@article{JSFS_2005__146_4_23_0, author = {Alvarez, Alexander and Olivares, Pablo}, title = {M\'ethodes d'estimation pour des lois stables avec des applications en finance}, journal = {Journal de la Soci\'et\'e fran\c{c}aise de statistique}, pages = {23--54}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {146}, number = {4}, year = {2005}, language = {fr}, url = {http://archive.numdam.org/item/JSFS_2005__146_4_23_0/} }
TY - JOUR AU - Alvarez, Alexander AU - Olivares, Pablo TI - Méthodes d'estimation pour des lois stables avec des applications en finance JO - Journal de la Société française de statistique PY - 2005 SP - 23 EP - 54 VL - 146 IS - 4 PB - Société française de statistique UR - http://archive.numdam.org/item/JSFS_2005__146_4_23_0/ LA - fr ID - JSFS_2005__146_4_23_0 ER -
%0 Journal Article %A Alvarez, Alexander %A Olivares, Pablo %T Méthodes d'estimation pour des lois stables avec des applications en finance %J Journal de la Société française de statistique %D 2005 %P 23-54 %V 146 %N 4 %I Société française de statistique %U http://archive.numdam.org/item/JSFS_2005__146_4_23_0/ %G fr %F JSFS_2005__146_4_23_0
Alvarez, Alexander; Olivares, Pablo. Méthodes d'estimation pour des lois stables avec des applications en finance. Journal de la Société française de statistique, Tome 146 (2005) no. 4, pp. 23-54. http://archive.numdam.org/item/JSFS_2005__146_4_23_0/
[1] Fractiles of the stable laws. Technical report, Rensselaer Polytechnic Institute, Troy, NY.
, and (1983).[2] A Method for simulating stable random variables. Journal of the American Statistical Association, 71, 340-344. | MR | Zbl
, and (1976).[3] Stable Distributions in Statistical Inference. PhD. thesis, Dept. of Statistics, Yale University. | MR
(1971).[4] On the Asymptotic Normality of the Maximum Likelihood Estimate when Sampling from a Stable Distribution. Annals of Statistics, 1, 948-957. | MR | Zbl
(1973).[5] The behavior of stock prices. J. of Business, 38, 34-105.
(1965).[6] Parameters Estimates for Symmetric Stable Distributions. Journal of the American Statistical Association, 66, 331-339. | Zbl
and (1971).[7] An efficient resuit for the empirical characteristic function in stationary time-series models. The Canadian Journal of Statistics, 18, 155-161. | MR | Zbl
(1990).[8] On the efficiency of empirical characteristic function procedures. J. Roy. Stat. Soc, Ser B, 43, 20-27. | MR | Zbl
and (1981).[9] On efficient inference in symmetric stable laws and processes. In M. Csorgo, Dawson, D.A., Rao, N.J.K. and Saleh, A..K. (Editors) Statistics and Related topics, 109-122. | MR | Zbl
and (1981).[10] Estimation of Stable Distributions by Indirect Inference. CORE Mimeo.
, and (2004).[11] Slow variation with remainder : Theory and applications, Quarterly Journal of Mathematics, Oxford, Second Ser, 38, 45-71. | MR | Zbl
and (1987).[12] Probability weighted moments : definition and relation to parameters of several distributions expressable in inverse form. Water Resources Research, 15, 1049-1054.
, , and (1979).[13] A simple approach to inference about the tail of a distribution. Annals of Statistics, 3, 1163-1174. | MR | Zbl
(1975).[14] Tables and graphs of the stable probability fonctions, J. Res. Nat. Bureau Standars, B. Math. Sci., 77b, 143-198. | MR | Zbl
and (1973).[15] Regional Frequency Analysis : an approach based on L-moments, Cambridge University Press, Cambridge, U.K.
and (1997).[16] L-moments : analysis and estimation of distributions using linear combinations of order statistics. J.R. Statist. Soc. B, 52, 105-124. | MR | Zbl
(1990).[17] Stable densities under change of scale and total variations inequalities. Annals of Probability 3, 697-707. | MR | Zbl
(1975).[18] Empirical Characteristic Function in Time Series Estimation. Econometric Theory, 18, 691-721. | MR | Zbl
, (2002).[19] Characteristic function based estimation of stable parameters. In Adler, R., Feldman, R. and Taqqu, M. (eds.) A Practical Guide to Heavy Tailed Data, Birkhauser, Boston, MA, 311-335. | Zbl
and (1998).[20] Regression-type estimation of the parameters of stable laws. Journal of the American Statistical Association, 75, 918-928. | MR | Zbl
(1980).[21] An iterative procedure for the estimation of the parameters of stable laws, Communications in Statistics. Simulation and Computation, 10, 17-28. | MR | Zbl
(1981).[22] Estimation of stable law parameters : stock price behavior application. J. Amer. Statist. Assoc, 70, 690-697. | MR | Zbl
and (1975).[23] Théorie des erreurs. La loi de Gauss et les lois exceptionnelles. Bulletin de la Société Mathématique de France, 52, 49-85. | JFM | Numdam | MR
(1924).[24] Les marchés fractals, PUF, Paris.
et (2002).[25] The Variation of Certain Speculative Prices. Journal of Business, 26, 394-419.
(1963).[26] Subordinated exchange rate models : evidence for heavy tailed distributions and long-range dependence. Stable non-Gaussian models in finance and econometrics. Math. Comp. Modelling, 34, no. 9-11, 955-1001. | MR | Zbl
, , (2001).[27] Laws of large numbers for sums of extreme values. The Annals of Probability, 10, 754-764. | MR | Zbl
(1982).[28] Simple consistent estimators of stable distribution parameters. Communications in Statistics. Simulation and Computation, 15, 1109-1136. | MR | Zbl
(1986).[29] Measuring tail thickness in order to estimate the stable index α : a critique. Bussiness and Economie Statistics, 15, 74-81. | MR
(1997).[30] Tables of the maximally-skewed stable distributions. In R. Adler, R. Feldman, and M. Taqqu (Eds.), A Practical Guide to Heavy Tails : Statistical Techniques for Analyzing Heavy Tailed Distributions, 501-508. | MR | Zbl
and (1998).[31] Stable non-Gaussian models in finance and econometrics, Math. Comp. Modelling 34 no. 9-11. | Zbl
, (2001).[32] An algorithm for evaluating stable densities in Zolotarev's (M) parametrization. Preprint American University Washington.
(1996).[33] Numerical approximation of stable densities and distribution functions. Preprint American University Washington.
( 1996.)[34] Cumulative distribution function values for symmetric standardized stable distributions. Statist. Simula. 21, 458-492. | Zbl
(1992).[35] Tables of the fractiles of the stable law. Technical Report, Renesselaer Polytechnic Institute, Troy, NY.
and (1993).[36] The estimation of the parameters of the stable laws. Biometrika, 62, 163-170. | MR | Zbl
, and (1975).[37] Applied Multivariate Analysis. Holt, Rinehart and Winston, Inc., New York. | MR | Zbl
(1972).[38] Estimation in univariate and multivariate stable distributions. J. Amer. Stat. Assoc., 67, 842-846. | MR | Zbl
(1972).[39] Which measures of skewness and kurtosis are best ? Statistics in Medicine, 11, 333-343.
(1992).[40] Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance Chapman &Hall. | MR | Zbl
, (1994).[41] L-moment diagrams should replace product-moment diagrams. Water Resources Research, 29, 1745-1752.
and (1993).[42] On the Chambers-Mallows-Stuck method for simulating skewed stable random variables. Statistics and Probability Letters, 28, 165-171. | MR | Zbl
(1996).[43] Performance of the estimators of Stable Laws. Working Paper.
(2001).[44] Tables of cumulative distribution function for symmetric stable distributions. Appl. Statistics, 24, 123-131. | MR
(1975).[45] On representation of stable laws by integrals. Selected Translation in Mathematical Statistics and Probability, 6, 84-88. | Zbl
(1966).[46] One-dimensional stable distributions, Trans. of Math. Monographs, AMS Vol. 65. | MR | Zbl
(1986).