Réduction de dimension dans les modèles linéaires généralisés : application à la classification supervisée de données issues des biopuces
Journal de la Société française de statistique, Tome 146 (2005) no. 1-2, pp. 117-152.
@article{JSFS_2005__146_1-2_117_0,
     author = {Fort, Gersende and Lambert-Lacroix, Sophie and Peyre, Julie},
     title = {R\'eduction de dimension dans les mod\`eles lin\'eaires g\'en\'eralis\'es : application \`a la classification supervis\'ee de donn\'ees issues des biopuces},
     journal = {Journal de la Soci\'et\'e fran\c{c}aise de statistique},
     pages = {117--152},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {146},
     number = {1-2},
     year = {2005},
     language = {fr},
     url = {http://archive.numdam.org/item/JSFS_2005__146_1-2_117_0/}
}
TY  - JOUR
AU  - Fort, Gersende
AU  - Lambert-Lacroix, Sophie
AU  - Peyre, Julie
TI  - Réduction de dimension dans les modèles linéaires généralisés : application à la classification supervisée de données issues des biopuces
JO  - Journal de la Société française de statistique
PY  - 2005
SP  - 117
EP  - 152
VL  - 146
IS  - 1-2
PB  - Société française de statistique
UR  - http://archive.numdam.org/item/JSFS_2005__146_1-2_117_0/
LA  - fr
ID  - JSFS_2005__146_1-2_117_0
ER  - 
%0 Journal Article
%A Fort, Gersende
%A Lambert-Lacroix, Sophie
%A Peyre, Julie
%T Réduction de dimension dans les modèles linéaires généralisés : application à la classification supervisée de données issues des biopuces
%J Journal de la Société française de statistique
%D 2005
%P 117-152
%V 146
%N 1-2
%I Société française de statistique
%U http://archive.numdam.org/item/JSFS_2005__146_1-2_117_0/
%G fr
%F JSFS_2005__146_1-2_117_0
Fort, Gersende; Lambert-Lacroix, Sophie; Peyre, Julie. Réduction de dimension dans les modèles linéaires généralisés : application à la classification supervisée de données issues des biopuces. Journal de la Société française de statistique, Tome 146 (2005) no. 1-2, pp. 117-152. http://archive.numdam.org/item/JSFS_2005__146_1-2_117_0/

Albert A., Anderson J. (1984). On the Existence of Maximum Likelihood Estimates in Logistic Regression Models. Biometrika, 71(1) :1-10. | MR | Zbl

Alon U., Barkai N., Notterman D., Gish K., Ybarra S., Mack D., Levine A. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA, 96(12) :6745-6750.

Antoniadis A., Lambert-Lacroix S., Leblanc F. (2003). Effective Dimension Reduction Methods for Tumor - Classification using gene Expression Data. Bioinformatics, 19(5) :563-570.

Barker M., Rayens W. (2003). Partial least squares for discrimination. J. Chemometrics, 17 :166-173.

Bastien P. (2004). PLS-Cox model : application to gene expression. Dans Proceedings in Computational Statistics, pages 655-662. Physica-Verlag, Springer. | MR

Bastien P., Esposito Vinzi V., Tenenhaus M. (2004). PLS generalised linear regression. Comput. Stat. Data Anal., 48(1) :17-46. | MR

Bull S., Mak C., Greenwood C. (2001). A modified score function estimator for multinomial logistic regression is small samples. Comput. Stat. Data Anal., 39 :57-74. | Zbl

Dejong S. (1995). PLS shrinks. J. Chemometrics, 9 :323-326.

Denham M. (2000). Choosing the number of factors in partial least squares regression : estimating and minimizing the mean squared error of prediction. J. Chemometrics, 14 :351-361.

Devroye L., Gyorfi L., Lugosi G. (1996). A Probabilistic Theory of Pattern Recognition. Springer-Verlag, New-York. | MR | Zbl

Ding B., Gentleman R. (2005). Classification Using Generalized Partial Least Squares. J. Comp. Graph. Stat. À paraître. | MR

Dudoit S., Fridlyand J., Speed T. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc., 97(457) :77-87. | MR | Zbl

Efron B., Hastie T., Johnstone I., Tibshirani R. (2004). Least angle regression. Ann. Stat., 32(2) :407-499. | MR | Zbl

Fahrmeir L., Tutz G. (2001). Multivariate statistical modelling based on generalized linear models. 2nd ed. Springer Series in Statistics. New York. | MR | Zbl

Fan J., Gijbels I. (1996). Local polynomial modelling and its applications. Monographs on Statistics and Applied Probability. Chapman and Hall, London. | MR | Zbl

Fort G. (2005). Partial Least Squares for Classification and Feature selection in Microarray gene expression data. Soumis.

Fort G., Lambert-Lacroix S. (2005). Classification using Partial Least Squares with Penalized Logistic Regression. Bioinformatics, 21(7) :1104-1111.

Frank I., Friedman J. (1993). A statistical view of some chemometrics regression tools, with discussion. Technometrics, 35(2) :109-148. | Zbl

Garthwaite P. (1994). An interpretation of partial least squares. J. Am. Stat. Assoc., 89(425) :122-127. | MR | Zbl

Golub T., Slonim D., Tamayo P., Huard C., Gaasenbeek M., Mesirov J., Coller H., Loh M., Downing J., Caligiuri M., Bloomfield C., Lander E. (1999). Molecular Classification of Cancer : Class Discovery and Class Prediction by Gene Expression Monitoring. Science, 286(5439) :531-537.

Goutis C. (1996). Partial Least Squares algorithm yields shrinkage estimators. Ann. Stat., 24(2) :816-824. | MR | Zbl

Green P. (1984). Iteratively Reweighted Least Squares for Maximum Likelihood Estimation, and some Robust and Resistant Alternatives. J. R. Stat. Soc., Ser. B, 46(2) :149-192. | MR | Zbl

Guyon I., Weston J., Barnhill S., Vapnik V. (2002). Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn., 46(1-3) :389-422. Erratum : http://clopinet.com/isabelle/Papers/index.html. | Zbl

Hastie T., Tibshirani R. (1990). Generalized Additive Models. Monographs on Statistics and Applied Probability. New York : Chapman and Hall. | MR | Zbl

Hastie T., Tibshirani R., Eisen M., Alizadeh A., Levy R., Staudt L., Chan W., Botstein D., Brown P. (2000). 'gene shaving' as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol., 1.

Helland I. (1988). On the structure of Partial Least Squares regression. Commun. Stat. Simulation Comput., 17(2) :581-607. | MR | Zbl

Helland I. (1990). Partial Least Squares Regression and Statistical Models. Scand. J. Statist., 17(2) :97-114. | MR | Zbl

Kuo W., Kim E., Trimarchi B., Jenssen J., Vinterbo T., Ohno-Machado L. (2004). Bayes factor. J. Biomed. Inform., 37 :293-303.

Lambert-Lacroix S., Peyre J. (2005). Local quasi-likelihood regression in generalized single-index models. Travaux en cours.

Lesaffre E., Albert A. (1989). Partial separation in logistic discrimination. J. R. Stat. Soc., Ser. B, 51(1) :109-116. | MR | Zbl

Lingjaerde O., Christophersen N. (2000). Shrinkage structure of Partial Least Squares. Scand. J. Stat., 27 :459-473. | MR | Zbl

Marx B. D. (1996). Iteratively Reweighted Partial Least Squares estimation for Generalized Linear Regression. Technometrics, 38(4) :374-381. | Zbl

Nguyen D., Rocke D. ( 2002a). Multi-class cancer classification via Partial Least Squares with gene expression profiles. Bioinformatics, 18(9) :1116-1226.

Nguyen D., Rocke D. ( 2002b). Tumor classification by Partial Least Squares using microarray gene expression data. Bioinformatics, 18(1) :39-50.

Nguyen D., Rocke D. (2004). On partial least squares dimension reduction for microarray-based classification : a simulation study. Comput. Stat. Data Anal., 46 :407-425. | MR | Zbl

Phatak A., Reilly P., Penlidis A. (2002). The asymptotic variance of the univariate PLS estimator. Linear Algebra Appl., 354(1-3) :245-253. | MR | Zbl

Santner T., Duffy D. (1986). A note on A. Albert and J.A. Anderson's Conditions for the Existence of Maximum Likelihood Estimates in Logistic Regression Models. Biometrika, 73(3) :755-758. | MR | Zbl

Saporta G. (1990). Probabilités, analyse des données et statistique. Paris : Éditions Technip. | Zbl

Schwarz G. (1978). Estimating the dimension of a model. Ann. Stat., 6(2) :461-464. | MR | Zbl

Seifert B., Gasser T. (1996). Finite sample variance of local polynomials : Analysis and solutions. J. Am. Stat. Assoc., 91(433) :267-275. | MR | Zbl

Stoica P., Soderstrom T. (1998). Partial Least Squares : A First-order Analysis. Scand. J. Stat., 25(1) :17-24. | MR | Zbl

Stone M., Brooks R. (1990). Continuum regression : Cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression. J. R. Stat. Soc., Ser. B, 52(2) :237-269. | MR | Zbl

Tibshirani R. (1996). Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc., Ser. B, 58(1) :267-288. | MR | Zbl

Xia Y., Tong H., Li W., Zhu L. (2002). An adaptive estimation of dimension reduction space. J. R. Stat. Soc., Ser. B, 64(3) :363-410. | MR | Zbl

Zhu J., Hastie T. (2004). Classification of Gene Microarrays by Penalized Logistic Regression. Biostatistics, 5 :427-443. | Zbl

Zou H., Hastie T. (2005). Regularization and Variable Selection via the Elastic Net. J. R. Stat. Soc., Ser. B, 67(2) :301-320. | MR | Zbl