Une introduction au critère BIC : fondements théoriques et interprétation
Journal de la Société française de statistique, Tome 147 (2006) no. 1, pp. 39-57.
@article{JSFS_2006__147_1_39_0,
     author = {Lebarbier, \'Emilie and Mary-Huard, Tristan},
     title = {Une introduction au crit\`ere {BIC} : fondements th\'eoriques et interpr\'etation},
     journal = {Journal de la Soci\'et\'e fran\c{c}aise de statistique},
     pages = {39--57},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {147},
     number = {1},
     year = {2006},
     language = {fr},
     url = {http://archive.numdam.org/item/JSFS_2006__147_1_39_0/}
}
TY  - JOUR
AU  - Lebarbier, Émilie
AU  - Mary-Huard, Tristan
TI  - Une introduction au critère BIC : fondements théoriques et interprétation
JO  - Journal de la Société française de statistique
PY  - 2006
SP  - 39
EP  - 57
VL  - 147
IS  - 1
PB  - Société française de statistique
UR  - http://archive.numdam.org/item/JSFS_2006__147_1_39_0/
LA  - fr
ID  - JSFS_2006__147_1_39_0
ER  - 
%0 Journal Article
%A Lebarbier, Émilie
%A Mary-Huard, Tristan
%T Une introduction au critère BIC : fondements théoriques et interprétation
%J Journal de la Société française de statistique
%D 2006
%P 39-57
%V 147
%N 1
%I Société française de statistique
%U http://archive.numdam.org/item/JSFS_2006__147_1_39_0/
%G fr
%F JSFS_2006__147_1_39_0
Lebarbier, Émilie; Mary-Huard, Tristan. Une introduction au critère BIC : fondements théoriques et interprétation. Journal de la Société française de statistique, Tome 147 (2006) no. 1, pp. 39-57. http://archive.numdam.org/item/JSFS_2006__147_1_39_0/

Akaike H.(1973). Information theory as an extension of the maximum likelihood principle. In B.N. Petrov et F. Csaki(Eds.), Second International Symposium on Information Theory, pp. 267-281. Akademiai Kiado, Budapest. | MR | Zbl

Azaïs J.-M., E. Gassiat, et C. Mercadier(2003). Asymptotic distribution and power of the likelihood ratio test for mixtures : bounded and unbounded case. Technical report, Preprint, Orsay. | MR | Zbl

Biernacki C., G. Celeux, et G. Govaert(2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on pattern analysis and machine intelligence 22(7), 719-725.

Birgé L. et P. Massart(2001). Gaussian model selection. J. Eur. Math. Soc. 3, 203-268. | EuDML | MR | Zbl

Bozdogan H.(1987). Model selection and Akaike's information criterion(AIC) : the general theory and its analytical extensions. Psychometrika 52, 345-370. | MR | Zbl

Burnham K.P. et D. Anderson(2002). Model selection and multi-model inference. Springer-Verlag New York. | MR | Zbl

Castellan G.(1999). Modified Akaike's criterion for histogram density estimation. Technical Report 61, Universite Paris XI.

Celeux G. et G. Soromenho(1996). An entropy criterion for assessing the number of clusters in a mixture model. Classification Journal 13, 195-212. | MR | Zbl

Chernoff H. et E. Lander(1995). Asymptotic distribution of the likelihood ratio test that a mixture of two binomials is a single binomial. Journal of Statistical Planning and Inference 43(1), 19-40. | MR | Zbl

Csiszar I. et P.C. Shields(2000). The consistency of the bic markov order estimator. Ann. Statist. 28(6), 1601-1619. | MR | Zbl

Dacunha-Castelle D. et E. Gassiat(1997). The estimation of the order of a mixture model. Bernoulli Journal of Mathematical Statistics and Probability 3(3), 279-299. | MR | Zbl

Dudley R.M. et D. Haughton(1997). Information criteria for multiple data sets and restricted parameters. Statistica Sinica, 265-284. | MR | Zbl

Dudley R.M. et D. Haughton(2002). Asymptotic normality with small relative errors of posterior probabilities of half-spaces. Ann. Statist. 30(5), 1311-1344. | MR | Zbl

Fraley C. et A. E. Raftery(1998). How many clusters? which clustering method? answer via model-based cluster analysis. The Computer Journal 4 1, 578-588. | Zbl

Hannan E.J.(1980). The estimation of the order of an arma process. Ann. Statist. 8, 1071-1081. | MR | Zbl

Hartigan(1985). A failure of likelihood ratio asymptotics for normal mixtures. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer.

Haughton D.M.A.(1988). On the choice of a model to fit data from an exponentiel family. Ann. Statist. 16(1), 342-355. | MR | Zbl

Hoeting J.A., D. Madigan, A.E. Raftery, et C.T. Volinsky(1999). Bayesian model averaging : A tutorial. Statist. Science 14(4), 382-417. | MR | Zbl

Hurvich C.M. et C.L. Tsai(1989). Regression and time series model selection in small samples. Biometrika 76, 297-307. | MR | Zbl

Kass R.E. et L.A. Wasserman(1996). The selection of prior distributions by formal rules. J. Amer. Statist. Assoc. 90, 1343-1370. | Zbl

Kass R. E. et A. E. Raftery(1995). Bayes factors. J. Amer. Statist. Assoc. 90, 773-795. | Zbl

Kass R. E. et L. Wasserman(1995). A reference bayesian test for nested hypotheses and its relationship to the schwarz criterion. J. Amer. Statist. Assoc. 90(2), 928-934. | MR | Zbl

Keribin C.(1998). Consistent estimate of the order of mixture models. Comptes Rendus de 1 Académie des Sciences 326, 243-248. | MR | Zbl

Lebarbier E.(2005). Detecting multiple change-points in the mean of gaussian process by model selection. Signal processing 85, 717-736. | Zbl

Madigan D. et A.E. Raftery(1994). Model selection and accounting for model uncertainty in graphical models using Occam's window. J. Amer. Statist. Assoc. 89, 1535-1546. | Zbl

Mallows C.L.(1974). Some comments on Cp. Technometrics 15, 661-675. | Zbl

Mclachlan G. et D. Peel(2000). Finite Mixture Models. Wiley Series in Probability and Statistics. | MR | Zbl

Poskitt D. S.(1987). Precision, complexity and bayesian model determination. J. R. Statist. Soc. B 49(2), 199-208. | MR | Zbl

Raftery A. E.(1995). Bayesian model selection in social research(with discussion). Sociological Methodology, 111-196.

Reschenhoffer E.(1996). Prediction with vague prior knowledge. Comm. Statist. 25, 601-608. | MR | Zbl

Ripley B.D.(1995). Pattern Recognition and Neural Networks. Cambridge University Press. | MR | Zbl

Rissanen J.(1978). Modelling by the shortest data description. Automatica 14, 465-471. | Zbl

Rissanen J.(1987). Stochastic complexity. J. R. Statist. Soc. B 49, 223-239. | MR | Zbl

Ronchetti(1985). Robust model selection in regression. Statis. Probab. Lett. 3, 21-23. | MR

Schwarz G.(1978). Estimating the dimension of a model. Ann. Statist. 6, 461-464. | MR | Zbl

Shi P. et C.L. Tsai(1998). A note on the unification of the Akaike information criterion. J. R. Statist. Soc. B 60, 551-558. | MR | Zbl

Sugiura(1978). Further analysis of the data by akaike's information criterion and the finite corrections. Comm. Statist. A7, 13-26. | Zbl

Tierney L. et J.B. Kadane(1986). Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc. 81, 33-59. | MR | Zbl

Van Der Vaart A.W.(1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics. | Zbl