameters. 
Several différent nonlinear mixed-effects models hâve been, proposed in the 
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literature (Sheiner and Beal, 1980; Mallet et a/., 1988; Lindstrom and Bâtes, 
1990; Vonesh and Carter, 1992; Davidian and Gallant, 1992; Wakefield et a/., 
1994). We adopt hère the NLME model proposed by Lindstrom and Bâtes 
(1990), which can be viewed as a hierarchical model that generalizes both the 
linear mixed-effects model of Laird and Ware (1982) and the usual nonlinear 
régression model for independent data (Bâtes and Watts, 1988). In the first 
stage, the j th observation on the zth group is described as 

Vij = J%^i) + eij, i = l,...,Af, j = l , . . . , r i i (1) 

where / is a nonlinear function of a group-specific vector of parameters (j)^ 
and the vector of covariates Xij, the Cij are normally distributed, independent 
within-group error terms, M is the total number of groups, and rii is the 
number of observations in the zth group. In the second stage the group-specific 
parameters are modeled as 

$ij = Aij(3 + Bijbi (2) 

where /3 represents the fixed effects ; bi the random effects (varying with z but 
not with j), which are assumed to be independently distributed as J\f(0,W). 
Aij and Bij are design matrices for the fixed and random effects respectively, 
which may dépend on the values of some covariates at the j th observation. It 
is further assumed that the bi are independent of the e^. 

Inclusion of covariates in the NLME model is done primarily through the 
Aij matrices. As described in Section 4, candidate covariates for inclusion in 
the model are screened using plots of the estimated random effects against 
available covariates. The most promising covariates are incorporated in the 
model by adding corresponding columns to the A^, with resulting estimated 
fixed effects being tested for significance. This model building strategy is 
described and illustrated in détail in Section 4. 

Différent methods hâve been proposed to estimate the parameters in the 
NLME model (Ramos and Pantula, 1995; Davidian and Giltinan, 1995; 
Vonesh and Chinchilli, 1997) ; we concentrate hère on methods based on the 
likelihood function. Because the random effects bi are unobserved quantities, 
maximum likelihood estimation in NLME models is based on the marginal 
density of the responses y, which is calculated as 

W^MV) = fp(y I b,/3,a)p(b | V)db (3) 

Because the model function / in (1) can be nonlinear in the random effects, the 
intégral in (3) generally does not hâve a closed-form expression. To make the 
numerical optimization of the likelihood function a tractable problem, différent 
approximations to (3) hâve been proposed. Some of thèse methods consist 
of taking a first-order Taylor expansion of the model function / around the 
expected value of the random effects (z.e., 0) (Sheiner and Beal, 1980 ; Vonesh 
and Carter, 1992), or around the conditional modes of the random effects 
(bi) (Lindstrom and Bâtes, 1990). We adopt hère the approximation suggested 
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by Lindstrom and Bâtes (1990), which is implemented via an alternating 
algorithm comprising a linear mixed-effects (LME) step and a penalized 
nonlinear least squares (PNLS) step. This is the algorithm used in the nlme 
function of the NLME library. Inferences on the model parameters, including 
hypothesis testing, are based on asymptotic results for the linear mixed-effects 
log-likelihood used in the LME step of the alternating algorithm (Pinheiro and 
Bâtes, 2000). 

3. Examples 

In this section we introduce the two examples that will be used to illustrate the 
model building methodology for incorporating covariates in an NLME model 
described in Section 4. We also describe how to fit the associated NLME 
models using the tools in the NLME library. 

3.1. Carbon dioxide uptake 

Data from a study of the cold tolérance of a C4 grass species, Echinochloa crus-
galli is reported in Potvin et al. (1990). A total of 12 four-week-old plants, 6 
from Québec and 6 from Mississippi, were divided into two groups - control 
plants that were kept at 26° C and chilled plants that were subject to 14 
h of chilling at 7°C. After 10 h of recovery at 20°C, carbon dioxide (C02) 
uptake rates (in /imol/m2s) were measured for each plant at seven increasing 
concentrations of ambient CO2 (//L/L). The objective of the experiment was 
to evaluate the effect of plant type and chilling treatment on the CO2 uptake. 
The CO2 data, displayed in Figure 1, are available in the NLME library as 
the groupedData object C02 (Pinheiro and Bâtes, 2000). 

> C02 

Grouped Data : uptake ~ conc | Plant 

Plant Type Treatment conc uptake 

1 Qnl Québec nonchilled 95 16.0 

2 Qnl Québec nonchilled 175 30.4 

83 Mc3 Mississippi chilled 675 18.9 

84 Mc3 Mississippi chilled 1000 19.9 

It is clear from Figure 1 that the CO2 uptake rates of Québec plants are greater 
than those of Mississippi plants and that chilling the plants reduces their CO2 
uptake rates, with this decrease being more pronounced in Mississippi plants 
than in Québec plants. 

An asymptotic régression model with an offset is used in Potvin et al. (1990) 
to represent the expected CO2 uptake rate U(c) as a function of the ambient 
CO2 concentration c 
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400 600 800 1000 

~f 4. 
200 400 600 800 1000 

Ambient carbon dioxide concentration (uL/L) 

FlG 1 - CO2 uptake versus ambient CO2 by chilling treatment and plant type for 
Echmochloa crus-galh plants 

U(c) = </>!{!- exp [- exp (02) (c - </>3)]} , (4) 

where 0i is the asymptotic CO2 uptake rate, 02 is the logarithm of the rate 
constant, and 03 is the maximum ambient concentration of CO2 at which 
there is no uptake. The logarithm of the rate constant is used to enforce 
the positivity of the estimated rate constant, while keeping the optimization 
problem unconstrained. 

We initially consider an NLME version of the CO2 uptake model (4) with ail 
parameters as mixed effects and no treatment covariates. The corresponding 
model for the CO2 uptake u%3 of plant % at ambient CO2 concentration c%2 is 

utJ =<t>n{l- exp [- exp (02î) (¾ - 03î)]} + etJ, 

0,= 
0H 
022 

_03i_ 
= 

~0x 
02 
03 

+ 
bn 
b2i /3+6*, (5) 

6 , - ^ ( 0 , V), 6 , , - ^ ( 0 , ^ ) , 

where 0u, 02i, and 03 l hâve the same interprétation as in model (4), but are 
now allowed to vary with plant. The fixed effects, /3, represent the population 
average of the individual parameters, <^, and the random effects, b%, represent 
the déviations of the <j)% from their population average. In the notation of the 
gênerai NLME model (2), A%3 = B%3 — I. 

The NLME library includes an SSasympOf f function with a self-starting 
implementation of model (4), which is used to automatically generate starting 
estimâtes for the parameters in the model. We use it to fit the NLME 
model (5). 
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> fmlC02 < - n l m e ( u p t a k e ~ S S a s y m p O f f ( c o n c , Asym, l r c , cO) , 

+ d a t a = C02, f i x e d = Asym + l r c + cO ~ 1) 

> fmlC02 

F i x e d : l i s t ( A s y m ~ 1 , l r c ~ 1 , cO ~ 1) 

Asym l r c cO 

3 2 . 4 7 4 - 4 . 6 3 6 2 4 3 . 5 4 3 

Random e f f e c t s : 

F o r m u l a : l i s t ( A s y m ~ 1 , l r c ~ 1 , cO ~ 1) 

. L e v e l : P l a n t 

S t r u c t u r e : G e n e r a l p o s i t i v e - d e f i n i t e 

S tdDev C o r r 

Asym 9 . 5 0 9 9 9 Asym l r c 

l r c 0 . 1 2 8 2 8 - 0 . 1 6 0 

cO 1 0 . 4 0 5 1 9 0 . 9 9 9 - 0 . 1 3 9 

R e s i d u a l 1 . 7 6 6 4 1 

with 0 i = Asym, 02 = l r c , and 0 3 = cO. 

The very high corrélation between Asym and cO gives indication tha t the 
fit corresponds to a numerically unstable solution. In gênerai, from practical 
expérience, this occurs when the random effects model is over-parameterized 
and the optimization algorithm a t tempts to converge to a lower dimension 
W but , because of the parameterization used in the NLME software, ends 
up converging to a boundary solution. In this particular case, the estimated 
W suggests tha t a single random effect could be used to represent both the 
Asym and the cO random effects. The scatter plot matr ix of the estimated 
random effects (not shown) confirms tha t Asym and cO are in almost perfect 
linear alignment. A possible model for the random effects in this case would 
express the cO random effect as a multiple 6 of the Asym random effect. This 
model, however, leads to numerical difficulties in the estimation of 6 using 
the alternating algorithm implemented in the NLME software, resulting in 
singular gradient matrices. 

An alternative approach is to consider simpler models with one of the highly 
correlated random effects removed. Dropping the Asym random effect results 
in a highly significant decrease in the log-likelihood of the fitted model (p-
value < 0.0001), while dropping the cO random effect gives an équivalent fit 
of the da ta (p-value of 0.41 for the likelihood ratio test comparing the two 
nested models). Therefore, we chose the model with Asym and l r c random 
effects only, which can be fit in NLME with 
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> fm2C02 <- update(fmlC02.nlme, random = Asym + l r c ~ 1) 

> fm2C02 

Random effects : 

Formula : list(Asym ~ 1, lrc ~ 1) 

Level : Plant 

Structure : General positive-definite 

StdDev Corr 

Asym 9.65939 Asym 

lrc 0.19951 -0.777 

Residual 1.80792 

This is the model that will be used as a starting point for covariate model 
building in Section 4. 

Formally, the hypothèses being tested when deciding whether a random effect 
could be dropped from model (5) are 

Ho:W=(^ ° V Y 0 G M 2
+ VS. i?i:YGM3

+, (6) 

where M+ represents the cône of symmetric positive-definite matrices of 
order q. This corresponds to a non-classical likelihood ratio test scénario, 
as the null hypothesis HQ lies in the boundary of the parameter space. As 
discussed in Stram and Lee (1994) (see also the correction to the original 
paper in Stram and Lee (1995)), using the results of Self and Liang (1987), 
classical likelihood ratio tests under this scénario tend to be conservative. 
That is, the p-value calculated from the \\ distribution is greater than it 
should be, under the correct asymptotic distribution. As described in Stram 
and Lee (1994), the asymptotic distribution of the likelihood ratio test under 
the boundary conditions (6) is given by a mixture of x2 distributions with 
degrees-of-freedom ^ 1. The conclusions regarding the choice of which random 
effects to keep in the NLME model for the CO2 data are unchanged when the 
corrected likelihood ratio test distribution is used (the corresponding p-value 
for eliminating the cO random effect is 0.20). 

3.2. Clinical study of quinidine 

Routine clinical data on patients receiving the drug quinidine as a treatment 
for cardiac arrythmia (atrial fibrillation of ventricular arrythmias) were re-
ported in Verme et al. (1992). Ail patients were receiving oral quinidine doses. 
At irregular intervais blood samples were drawn and sérum concentrations of 
quinidine were determined. Thèse data, shown in Figure 2, are available as 
the groupedData object Quin id ine in the NLME library. 
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2 
c 

i 
I 
•a 
c 
5 or 
E 
2 

Time from patient entenng study (hr ) 

FlG 2 - Sérum concentrations of quinidine in 136 hospitahzed patients under 
varying dosage regimens versus time since entenng the study. 

A total of 361 quinidine concentration measurements were made on 136 hos­
pitahzed patients under varying dosage regimens. The times since hospitaliza-
tion at which the quinidine concentrations were measured varied between 0.13 
and 8095.5 hours. Most patients hâve only a few concentration measurements 
- 34% hâve only one and 80% hâve three or fewer. Only 5% of the patients 
hâve seven or more observations. Additional démographie and physiological 
data were collected for each subject. The additional available covariates are 
described in Table 1. Some of thèse covariates, such as âge, body weight, and 
creatinine clearance, were "time-varying." That is, their value for a particular 
patient could change during the course of the study. Others, such as race, 
remained constant. One of the main objectives of the study was to investigate 
relationships between the individual pharmacokinetic parameters and the co­
variates. Statistical analyses of thèse data using différent modeling approaches 
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are given in Davidian and Gallant (1992), Davidian and Giltinan (1995) and 
Wakefield (1996). 

TABLE 1. - Démographie and physiological covariates in the quinidine data. 

Age (yr) 
Glycoprotein concentration (mg/100 dL) 
Body weight (kg) 
Congestive heart failure 
Creatinine clearance (ml/min) 
Ethanol abuse 
Height (in.) 
Race 
Smoking status 

42-92 
0.39-3.16 
41-119 
no/mild, moderate, severe 
< 50, ^ 50 
none, current, former 
60-79 
Caucasian, Latin, Black 
no, yes 

The model that has been suggested for the quinidine data is the one-
compartment open model with first-order absorption. This model can be 
defined recursively as follows. Suppose that, at time t, the patient receives 
a dose dt and prior to that time the last dose was given at time t1'. The 
expected concentration in the sérum compartment, C t, and in the absorption 
compartment, Cat, are given by 

Ct = Ct> exp [ - / f ( t - i ' ) ] + 

Cat = Ça* exp \-ka (t - t')} + 

COt'ka 

ka-K 

dt 

V 

{exp [-K {t - t')} - exp [-ka (t - t')}} 

(7) 

where V is the apparent volume of distribution, ka is the absorption rate 
constant, and K is the élimination rate constant. 

When a patient receives the same dose d at regular time intervais A, model (7) 
converges to the steady state model 

Ct = 

Cat = 

dka 

V(ka-K) 

d 

1 1 

1 - exp {-KA) 1 - exp (-kaA) 

V[l -exp( - fc f l A)] 
(8) 

Patients considered to be in steady state conditions hâve concentrations 
modeled as above. 

Finally, for a between-dosages time t, the model for the expected concentration 
C t , given that the last dose was received at time t', is identical to (7). 

Using the fact that the élimination rate constant K is equal to the ratio 
between the clearance (Cl) and the volume in distribution (V), we can 
reparametrize models (7) and (8) in terms of V, ka, and Cl. To ensure that 
the estimâtes of V, ka, and Cl are positive, we can rewrite models (7) and (8) 
in terms of IV = log(V), lka = \og(ka) and ICI = log(CZ). 
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The initial conditions for the recursive model (7) and (8) are C$ = 0 and 
Cao = do/V, with do denoting the first dose received by the patient. It 
has been assumed throughout the model's définition that the bioavailability 
of the drug, z.e., the percentage of the administered dose that reaches the 
measurement compartment, is equal to one. 

The function quinModel in the NLME library implements the recursive 
models (7) and (8), parameterized in terms of IV, IKa and ICI. This is 
not a self-starting model, so initial values for the fixed effects need to be 
provided when calling nlme. We used values reported in the literature as 
starting estimâtes for the fixed effects. 

Preliminary analyses of the data, without using any covariates to explain inter-
subject variation, indicate that only ICI and IV need random effects to account 
for their variability in the patient population, and that the corresponding 
random effects can be assumed to be independent. The corresponding models 
for the fixed and random effects are 

ICIX = 0i + bu, IVZ = 02 + b2l, lKa% = /33, 

K = 
bu 

b2i 
'M 0, 

0 ^2 
(9) 

which is fitted in S-PLUS or R with 

> fmlQuin <-

+ nlme(conc ~ quinModel(Subject, time, conc, dose, interval, 

+ IV, IKa, ICI), 

+ data = Quinidine, fixed = IV + IKa + ICI ~ 1, 

+ random = pdDiag(lV + ICI ~ 1), groups = ~ Subject, 

+ start = list(fixed = c(5, -0.3, 2)), 

+ na.action = na.include, naPattern = ~ iis.na(conc) ) 

> fmlQuin 

Fixed : IV + IKa + ICI ~ 1 

IV IKa ICI 

5.3796 -0.20535 2.4687 

Random effects : 

Formula : list(lV ~ 1, ICI ~ 1) 

Level : Subject 

Structure : Diagonal 

IV ICI Residual 

StdDev : 0.31173 0.32276 0.73871 
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This will be the starting model used for covariate model building of the 
quinidine data in the next section. Note that the IV and ICI are assumed to 
be independent, so only estimâtes for the corresponding standard déviations 
are presented in the S output. 

4. Incorporating covariates in the NLME model 

The gênerai model building approach to be used for incorporating covariates 
in the model consists in starting with an NLME model with no covariates to 
explain inter-group variation, and using plots of the estimated random effects 
bi versus the candidate covariates to identify interesting patterns. Because 
the random effects accommodate individual departures from the population 
mean, plotting the estimated random effects against the candidate covariates 
provides useful information for the model-building process. A systematic 
pattern in a given random effect with respect to a covariate would indicate 
that the covariate should be included in the model. 

If no interesting patterns are observed, the current model is kept, else, 
the covariate-coemcient pair with the most promising pattern is tested for 
inclusion in the model. The procédure is then applied sequentially, until no 
further interesting patterns are found. 

The number of additional parameters to be estimated tends to grow consider-
ably with the inclusion of covariates and, possibly, their associated random ef­
fects in the model. If the number of covariate-coemcient combinations is large, 
we suggest using a forward stepwise approach in which covariate-coefïicient 
pairs are included in the model one at a time and the potential importance 
of the remaining covariates is graphically assessed at each step. The signif-
icance of the fixed-effects associated with a covariate included in the model 
is assessed using the Wald-type tests, based on asymptotic results for LME 
models (Pinheiro and Bâtes, 2000). 

The inclusion of new random effects in the model when a covariate is added is 
rare, but should be investigated. The more common situation is that random 
effects can be eliminated from the model after covariates are included to 
account for inter-group variation. In both cases we proceed by comparing 
nested models using either likelihood ratio tests, or information criterion 
statistics (AIC and BIC). We illustrate the use of the proposed model-building 
strategy with the CO2 uptake and Quinidine examples described in Section 3. 

4.1. CO2 uptake 

The primary question of interest for the CO2 data is the effect of plant type 
and chilling treatment on the individual model parameters 0^ To plot the 
estimated random effects against the covariates, we first need to extract the 
bi from the fitted model and combine them with the covariates. The ranef 
function in NLME accomplishes that. 
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ranef(fm2C02, augFrame = T) > fm2C02.RE < -

> fm2C02.RE 

Asym 

Qnl 6 . 1 7 1 6 0 

Qn2 1 0 . 5 3 2 6 4 

Qn3 1 2 . 2 1 8 1 0 

l r c Type T r e a t m e n t c o n c u p t a k e 

0 . 0 4 8 3 5 6 3 Québec n o n c h i l l e d 435 3 3 . 2 2 9 

- 0 . 1 7 2 8 5 3 1 Québec n o n c h i l l e d 435 3 5 . 1 5 7 

- 0 . 0 5 7 9 9 3 0 Québec n o n c h i l l e d 435 3 7 . 6 1 4 

The augFrame argument, when TRUE, indicates tha t summary values for ail 
the variables in the da ta frame should be returned along with the estimated 
random effects. When a covariate is constant within a group, such as T r e a t ­
ment and Type in the C02 data , its unique values per group are returned. 
Otherwise, if the covariate varies within the group and is numeric, such as 
c o n c and u p t a k e in C02, the group means are re turned; if it is a categorical 
variable , the most fréquent values (modes) within each group are used. 

The p l o t method for objects produced by the r a n e f function is the most 
useful tool for identifying relationships between individual parameters and 
covariates. The simple call below produces the plot in Figure 3. 

> plot(fm2C02.RE, form Type * Treatment) 

Mississippi chilled 

Mississippi nonchilled 

Québec chilled 

Québec nonchilled 

>0 -15 -10 -01 0 0 01 02 03 

FlG 3. - Dotplots of estimated random effects corresponding to fm2C02 versus ail 
combinations of plant type and chilling treatment. 

Figure 3 shows a strong relationship between the estimated random effects 
and the covariates - Asym decreases when the plants are chilled and is higher 
among Québec plants than Mississippi plants, with the increase in Asym from 
chilled to nonchilled plants being larger among Mississippi plants than among 
Québec plants, suggesting an interaction between Type and T r e a t m e n t . 
There is also évidence of a Type by T r e a t m e n t interaction on the log-rate -
l r c increases with chilling for Mississippi plants and decreases with chilling 
for Québec plants. We include both covariates in the model to explain the 
Asym and l r c plot-to-plot variation. This leads to the following changes in 
<j>u and 02¾ in model (5). 
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(10) 

Ht 
<t>\i =01+ KllXu + 721¾ + 731^H^2i + hi, 
<l>2i = 02+ 7l2Zlt + 722¾ + 7 3 2 ¾ ¾ + &2i, 

Type^ = Québec, _ / ~~ 1> Treatment* = nonchilled, 
Type* = Mississippi, 2l \ 1, Treatment^ = chilled, 

where 0\ represents the average asymptotic uptake rate, 711 and 712 represent 
the plant type main effects, 721 and 722 represent the chilling treatment 
main effects, and 731 and 732 represent the plant type-chilling treatment 
interactions. 

We update the fitted model, incorporating the covariates as in (10) through 
the f i xed argument. 

> fm3C02 <- update(fm2C02, 

+ fixed = lis t (Asym + lrc ~ Type * Treatment, cO ~ 1), 

+ start = c(32.4, 0, 0# 0, -4.6, 0, 0, 0, 49.3)) 

Because the fixed-effects model has changed, new starting values must be 
provided. We use the previous estimâtes for 0\, 02 and 0s and set the initial 
values for the new fixed effects to zéro. Wald-type tests are then used to assess 
the significance of the individual fixed effects. 

> summary( fm3C02.nlme ) 

Random effects : 

Asym.(Intercept) 

lrc.(Intercept) 

StdDev Corr 

2.3496 Asym.( 

0.0796 -0.92 

Residual 1.7920 

Fixed effects list(Asym + lrc ~ Type * Treatment, cO ~ 1) 

Value Std.Error DF t-value p-value 

Asym. (Intercept) 32.342 0.7849 64 

Asym.Type -7.990 0.7785 64 

Asym.Treatment -4.210 0.7781 64 

Asym.Type -.Treatment -2.725 0.7781 64 

lrc.(Intercept) -4.509 0.0809 64 

lrc.Type 0.133 0.0552 64 

lrc.Treatment 0.100 0.0551 64 
lrc.Type :Treatment 0.185 0.0554 64 

cO 50.511 4.3646 64 

41.208 

-10.264 

-5.410 

-3.502 

-55.743 

2.417 

1.812 

3.345 

11.573 

<.0001 

<.0001 

<.0001 

0.0008 

<.0001 

0.0185 

0.0747 

0.0014 

<.0001 
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Ail fixed effects introduced in the model to explain the variability in Asym 
are highly significant and the Type by Treatment interaction for l r c is also 
highly significant, confirming the previous conclusions from Figure 3. 

The inclusion of the expérimental factors in the model resulted in a réduction 
in the estimated standard déviation for the Asym random effects from 9.66 to 
2.35 and in the estimated standard déviation for the l r c random effects from 
0.20 to 0.08, indicating that a substantial part of the plot-to-plot variation 
in thèse two coefficients is explained by différences in plant type and chilling 
treatment. 

Figure 4 displays the plots of the estimated random effects corresponding to 
fm3C02 versus the expérimental factors. As expected, no systematic patterns 
can be found. 

Mississippi chilled 

Mississippi nonchilled 

Québec chilled 

Québec nonchilled 

-0 05 00 
I 

0 1 0 

FlG. 4. - Dotplots of estimated random effects corresponding to f m3C02 versus ail 
combinations of plant type and chilling treatment. 

After covariates hâve been introduced in the model to account for inter-
group variation, a natural question to ask is which random effects, if any, 
are still needed. The ratio between a random-effect's standard déviation and 
the absolute value of the corresponding fixed effect gives an idea of the 
relative inter-group variability for the coefficient and is useful in deciding 
which random effects should be tested for deletion from the model. For 
the fm3C02 fit thèse ratios are 7.3% for Asym. ( I n t e r c e p t ) and 1.8% for 
l r c . ( I n t e r c e p t ) , suggesting that the latter should be tested for exclusion 
first. The likelihood ratio test comparing fm3C02 to a model with a single 
Asym random effect gives a non-significant p-value of 0.27, indicating that 
the l r c random effect could be dropped after the inclusion of the covariates. 
A subséquent test comparing the simpler NLME model to a model without 
any random effects resulted in a highly significant p-value, indicating that the 
Asym random effect needs to kept in the model to account for unexplained 
plot-to-plot variation. The same remarks about the conservâtiveness of the 
classical likelihood ratio test for evaluating the removal of random effects from 
the model, included at the end of Section 3.1, also apply hère. As before, the 
conclusions are unchanged when the corrected distribution of the test is used. 
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4.2. Quinidine 

To investigate which covariates may account for patient-to-patient variation in 
the pharmacokinetic parameters, we first extract the estimated random effects, 
augmented with summary values for the available covariates (the modal value 
is used for time-varying categorical variables and the mean for time-varying 
numeric variables). 

> fmlQuin.RE <- ranef( fmlQuin, aug = T ) 

> fmlQuin.nlmeRE[1 :3,] 

IV ICI time conc dose interval Age Height 

109 0.0005212 -0.0028369 61.58 0.50000 NA NA 70 67 

70 0.0362214 0.3227614 1.50 0.60000 NA NA 68 69 

23 -0.0254211 0.4402551 91.14 0.56667 NA NA 75 72 

Weight Race Smoke Ethanol Heart Creatinine glyco 

109 58 Caucasian no none No/Mild >= 50 0.46000 

70 75 Caucasian no former No/Mild >= 50 1.15000 

23 108 Caucasian yes none No/Mild >= 50 0.83667 

The d o t p l o t displays used to visualize the relationships between the esti­
mated random effects and the covariates in the CO2 example do not scale up 
well when there are a large number of groups, or a large number of covariates 
in the data, as in the quinidine study. Also, they cannot be used with numeric 
covariates, like Weight and Age. The p l o t method for objects returned by 
the ranef function actually allows a more flexible type of display for thèse 
situations. Relationships between estimated random effects and categorical 
variables are displayed using boxplots, while scatter plots are used for dis-
playing the relationships between the estimated random effects and numeric 
covariates. Specifying a two-sided formula in the f orm argument, with the 
random effect on left-hand side and the desired covariates, separated by the 
+ operator, on the right-hand side, indicates to the p l o t method that the 
more gênerai display should be used. For example, to plot the estimated ICI 
random effects against the available covariates we use 

> plot( fmlQuin.RE, form = ICI ~ Age + Smoke + Ethanol + 

+ Weight + Race + Height + glyco + Creatinine + Heart) 

The resulting plot, shown in Figure 5, indicates that clearance decreases with 
glycoprotein concentration and âge, and increases with creatinine clearance 
and weight. There is also évidence that clearance decreases with severity of 
congestive heart failure and is smaller in Blacks than in both Caucasians 
and Latins. The glycoprotein concentration is clearly the most important 
covariate for explaining the ICI inter-individual variation. A straight Une 
seems adéquate to model the observed relationship. 
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current former 

FlG. 5. - Estimated log-clearance random effects from model fmlQuin versus 
démographie and physiological covariates in the quinidine data. A l o e s s smoother 
is included in the scatter plots of the continuous covariates to aid in visualizing 
possible t rends. 

Because of the number of observations per individual varies considerably in the 
quinidine study, the random effects are, as a resuit, estimated with différent 
précisions. An alternative plot, taking the différent précisions into account, 
would use standardized estimâtes b* = fy/sdfa), where sdfa) represents 
the estimated standard déviation of bt. This type of plot is not currently 
implemented in NLME, so we will stick hère to plots based on the un-
normalized bz. 

Figure 6 présents the plots of the estimated IV random effects versus the 
available covariates. None of the covariates seems helpful in explaining the 
variability of this random effect and we do not pursue the modeling of its 
variability any further. 

Following the forward stepwise approach mentioned earlier, initially only 
the glycoprotein concentration is included in the model to explain the ICI 
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FlG. 6. - Estimated log-volume random effects from model fmlQuin versus démo­
graphie and physiological covariates in the quinidine data. 

inter-subject variation according to a linear model. The modified version of 
model (9) is 

lCll3 = (0i +bu)+04glycol3. 

Because the glycoprotein concentration may change with time on the same 
patient, the random effects for ICI need to be indexed by both patient i and 
time j . The corresponding model is fitted with 

> fm2Quin <- update (fmlQuin, fixed = list(lV + IKa ~ 1, ICI ~ glyco), 

+ start = c(5.38, -0.21, 2.47, 0)) 

> summary(fm2Quin) 

Random effects : 

IV ICI.(Intercept) Residual 

StdDev : 0.26766 0.27037 0.63745 
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F i x e d e f f e c t s : l i s t ( l V + IKa ~ 1, ICI ~ g l y c o ) 

Va lue S t d . E r r o r DF t - v a l u e p - v a l u e 

IV 5 .3085 0 .10244 222 

IKa - 0 . 6 6 6 2 0 .30251 222 

I C I . ( I n t e r c e p t ) 3 .1067 0 .06473 222 

I C I . g l y c o - 0 . 4 9 1 4 0 .04263 222 

51 .818 < .0001 

- 2 . 2 0 2 0 .0287 

47 .997 < .0001 

11 .527 < .0001 

As expected, the estimated I C I . g l y c o fixed effect is very significant, indi­
cating that the glycoprotein concentration should be kept in the model. 

To search for further covariates to include in the model, we investigate the 
plots of the estimated I C I . ( I n t e r c e p t ) random effects from the fm2Quin 
fit versus the covariates, presented in Figure 7. 

d 

Moderate Severe 

i " ? -

12C Caucasian Latin 

FlG. 7. - Estimated log-clearance random effects from model fm2Quin versus 
démographie and physiological covariates in the quinidine data. 

As expected, there is no relation between the estimated random effects and 
g lyco . The plots indicate that the estimated ICI . ( I n t e r c e p t ) random 
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effects increase with creatinine clearance, weight, and height, decrease with 
âge and severity of congestive heart failure, and are smaller in Blacks than in 
Caucasians and Latins. The most relevant variable appears to be the creatinine 
clearance, which is included in the model as a binary variable taking value 0 
when creatinine is < 50 and 1 when creatinine is ^ 50. 

> options(contrasts = c("contr.treatment", "contr.poly") 

> fm3Quin <- update( fm2Quin/ 
+ fixed = list(lV + IKa ~ 1, ICI ~ glyco + Creatinine), 

+ start = c(5.31, -0.67, 3.11, -0.49, 0)) 

> summary( fm3Quin.nlme ) 

Fixed effects : list(lV + IKa ~ 1, ICI ~ glyco + Creatinine) 

Value Std.Error DF 

IV 5.2900 0.10631 221 

IKa -0.7462 0.29635 221 

ICI.(Intercept) 2.9229 0.07221 221 

ICI.glyco -0.4632 0.04117 221 

ICI.Creatinine 0.2125 0.04491 221 

t-value p-value 

49.761 <.0001 

-2.518 

40.477 

-11.251 

4.733 

0.0125 

<.0001 

<.0001 

<.0001 

The fixed effect corresponding to I C I . C r e a t i n i n e is very significant, as 
expected. 

The final model produced by this stepwise model-building approach includes 
extra terms for indicator functions of the events race = Black, heart = 
No/Mild, and ethanol = former to explain the clearance variation. The 
corresponding model for the log-clearance is expressed as 

ICI%3 = (0i + bu) + /^4glycoZJ + /¾ Créât ininez+ 

/?6I(Race = Black), + /?7I(Heart = No/Mild)z + /%I(Ethanol = former^ 

and the resulting fit gives 

> summary(fm4Quin.nlme) 

Random effects : 

IV ICI.(Intercept) Residual 

StdDev : 0.29855 0.222 0.62565 
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IV 

IKa 

ICI.(Intercept) 

ICI.glyco 

ICI.Creatinine 

ICI.I(Race == "Black") 

ICI.I(Heart == "No/Mild") 

ICI.I(Ethanol == "former") 

t-value p-value 

50.540 <.0001 

Fixed effects : list(lV+lKa ~ 1, ICI ~ glyco+Creatinine+I(Race 

I(Heart == "No/Mild")+1(Ethanol == "former")) 

Value Std.Error DF 

5.3036 0.10494 218 

-0.7288 0.29299 218 

2.8585 0.07459 218 

-0.4617 0.03987 218 

0.2086 0.04366 218 

-0.2697 0.09409 218 

0.1473 0.05397 218 

0.1528 0.06531 218 

"Black-

-2.487 

38.322 

-11.582 

4.779 

-2.867 

2.729 

2.340 

0.0136 

<.0001 

<.0001 

<.0001 

0.0046 

0.0069 

0.0202 

Ail ICI coefficients are significant at the usual levels. 

ç 

current former 

FlG. 8. - Estimated log-clearance random effects from model fm4Quin versus 

démographie and physiological covariates in the quinidine data. 
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The plots of the estimated random effects for model fm4Quin versus covari­
ates, displayed in Figure 8, do not suggest any further covariates to be included 
in the model. Even though there was a réduction in the estimated standard 
déviations for the ICI and IV random effects, neither could be removed from 
the model. 

As reported in previous analyses of the quinidine data (Davidian and Gilti-
nan,1995), there is évidence that the variability in the concentration measure­
ments increases with the quinidine concentration. This can be investigated 
using the tools available in the NLME library, but we will not pursue such 
analysis hère. 

5. Conclusions 

Incorporating covariates in an NLME model allows inter-group variation 
to be explained, at least partially, via fixed effects. Besides enhancing the 
understanding of the model and reducing the dependency on random effects, 
this allows better prédictions to be made from the model, especially for groups 
not previously observed. Often times, the inclusion of covariates in the model 
leads to the removal of random effects, or a simplification of the random effects 
model. 

The NLME library in S-PLUS and R provides a flexible and rich environment 
for model building with covariates in NLME models, including powerful 
graphical tools for identifying interesting covariates and useful functions for 
summarizing covariates and combining them with estimated random effects. 

The gênerai model building strategy proposed in this paper is to, when 
feasible, start with a model with ail coefficients having bot h fixed and 
random effects. This may lead to over-parameterization in the random effects 
model and the resulting W should be investigated for possible indications of 
numerical instability (the most common problem being very high corrélations, 
in absolute value, between some of the random effects). When this happens, 
a more parsimonious random effects model should be identifled via testing of 
nested models (information critf ria such as the AIC and the BIC could also be 
used at this stage), in order to achieve greater numerical stability. This model 
should then be used as a starting point to identify potentially useful covariates 
to explain inter-group variation. Plots of the estimated random effects versus 
available covariates are particularly useful at this step. A forward stepwise 
approach is proposed, with the most promising covariate identifled in the 
plots being included in the model at each step, then tested for significance, 
and plots of the new estimated random effects versus covariates investigated. 
The procédure continues until no further covariates are available, or promising 
covariates can be identifled in the plots. Finally, after ail useful covariates 
hâve been identifled and included in the model, the remaining random effects 
should be re-evaluated for their need in the model. Comparisons of coefficients 
of variation and confidence intervais for standard déviations corresponding to 
the random effects are useful at this step. 
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Wi th genetic da ta being increasingly collected in a variety of areas where 
NLME models are used, such as pharmacogenetic da ta in clinic trials, thou-
sands of potentially useful covariates are becoming available for model build­
ing. This créâtes challenging statistical and computational problems, such as 
the need for automatic methods of sélection tha t account for multiple testing, 
algorithms tha t scale-up with the number of fixed effects, etc. Further research 
is needed before the methods and software described hère can be used in this 
type of applications. 
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