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DISCUSSION OF «SUR UNE LIMITATION 
TRÈS GÉNÉRALE DE LA DISPERSION 

DE LA MÉDIANE» BY M. FRÉCHET 

Marc G. GENTON**, Yanyuan MA™, and Emanuel PARZEN* 

This is the first time we had an opportunity to read this paper by M. Préchet 
and we enjoyed doing that very much. In brief, M. Préchet demonstrates that 
measured with the classical sample variance estimator, the variability of the 
sample mean is smaller than the variability of the sample médian in fairly 
gênerai classes of distributions for the sample. However, he points out the 
fact that measured with other variability estimators, for instance such as the 
semi interquartile range, this order may reverse. M. Préchet then présents an 
ingenious experiment that illustrâtes this fact. 

Our discussion is centered around three main thèmes. The first thème concen­
trâtes on the définition of quantiles for discrète random variables and samples 
with ties. The second thème is devoted to the analysis of M. Fréchet's exper­
iment through computer simulations. The third thème is concerned with the 
exact distribution of the médian and the semi interquartile range for correlated 
samples, possibly from heavy-tailed distributions. 

1. Sample quantiles for discrète random variables 
and samples with ties 

Following Parzen (2004), we introduce various concepts defining the sample 
versions of the probability distribution function F(x) = P(X ^ x) and the 
quantile function Q(u) = F~l(u), 0 ^ u < 1, of a random variable X. 
We define the probability mass function p(x) = P(X = x), the probability 
density function f(x) = F'{x), and the mid-distribution function Fmxd(x) = 
F(x) — 0.5p(x). Note when the random variable X is continuous, p(x) = 0 
and thus Fmid(x) = F(x). The mid-distribution plays a crucial rôle in defining 
sample quantiles for samples with ties as shown below. 

The sample distribution function of a sample X\,..., Xn is defined as F(x) = 

P(X ^ x) = — XlILi I(Xi ^ x) where /(•) dénotes the indicator function. 

* Department of Econometrics, University of Geneva, Bd du Pont-d'Arve 40, CH-1211 
Geneva 4, Switzerland. E-mail : Marc.Genton@metri.unige.ch 

t Group of Statistics, University of Neuchâtel, Pierre à Mazel 7, CH-2000 Neuchâtel, 
Switzerland. 

* Department of Statistics, Texas A&M University, Collège Station, TX 77843-3143, 
USA. E-mail : {genton, ma, eparzen}@stat.tamu.edu 

Journal de la Société Française de Statistique, tome 147, n° 2, 2006 

mailto:Marc.Genton@metri.unige.ch
http://at.tamu.edu


DISCUSSION 

Consequently, the sample quantile function, denoted by Q(u) = F - 1 (^), 
is defined to be a piecewise constant function such that Q(u) = Xj:n for 
(j — l ) / n < u ^ j/n, where X\:n ^ . . . ^ Xn:n are the order statistics of 
the sample. Similarly, we define the sample probability mass function p(x) = 
P(X = x) and the sample mid-distribution function Fmid(x) = F(x)—0.5p(x). 

The sample médian Q(0.5), based on the sample quantile function defined 
above, unfortunately does not agrée with the usual définition : X m +i : n if 
n = 2ra + 1 and 0.b(Xm:n + Xm+i : n ) if n = 2m. This motivâtes the définition 
of the continuous sample quantile function QQ(u) as being piecewise linear 
and Connecting the values Qc((j — 0.5)/n) = Xj:n for samples with distinct 
values, i.e. 

Qc(u) = (0.5 - nu + j)Xj:n + (0.5 + nu - j )X , + 1 : n , (1) 

for (j — 0.5)/n < u ^ (j + 0.5)/n. It can be verified that this définition 
agrées with the usual définition of the sample médian, whereas many computer 
programs use ad hoc sample quantile définitions that do not. 

The extension of thèse concepts to samples with ties is based on the mid-
distribution function. Dénote the distinct values in the sample by x i , . . . , ¾ . 
Then, the continuous sample quantile function Qc(u) for samples with ties is 
defined as being piecewise linear and Connecting the values Qc(Fmid(xj)) = 
Xj, which can be viewed as a définition of fractional order statistics. Although 
it is a bit tedious to write down the analytic form of Qc, the concept is very 
simple to grasp. As an illustrative example, consider a sample of size n = 5 
of binary data 0,1,1,1,1. The usual définition yields a sample médian of 1. 
However, the previous définition for samples with ties yields a sample médian 
of 4/5, which is also the empirical proportion of l's, that is, p(l). This answer 
appears to be much more natural. 

In his experiment, M. Fréchet uses neither the continuous sample quantile 
function Qc(u) defined above, nor the définition for samples with ties. Never-
theless, the samples he considered do involve ties. For example on p. 76, M. 
Fréchet reports the sample médians of eight différent séries as being 3, 2, 1,-1, 
0, —3, 0, 1. Based on the définition above for samples with ties, we find instead 
the sample médian values to be 2.6,2,1, -0.25,0.5, -3.25,1/3,7/6. Table 1 de-
scribes the steps associated with the computation of the sample médian of the 
first séries reported by M. Fréchet. A linear interpolation between (2, 9/24) 
and (3, 14/24) yields a sample médian of 2.6. 

The semi interquartile range used by M. Fréchet as a measure of variability 
is half the différence between the upper sample quartile and the lower sample 
quartile, i.e., (Q(0.75) — Q(0.25))/2. Obviously, the computation of the semi 
interquartile range is also influenced by ties in the sample and will yield 
différent results from the traditional définition of the semi interquartile range. 
For example, treating ±a as spécifie observations, the lower sample quartiles 
of the eight séries are - 2 , -1.25, - 7 / 3 , - 3 , -2 .5 , - ( a + 4)/2, -2 .5 , - 2 / 3 and 
the upper sample quartiles are 3.8,3.5,2.8, (9+a)/4,3.5,1,3-f a/4,2.2. Hence, 
the semi interquartile ranges are 2.9,2.38,77/30, (21 + a ) /8 ,3 , {a + 6)/4, (22 + 
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TABLE 1. — Computation of the sample médian of the first séries. 

X 

Séries 1 

F(x) 

p(x) 

Fmïd(x) 

-a - 4 - 3 - 2 - 1 +1 +2 +3 +4 + a 

9 10 
12 12 12 12 12 12 12 12 

12 12 0 i n i- A i_ A 
12 u 12 12 12 12 

6 8 9 14 19 22 
24 24 24 24 24 24 24 24 24 

a)/8,43/30. We return to the effect of neglecting ties in sample quantile 
computations on M. Fréchet's experiment in the next section. 

2. M. Fréchet's experiment in the computer âge 

The experiment described by M. Fréchet is based on samples of size n = 12 
and 8 replicates which allowed him to perform computations "by hand". We 
take advantage of modem computational capabilities provided by computers 
to reanalyze and extend M. Fréchet's experiment with larger sample sizes 
and 500 simulation replicates. Throughout we used the statistical software R 
for our implementation, noting that sample quantiles for samples with ties 
are not part of the software and needed to be specifically programmed for 
implementation. 

First, we investigate the différence between the use of the classical médian and 
the médian for ties in M. Fréchet's experiment. Figure 1 depicts histograms 
of the médian of samples from the discrète uniform distribution used by M. 
Fréchet, with a = 5 and sizes n = 12 (original experiment ; top panels) and 
n = 200 (bottom panels). The left panels use the classical sample médian 
whereas the right panels use the sample médian for ties. When n = 12, the 
samples do not hâve many ties, so the différence between the two médian 
estimators is hardly noticeable. However, when n = 200, the samples hâve 
many ties and the différence becomes very obvious. The classical médian often 
takes the values —1 or +1 , and is occasionally 0. Intuitively, the reason is the 
following. The définition of médian used by M. Fréchet, in the présence of 
ties, is équivalent to the following procédure : 1) draw observations to form a 
sample ; 2) perturb the observations with the same tied value by adding small 
différent noises, for example, 1, 1, 1, 1, will be perturbed to 1, 1 + e, 1 H- 2e, 
1 + 3e, for sufficiently small e (say e = l/(4n), note that one observation 
of each set of ties should be left unperturbed) ; 3) calculate the médian of 
the perturbed sample, which does not contain any ties; 4) "unperturb" the 
resulting médian. For large sample size (in our case, n = 200), it is very likely 
that each possible tied value will hâve approximately the same number of 
observations in the sample, hence the médian will almost always be among 
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— 1,0 and + 1 . Only when exactly n/2 observations in the sample are positive, 
the sample médian will be 0. Otherwise, the sample médian is typically —1 
or +1 . Hence, the fundamental reason that the classical sample médian does 
not treat ties correctly is that it does not really recognize ties. Indeed, it 
essentially considers tied observations as différent observations that happen to 
be extremely close. On the contrary, the médian for ties recognizes the spécial 
meaning of ties, by reporting the proportion of certain tied observations in a 
sample. Moreover, unlike the classical médian, the asymptotic distribution of 
the sample médian for ties seems to be of normal type. We hâve not found a 
formai proof of the asymptotic normality of the sample médian for ties in the 
literature, but of course it is closely linked to the case of continuous variables. 
Indeed, it is well-known that if X\,..., Xn is a random sample, independently 
and identically distributed according to a distribution F(x) with continuous 
density f(x), mean /x, finite variance cr2, and such that f(Q(p)) > 0, then 

MQ(p) - Q(p)) -> tf(o,p(i -P)/f(Q(p))2), (2) 

in distribution when n —• oo. We conjecture a similar resuit holds for discrète 
distributions, such as the one used by M. Fréchet in his experiment, as long 
as the quantiles defined for samples with ties are adopted. A rigorous proof is 
beyond the scope of this discussion though. 

Next, we extend the previous simulations by letting a vary from 5 to 60, thus 
creating heavier tails in the discrète uniform distribution. We are interested 
in studying the relation between a and the dispersion réduction studied by 
M. Fréchet, y/nSon/Sx- We experiment with three différent descriptions for 
the location of the data, i.e. we let Dn be the sample mean, the classical 
sample médian and the sample médian for ties, respectively. In terms of the 
dispersion measure, we experiment with two différent criteria, where S is 
sample standard déviation and sample semi interquartile range, respectively. 
Note that there are two différent approaches in forming the semi interquartile 
range, resulting from two différent ways of calculating the lower and upper 
quartiles. In our experiment, we form the semi interquartile range using 
classical quartile calculations when Dn is sample mean and classical médian, 
while using sample quartile with ties when Dn is the sample médian with ties. 
The resuit of thèse experiments is presented in the top panels of Figure 2. 

Agreeing with M. Fréchet's conclusion, the dispersion réduction of the sample 
mean based on the semi interquartile range is unbounded in a, whereas ail 
other dispersion réductions are bounded. We can specifically calculate that 
under sample standard déviation, the dispersion réduction is 1 for the sample 
mean and is \fnj'y/6 + a 2 / 5 for the classical médian. Similarly, under the 
classical semi interquartile range, the dispersion réduction is 0.1927^6 + a 2 / 5 
for the sample mean and y/n/3.5 for the classical sample médian. Spécifie 
calculations for the sample médian with ties are not available at this moment 
since the asymptotic behavior for sample quantiles with ties has not been 
established rigorously. Note that the dispersion réduction of the médians based 
on the standard déviation tends to zéro as a —* +oo. This is an indication of 
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Classical médian: n = 12 Médian for ties: n s 12 
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FlG 1. — Simulations of M. Fréchet's experiment based on 500 replicates with sample 
size n = 12 (original experiment; top panels) and n = 200 (bottom panels) : 
histograms comparing the classical sample médian (left panels) and the sample 
médian for ties (right panels). 

the robustness of the médian compared to the sample mean when a —> +oo, 
that is, when the tails of the distribution of the sample become heavier. 

We are also interested in the performance of the dispersion réduction when 
the sample size increases. In the bottom panels of Figure 2, we présent the 
dispersion réduction for différent sample sizes, with a = 5 fixed. We can see 
that, contrary to the conclusion of M. Préchet, the dispersion réduction for 
the classical sample médian increases as n increases, under both the sample 
standard déviation measure and the sample semi interquartile range measure. 
In fact, from our calculation in the previous paragraph, it can be easily verified 
that they increase as a function h(n) = Cy/n for c = 0.3015 and c = 0.2857, 
respectively. Only when the sample médian with ties is implemented, will 
the dispersion réductions be bounded asymptotically. On the other hand, the 
dispersion réductions for the sample mean remain approximately at 1 under 
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Standard déviation Semi Interquartile Range 

Standard déviation Semi interquartile Range 

FlG 2. — Simulation analysis of the dispersion réduction as a function of a (top 
panels) and a function of n (bottom panels). In the left panels, the dispersion 
réduction is measured with sample standard déviation, in the right panels, it is 
measured with sample semi interquartile range. Experiment with sample mean 
(dotted Unes), classical sample médian (dashed Unes) and sample médian for ties 
(solid Unes) are presented. Ail results are based on 500 replicates. In the top panels, 
n = 200, in the bottom panels, a. = 5. 

the sample s tandard déviation measure and at 0.6391 under the sample semi 
interquartile range measure. 
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3. Exact distribution of the médian and semi interquartile 
range 

The sample médian and semi interquartile range described by M. Préchet are 
spécial linear combinations of order statistics, also called L-statistics, and their 
exact distribution is known in case of independent and identically distributed 
random variables. Recently, Arellano-Valle and Genton (2006a,b) hâve shown 
that the exact distribution of L-statistics from absolutely continuous dépen­
dent random variables is closely related to the so-called fundamental skew 
distributions introduced by Arellano-Valle and Genton (2005). Specifically, 

let X = ( Y | Z ^ 0), where Y G Rn is a random vector with probability density 
function / y , Z e Rm is a random vector, and the notation Z ^ 0 is meant 
component-wise. Then, following Arellano-Valle and Genton (2005), X has an 
n-dimensional fundamental skew (FUS) distribution with probability density 
function given by : 

/x (x) = K - V Y ( x ) Q m ( x ) , x G f , (3) 

where Qm(x) = P(Z ^ 0|Y = x) and Km = E(Qm(Y)) = P(Z ^ 0) is a 
normalizing constant. When / Y is a symmetric probability density function 
(i.e. /y(—y) = /Y(y) for ail y G Mn), (3) defines the fundamental skew-
symmetric (FUSS) class of distributions. Because we consider Y conditionally 
on Z ^ 0, this sélection mechanism induces skewness in the probability density 
function / x through the term Qm. Arellano-Valle, Branco, and Genton (2006) 
présent a unified view on skewed distributions resuiting from sélections. The 
book edited by Genton (2004) describes further properties and applications 
of thèse distributions. 

We briefly investigate the change of shape of the exact distribution of the 
sample médian and semi interquartile range as a function of the corrélation 
between the observations and the heaviness of the tails of the original data. 
For simplicity, we focus on the case of exchangeable absolutely continuous 
random variables, that is, the corrélation between any two observations is 
the same p G [0,1), although gênerai dependence structures can be handled 
as well. Let X = (Xu... ,Xn)

T ~ ECn(pln,a
2(l - p)fîn,y>), M G R, 

a > 0, be an exchangeable elliptically contoured absolutely continuous random 
vector with Q,n = In + ^ - ^ — l n l ^ and characteristic generator ip. The 

probability density function of X is denoted by / n (x ; / i l n , cr2(l - p)f£n, h^) 
with density generator h^n\ and its cumulative distribution function by 
Fn(x;/ i ln ,<j2(l - p)Qn,<p), for x G Rn. Dénote by X ( n ) = (Xi:n,... , X n : n ) T 

the vector of order statistics induced by X. Then Arellano-Valle and Genton 
(2006b) hâve shown that for any matrix L G Rpxn of rank p (1 ^ p ^ n), the 
probability density function /z,x(n) of LX(n) is : 

/LX (n)(y) = n!/p(y;/iLl„,<72(l - p)LQnL
T,h^)x (4) 

F n _ 1 (AL r (Lf i„L T ) - 1 u; 0, A { / n - LT(LQnL
T)-1L}AT, <pq{y)), y e 5 P , 
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where A G R( n ~ 1 ) x n is a différence matrix such that AX = (X2 -
XUX3 - X2,...,Xn - X n _ i ) T , q(y) = u ^ L f i n L 7 ) " 1 ^ with u = (y -
liLln)/(cry/l — p), and the région of support defined on W is <SP = {y = 
Lx; Ax ^ 0, x G R n } . 

The médian and semi interquartile range each correspond to the case p = 1, 
that is, univariate L-statistics of the form LX(n) = Yl7=i aiXi-.n, &i € R. By 
(4), their densities are of the form 

/LX ( B ) (W) - # ^ 1 ^ , ^ ^ ^ 1 ( ^ 0 , ^ - 1 1 , ^ , ^ 1 1 ) . y € E, 
(5) 

where r, = M E I U * , T 2 = *2(1 " P H E Ï U «i + 7(E?=i «i)2>- « = (» " *?)/r, 
a = (o 1 , . . . > a B ) T , and a , - a / { E ? = 1 «

2 + 7(E?=i « i ) 2 } 1 / 2 , with 7 = 
p / ( l — p). Moreover, those cases with Lln = Yl7=i a* = ?̂ for example such 
as the semi interquartile range, yield additional simplifications. 

As an illustration, consider an exchangeable sample of size n = 8 with a 
multivariate distribution with corrélation p = 0,0.1,. . . ,0.9 of two types : 
Normal, and Student t with 3 degrees of freedom. Then, the médian corre­
sponds to a = (0,0,0,1/2,1/2,0,0,0)T whereas the semi interquartile range 
to a = (0 , -1 /4 , -1 /4 ,0 ,0 ,1 /4 ,1 /4 ,0 ) T according to formula (1). Figures 3 
and 4 depict the exact density of the médian and semi interquartile range in 
that setting (top panel : Normal; bottom panel : Student t) based on (5). The 
bold curve is the density for p = 0. The dashed curve is the marginal density 
of the sample. 

Prom Figure 3, we note that the exact density of the médian is symmetric 
and has increasingly heavier tails when either the corrélation p increases or 
the heaviness of the tails of the sample's distribution increases. When p —• 1, 
the exact density of the médian tends to the marginal density of the sample. 

From Figure 4, we note that the exact density of the semi interquartile range 
is skewed, even more so when the heaviness of the tails of the sample's 
distribution increases. When the corrélation p increases, the spread of the 
distribution decreases. 
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Médian: Normal Exchangeable, n=8 

Médian: Student t Exchangeable, n=8 

FlG 3. — Exact density of the médian for an exchangeable sample of size n = 8 with 
a multivariate distribution with corrélation p = 0 , 0 . 1 , . . . , 0.9 : Normal (top panel) ; 
Student t with 3 degrees of freedom (bottom panel). The bold curve is the density 
for p = 0. The dashed curve is the marginal density of the sample. 
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SIQR: Normal Exchangeable, n«8 

SIQR: Student t Exchangeable, n=8 

FIG 4. — Exact density of the semi interquartile range (SIQR) for an exchangeable 
sample of size n = 8 with a multivariate distribution with corrélation p = 
0 , 0 . 1 , . . . ,0.9 : Normal (top panel) ; Student t with 3 degrees of freedom (bottom 
panel). The bold curve is the density for p = 0. The dashed curve is the marginal 
density of the sample. 
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