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ABSTRACT

Modelling pollen dispersal is essential to make predictions of cross-pollination rates
in various environmental conditions between plants of a cultivated species. An
important tool for studying this problem is the “individual pollen dispersal function”
or “kernel dispersal”. Various models for airborne pollen dispersal are developed.
These models are based on assumptions about wind directionality, gravity, settling
velocity and may integrate other biological or external parameters. Some previous
approaches have used Brownian Motions with drift for modelling pollen trajectories.
However, models for pollen transport used in aerobiology are often based on
the Lagrangian Stochastic approach: velocities of pollen grains satisfy stochastic
differential equations or Langevin equations and pollen trajectories are obtained by
integrating these velocities. New models based on this approach are introduced. A
model where the vertical component is driven by an integrated Ornstein-Uhlenbeck
process is studied here. Cross-pollination rates data were obtained from large field
experiments of maize using the colour of grains as a phenotypic marker of pollen
dispersal. We first studied the various individual dispersal functions associated with
these models. Second, a thorough statistical framework was developed in order to
estimate and compare their performances on data sets. This framework is quite
general and can be used to study many other cross-pollination data. Previous and
new models were successively analysed using this framework. This new statistical
analysis improved significantly former results which had been obtained on the
previous models with other statistical methods. The statistical analyses showed that
the performances of Lagrange Stochastic models were good, but not better than the
previous mechanistic models analysed using this new statistical framework. These
results however might be due to some specific environmental conditions in this
experiment. Comparisons with the external parameters were quite good, proving
that these models can be used in other environmental conditions. All these results
show that mechanistic models are good models for predicting short or medium range
pollen dispersal and cross-pollination rates.
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RÉSUMÉ

Il est essentiel de modéliser la dispersion du pollen pour prédire dans différentes
conditions environnementales les taux de pollinisations croisées entre plantes d’une
même espèce. Pour celà, un outil important est la notion de « fonction individuelle
de dispersion de pollen » ou « noyau de dispersion ». Pour les plantes anémophiles,
nous proposons ici plusieurs modèles de dispersion de pollen transporté par le vent.
Ces modèles reposent sur des hypothèses concernant la direction du vent, la gravité,
la « vitesse de décollement » du pollen et peuvent intégrer d’autres paramètres
externes ou biologiques. Certains modèles étudiés antérieurement décrivent le trans-
port du pollen par des mouvements browniens avec dérive. Cependant, les modèles
de transport de pollen utilisés en aérobiologie utilisent en général l’approche stochas-
tique lagrangienne, dans laquelle les vitesses sont modélisées par des équations
différentielles stochastiques ou équations de Langevin. Nous proposons de nouveaux
modèles provenant de cette approche. Les trajectoires du pollen sont obtenues en
intégrant leurs vitesses. Nous étudions en particulier un modèle où la composante
verticale est régie par un processus d’Ornstein-Uhlenbeck intégré. Nous disposons de
données de pollinisations croisées issues d’expériences en plein champ de mäıs, dans
lesquelles la couleur des grains est utilisée comme marqueur phénotypique de la dis-
persion du pollen. Nous étudions les différentes fonctions de dispersion individuelles
associées à ces modèles. Pour estimer et comparer leurs performances sur les données,
nous développons un cadre statistique approfondi, qui peut être utilisé pour étudier
la plupart des données issues de pollinisations croisées. Ceci nous permet d’analyser
successivement anciens et nouveaux modèles. Ce nouveau cadre statistique per-
met d’améliorer significativement les résultats antérieurs obtenus avec les premiers
modèles estimés avec d’autres méthodes. Les performances des modèles stochas-
tiques Lagrangiens sont généralement bonnes, mais elles ne sont pas meilleures que
celles obtenues avec les premiers modèles analysés dans le cadre statistique intro-
duit ici. Néanmoins, il se peut que ces résultats proviennent de conditions environ-
nementales particulières liées à ces données expérimentales. Les comparaisons des
paramètres estimés avec les paramètres physiques ou externes sont très satisfaisantes.
L’ensemble de ces résultats montre que les modèles mécanistes sont de bons modèles
pour prédire la dispersion du pollen à des distances courtes ou moyennes, ainsi que
les taux de pollinisations croisées.

Mots-clés: dispersion du pollen, expériences en plein champ, taux de pollinisa-
tions croisées, mäıs; pollen transporté par le vent, paramètres météorologiques,
déconvolution, statistique paramétrique, quasivraisemblance, tests d’hypothèses,
fonction de dispersion individuelle, modèles mécanistes, approche stochastique la-
grangienne, équations de Langevin, temps d’atteinte.

1. Introduction

Gene dispersal through pollen is an important determinant of genetic struc-
ture in plant population. It also affects various aspects of population biology,
genetic conservation and breeding. The development of Genetically Modified
(G. M.) crops has highlighted the need to assess the risks associated with
pollen-mediated gene flow. Quantifying pollen-mediated gene flow is indeed
vital for evaluating the environmental impact of G. M. crops. Pollen flow is
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a main cause of harvest pollution between G. M. and non G. M. fields (see
Rieger et al. 2002 for oilseedrape, Devos et al. 2005 for maize). Quantitative
estimations of gene flows are also valuable for managing escape from fields
to feral and wild populations and for recommending isolation distances that
minimize cross-pollination among fields. Another interest lies in relation with
agronomy for assessing the purity of crops and seeds.
Published data on pollen dispersal experiments show that comparison be-
tween dispersal data from different field experiments is hardly possible (Treu
and Emberlin 2000). Differences in experiment design, genotypes and environ-
mental conditions have contributed to the wide variation in reported cross-
pollination rates of gene flows. These limitations are also due to the strong
dependence on the shape and extent of both source and receptor plot (Meagher
and Vassiliadis 2003, Klein et al. 2006). One way to circumvent the depen-
dence of cross-pollination rates on spatial design is to model pollen dispersal
via an individual dispersal function (or dispersal kernel). For pollen, an in-
dividual dispersal function is defined as “the probability that a pollen grain
dispersed by a plant at point (0,0) pollinates at any point(x,y)” (Klein et al.
2003 for pollen, Clark et al. 1999 for seed dispersal). It is widely accepted
that this function depends less strongly on the spatial design than the func-
tion describing the cross-pollination rates at various distances. Consequently,
the individual dispersal function is useful for forecasting effective dispersal
under various spatial configurations.
Another domain where knowing whole dispersal functions is crucial concerns
propagation of invasive species. When modelling the space-time evolution of
continuously distributed population, several authors (Clark et al. 2001, Bolker
and Pacala 1997, Lewis 2000) have stressed that various individual dispersal
functions (with possibly identical expectation and variance) may generate
different colonization patterns. Perthame and Souganidis (2004) have actually
proved that the suitably normalized propagation of an invasive species follows
an integro-differential equation comprising the individual dispersal function
γ(x, y),

∂

∂t
u(t, x, y) = αu +

∫
R2

γ(x− x′, y − y′)u(t, x′, y′)dx′dy′ + f(t, x, y, u) .

Function u(t;x, y) denotes the population density at time t in location (x, y),
parameter α > 1 is the growing rate and f is a regular function modelling
competition and local phenomena. This is an alternate model to reaction-
diffusion equations which only take into account the γ(., .) mean and variance
(see e.g. Weinberger 1978).
Studies of pollen-mediated gene flow have therefore received much attention in
recent decades (see Ellstrand 1992 followed by many others). Several methods
have been developed to study this individual dispersal function. In some
experiments, this function can be directly observed and data consist of noisy
observations of the individual dispersal function. This is accurate for studies
that focus on the physical dispersal of pollen grains and use pollen traps to
observe a pollen density at various distances from a source (Bateman 1947,
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McCartney and Lacey 1991). This is also true when paternity analysis is used
to measure the “effective pollen dispersal” in plant populations (Adams et al.
1992). This method is based on genetic markers and relies on an exhaustive
sampling of the males in the vicinity of the sampled females. This method is
powerful but often requires a laborious approach so that it is mostly used
for studying pollen from trees (Oddou-Muratorio et al. 2005) or for long
distance dispersal of oilseedrape (Devaux et al. 2005 where paternity analysis
uses fields as potential parents). In order to cope with the experimental
effort required by paternity analysis, an alternate approach based on two-
generation analyses, the TWOGENER analysis, attempts at estimating the
extent of pollen movement based on the genetic differentiation among the
inferred pollen pools of females samples (Smouse et al. 2001). The respective
properties of these two approaches to estimate pollen-mediated gene flows in
plant populations are investigated in Burczyk and Koralewski (2005).
Unfortunately, direct observations of individual dispersal functions are im-
practicable for cultivated species such as oilseed rape, maize, sugar beet or
wheat. Data consist of cross-pollination rates between fields. In many disper-
sal studies, pollen dispersal is actually quantified on the basis of the presence
of a genetic marker in the progeny of sampled plants. A patch of plants ho-
mozygous for a monogenic dominant marker is used as pollen source inside a
large patch containing plants homozygous for the recessive allele. Therefore,
efficient pollen dispersal is observed whenever the offspring of a sampled plant
contains pollination from the marked source (Bateman 1947, Lavigne et al.
1998, Nurminiemi et al. 1998). The estimation of dispersal functions does no
longer require fitting functions to the observed cross-pollination rates data. In
these dispersal experiments, two functions are really involved, the backward
and the forward pollination functions. The backward dispersal function is “the
proportion of ovules in recipient plants at a given distance that are fertilized
by the source plant”, while the forward dispersal function is “the proportion of
the source plant pollen that fertilizes ovules at a given distance” (Latta et al.
1996). The backward dispersal function describes the pollen cloud composi-
tion above a plant and is directly observed from the experiment. The forward
dispersal function (called “individual dispersal function” above) is not di-
rectly observable since it is impossible to track all the pollen emitted by one
plant. Estimating the individual dispersal function hence requires further sta-
tistical analyses since retrieving the individual dispersal function from data
actually amounts to a non-linear deconvolution problem. Linear deconvolu-
tion problems have been largely studied especially in signal or image analysis
and many solutions to this problem are available. Non-parametric inference
for linear deconvolution has also recently been investigated. A first natural
approach for studying pollen dispersal would be a non-parametric approach.
However taking pollen competition into account introduces a non-linearity in
the deconvolution. To our knowledge, non-parametric inference for non-linear
deconvolution problems is a difficult problem which has not been investigated.
This is a new difficulty that precludes non-parametric methods. As in Tufto
et al. (1997), Lavigne et al. (1998) and Klein et al. (2003), we consider in this
paper parametric approaches for studying pollen dispersal.

80



INFERENCE FOR POLLEN DISPERSAL

Models for dispersal functions of wind dispersed particles can roughly be clas-
sified in two families (McCartney and Fitt 1985). Originally are the descriptive
or empirical parametric families. They have been chosen for their mathemat-
ical simplicity and are used to fit the experimental data. Various parametric
families depending on the distance from the source have been studied, such as
rbe−rα

(Austerlitz et al. 2004, Klein et al. 2006) and variants (Tufto et al. 1997
for the bivariate Normal and Weibull distributions). These models allow for
investigating how various factors influence the observed cross-pollination rates
(spatial design, respective source and recipient field dimensions, tail shape of
the individual dispersal function). One weakness of these models is the auto-
matic linking between short and large range behaviour of dispersal functions.
In addition, these models are rather descriptive and do not give much insight
into how underlying biologically important mechanisms may influence the
dispersal amount. These models are also unsuitable for including any phys-
ical determinants of the species or any knowledge about the environmental
conditions. Finally, effective dispersal depends on many interacting biological
and physical phenomena that empirical models are unable to catch. There-
fore, predictions using these functions in other situations are debatable. To
circumvent this problem, mechanistic models can be used. They are derived
from models used in micrometeorology and can include some characteristics
of pollen dispersed by wind such as gravity, wind directionality, vegetation
density, wind threshold, heterogeneity in fecundity and mating success. They
can also be used for pollen dispersed both by wind and insects (Cresswell et
al. 2005 for oilseedrape). They are built on the scale of a pollen grain by mod-
elling the air flow in which particles are dispersed and the conditions of their
emission, transport and deposition. These models involve parameters having
a physical or biological interpretation, but they often lead to intricate math-
ematical expressions with numerous parameters and computationally heavy
numerical solutions. A review paper (Aylor et al. 2003) integrates in an aerobi-
ological framework all these factors, including pollen transport and successful
pollination. Formulation for the transport function differs according to the
approaches. One is based on a Gaussian Plume model (Seinfeld and Pandis
1998), another one on a Lagrangian Stochastic model (L. S.). A variant of the
L. S. model is the localized-near-field model (Raupach 1989). It is based on
the physical processes in the canopy and has been used in Loos et al. (2003)
for studying two spatially explicit models of maize dispersal. It is generally ac-
cepted that the Lagrangian Stochastic is more appropriate than the Gaussian
Plume model since it better describes short and medium range behaviour of
pollen dispersal (Aylor et al. 2003). One explanation might be that only the
Lagrangian Stochastic model allows for vertical stochasticity in the trajectory.
Involving many parameters often difficult to measure in natural conditions is
actually a main drawback of the L. S. approach. In addition, these models have
been designed to achieve predictions of dispersal patterns based on measures
of physical parameters and not to fit dispersal data.
An intermediate approach has been proposed in Tufto et al. (1997), and
extended in Klein et al. (2003). Only the few major phenomena that account
for the dispersal pattern are considered. This allows for building models

81



INFERENCE FOR POLLEN DISPERSAL

simple enough to be fitted to experimental data, but sophisticated enough to
contain parameters having a physical meaning. Models in Tufto et al. (1997)
introduce a wind threshold for emission, models in Klein et al. (2003) include
the height difference between male and female flowers, mean wind intensity
and turbulence. Various pollinations times are also investigated. In Klein et
al. (2003), the fitted model performed reasonably well. Using exponential
pollination time was proved to be quite inaccurate in this case, so that other
models for pollination times had rather been used. However, the estimated
values of the parameters that possessed a physical meaning such as wind
intensity were not satisfactory.
Lagrangian Stochastic models are based on the Langevin model (see e.g.
Rodean 1996). Velocities of a particle are assumed to satisfy a three-
dimensional stochastic diffusion process. The drift and diffusion coefficients
are called the Langevin coefficients and are linked to the horizontal and ver-
tical accelerations in a fluid element. Integrating these velocities yields pollen
trajectories. An additional term in the vertical component models the set-
tling velocity of pollen grains. In Tufto et al. (1997) and Klein et al. (2003), a
three-dimensional Brownian motion with drift models paths of pollen grains,
which is similar to the Gaussian Plume approaches. Lagrangian Stochastic
approaches are studied here. Models for pollen trajectories are based on the
Langevin equations and a parameter for the settling velocity is added. Mod-
els for pollination times already introduced in Klein et al. (2003) are kept.
A thorough statistical framework is developed in order to estimate and com-
pare the various individual dispersal functions obtained using these different
mechanistic models. For this, we reconsider data from a maize pollen dispersal
experiment presented in Klein et al. (2003). In this experiment, dispersal of a
dominant phenotypic marker (blue colored grains) from a patch of plants lo-
cated at the center of a field of unmarked plants (yellow grains) was monitored.
Maize had been chosen as a crop because it is a wind-pollinated outcrossing
species and the first transgenic crop species cultivated in Europe. This work
is an attempt to introduce environmental conditions in the individual disper-
sal functions in order to improve the prediction of effective dispersal under
various conditions. Since several parameters present in these functions have
a physical meaning, these dispersal functions can be used to predict effective
dispersal under various spatial designs and other environmental conditions.
This paper is organized as follows. Section 2 describes the experimental
conditions, the dispersal data and the meteorological data. The statistical
framework and parametric inference are detailed in Section 3. New models are
built in Section 4. Estimation results for the different models are compared in
Section 5. The last section contains the discussion concerning the statistical
methodology and the mechanistic models.
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2. Experimentation

This experiment has been described in Klein et al. (2003).

2.1. Maize production for grain

The experimentation was performed during Summer 1998 near Montargis
(France). A maize field measuring 120 × 120 m was sown in a production
design: 160 rows 0.8 m apart each containing 800 plants 0.15 m apart. A central
plot measuring 20 × 20 m was sown with plants producing blue coloured seeds
and the rest of the field contained yellow maize of the hybrid variety Adonis.
The blue maize was a variety close to Adonis, homozygous for the “blue”
allele. The blue colour is coded by the anthocyanin complex, which behaves
as a monogenic dominant marker. All plants are homozygous at the loci coding
for the seed colour. Checks in the field and on control crosses did not reveal
any systematic difference in pollen production and pollen efficiency between
plants producing blue or yellow seeds.
The pollen dispersal began on July 18. Both blue and yellow plants flowered
almost synchronously: blue maize began blooming on July 19 (male) and July
20 (female). Dispersal lasted 14 days and ended on August 1. The ears were
harvested and analysed on 16 October. A total of K = 3063 ears were sampled
on a rectangular grid. An amount of 101 rows were sampled (every row for the
72 rows centered on the central plot and every third row elsewhere) and 31
ears on each row (every 4 meters). Sixty-four ears could not be sampled in the
West corner of the field. The number of blue grains (nk) on each sampled ear
was then determined. The total number N of grains per ear was considered
constant and estimated by counting the total number of grains on 34 randomly
chosen ears (mean 394 and standard deviation 65). The proportion of marked
pollen grains in the pollen cloud at each sampled plant k was estimated by
dividing the number nk of blue grains by the mean number N of grains per
ear.

2.2. Meteorological data

We used data for wind direction and intensity collected 10 m high at 3
hours intervals by Meteo France. The meteorological station nearest to the
experiment was 70 km West of the field (Orléans). A correction based on
a logarithmic model of wind profile (McCartney and Lacey 1991) was used
to compute the wind speed at 2 m high (height of maize plants). We then
calculated the mean wind speed over the pollination period from wind data
between 8 a.m. and 7 p.m., hours during which pollination occurs. In 1999, we
placed a meteorological station inside a maize field at the grain production
station. This station measured wind speed at a 2 m height. A comparison
between data from Meteo France (70 km West of the field) and the local
data showed little difference over the 15 days period of dispersal, except for a
difference in wind speed due to differences in heights of measures which was
well corrected with the logarithmic expression.
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FIG 1. — Experiment in Montargis: 120 × 120 m yellow maize field sown with

yellow maize except for the 20 × 20 m central plot sown with blue maize. Observed

proportions of blue grains on the 3063 sampled ears (higher densities are brighter).

3. Statistical framework and parametric inference

3.1. Statistical model

In the dispersal experiment, a patch of plants homozygous for a dominant
marker (blue-coloured grains) is grown in a field of plants homozygous for the
absence of marker (yellow-coloured grains). The backward dispersal function
µ(x, y) is defined as the proportion of pollen from the marked source in the
pollen cloud at point (x, y). It is the result of the individual dispersal of pollen
grains from all the plants, both marked and non-marked. The data consist
of the K counts of blue grains on the ears located at all sampling points
(xk, yk). They are noisy observations of the backward dispersal function.
Hence, using this function is more intuitive and most used in biology. We
assume that (a) all plants in the field disperse their pollen according to the
same dispersal function, (b) both plant types produce the same amount of
pollen, (c) both pollens are equally efficient. These assumptions are quite
reasonable for this experiment, but there exist situations where they are no
longer verified: presence of a discontinuity in the experimental set-up for (a);
cross-pollination between G. M. plants and non G. M. ones or heterogeneity
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in fecundity for (b); lag in the flowering time between source and recipient
plants or heterogeneity in mating success for (c).
Since pollen production in maize is prolific, pollination occurs on a plant at
(x, y) according to the pollen cloud composition above it. Let B (resp. A)
denote the set of indexes corresponding to blue (resp. yellow) plants and let
{(xk, yk), k ∈ K} be the positions of these plants in the field. The following
equation links the backward dispersal µ(x, y) and the individal (or forward)
dispersal function γ(x, y),

µ(x, y) =
Σk∈Bγ(x− xk, y − yk)

Σk∈Aγ(x− xk, y − yk) + Σk∈Bγ(x− xk, y − yk)
(1)

The total number of grains on each ear is assumed constant equal to N .
Denote by Nk the random variable describing the number of blue grains
on an ear located at (xk, yk), and nk its realization. The K random vari-
ables Nk are noisy observations of (µ(xk, yk), k ∈ K). A first natural as-
sumption for the (Nk, k ∈ {1, . . . ,K}) is thus the Binomial assumption:
Nk ∼ Bin(N,µ(xk, yk)). Using now that pollen is overabundant, pollination
at (xk, yk) does not depend on pollination at neighbouring locations. Hence,
the random variables (Nk) can be assumed independent and the expression
for the likelihood is,

L(γ(., .);n1, ..., nK) =
K∏

k=1

Cnk

N µ(xk, yk)nk(1 − µ(xk, yk))N−nk . (2)

Recovering γ(x, y) from the observations (nk, k ∈ K) is a non-linear decon-
volution problem which is difficult to solve in a non-parametric statistical
framework. Therefore, we propose to use parametric families for modelling
individual dispersal functions (γθ(x, y), θ ∈ Θ, (x, y) ∈ R

2). This leads to
associated parametric families for µ, µθ(x, y). One possibility is to introduce
parameters via the descriptive or empirical families described in the intro-
duction. Another possibility is to derive parametric families from mechanistic
approaches (Section 4).

3.2. Quasilikelihood methods and parametric Inference

Statistical estimation was performed in Klein et al. (2003) using either least
square methods or the likelihood (2) associated with the Binomial model.
Studying the residuals of the statistical analysis suggests that the Binomial
model is too specific a model. Many reasons can explain this. First, it is an
approximate statistical model and the Binomial likelihood is not sufficiently
robust to deviations from this model. Second, eventual correlations between
genotypes on an ear are ignored by the Binomial model. Third, data only
consisted of the number of blue grains instead of the joint observation (number
of blue grains, total number of grains) on the ears. We just assumed that all
the ears possessed the same total number N of grains. At last, presence of
unidentified covariates might be important. For all these reasons, we prefer to
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use here the framework of quasilikelihood methods, where the precise form of
the Nk distribution can be relaxed. Let us set

Nk = N µθ(xk, yk) + εk , k ∈ K . (3)

We just assume now that the random variables (εk) are independent and
satisfy

E(εk) = 0 ; Var(εk) = N σ2 vθ(xk, yk), (4)

with σ2 = (1 + d(N − 1)) and vθ(xk, yk) = v(µθ(xk, yk)). (5)

Parameter d is an overdispersion parameter (Collet 1991), which partly takes
into account correlation between genotypes at (xk, yk); v(., .) is a function
depending on (xk, yk) via µ(.). Note that this model includes the Binomial
model setting d = 0 and v(µ) = µ(1 − µ).

Remark. — Considering a prescribed number N of grains on each ear might
have biased the analysis. We could have built a model taking into acccount
these variations which are not negligible (see Section 2.1). We chose not to
model this since these numbers will be observed in future experiments.

Assume that parameter θ has dimension p. The p quasilikelihood equations
associated with the statistical model defined in (3), (4), (5) are

Ui(θ;n1, n2, . . . , nK) =
K∑

k=1

∂µ

∂θi
(θ;xk, yk)

nk −Nµθ(xk, yk)

v(µθ(xk, yk))
, i = 1, . . . , p.

(6)
Heuristically, quasilikelihood equations stand for the score functions ∂LogL

∂θi
obtained when maximizing the loglikelihood. Usually, an overdispersion pa-
rameter is added and function v(.) is the one associated with the Binomial
model. However, modelling the variance of the (εk) in such a way has a draw-
back here because nk/N is less than 0.2 for almost all the observations. As
a consequence, the quasilikelihood equations (6) do not penalize as expected.
This led us to propose another form for Var(εk), which results in adding a
new parameter b for modelling v(.)

v(xk, yk) = v(b;µθ(xk, yk)). (7)

The associated quasilikelihood equation is

Up+1(θ, b) =
K∑

k=1

∂v

∂b
(b;µθ(xk, yk))

(nk −Nµθ(xk, yk))2 −Nσ2v(b;µθ(xk, yk))

v2(b;µθ(xk, yk))
.

(8)
The p quasilikelihood equations are obtained substituting v(µθ(x, y)) by
v(b;µθ(x, y) and Ui(θ;n1, . . . , nK) by Ui(θ, b;n1, . . . , nK) in (6). The esti-
mators (θ̂K , b̂K) are solutions of the (p + 1) equations,

Ui(θ, b;n1, . . . , nK) = 0 , i = 1, . . . , p + 1. (9)
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The estimator σ̂2
K is defined using the residual variance. Various forms for

v have been tested. We obtained that setting v(b, µ) = b + µ was a good
compromise: slope at 0 is kept and too much weight is not assigned to almost
null observations, which is consistent with the data. The asymptotic properties
of quasilikelihood estimators are well known (McCullagh and Nelder 1989,
Huet et al. 1996). They are consistent and asymptotically normal at the usual
rate

√
K.

Details for this section are given in Grimaud (2005).

4. Building new models

Successful pollination depends on various elements: rate of production and
release of pollen grains, atmospheric transport, losses of pollen in the air due
to deposition, survival of pollen during the flight, deposition and competition
on receptive silks and fertilization. Each stage can be described with varying
detail. In order to provide a framework for evaluating current data and posing
additional questions, models are necessarily built using many simplified and
idealized assumptions.
A two-step modelling approach is used here. A first model describes the trans-
port of pollen grains and a second one pollination times. A common frame-
work is taken in order to hang together transport and effective pollination of
pollen grains. Trajectories of pollen grains (Pt = (Xt, Yt, Zt), t � 0) are ran-
dom paths, and successful pollination times TF are random times such that
TF and (Xt, Yt) are independent. Within this framework, the random vari-
able (XTF

, YTF
) possesses a density on R

2, so that we can give the following
definition for the individual dispersal function γ(x, y).

DEFINITION 1. — The individual dispersal function γ(x, y) is the joint proba-
bility density on R

2 of the random variable (XTF
, YTF

).

Similar ways of defining γ(x, y) have been used in Tufto et al. (1997) with
exponential pollination times and Klein et al. (2003) with other pollination
times.

4.1. Modelling transport of pollen grains

Dispersal behaviour of small particles such as pollen grains has been studied
for many decades, and models with various degrees of complexity have been
developed (McCartney et al. 1991, Squire et al. 1997). According to Aylor
et al. (2003), improved aerobiological models are needed for getting a better
understanding of wind-pollinated species such as maize. In micrometeorology,
pollen trajectories are often obtained using the Lagrangian Stochastic ap-
proach, which can incorporate the relevant physical characteristics of pollen.
This study intends to take better into account the physical characteristics of
maize pollen together with the environmental conditions, in order to improve
predictions of effective dispersal under various conditions.
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4.1.1. Previous models

The simplest stochastic model for modelling trajectories (Pt) of pollen grains
is a three-dimensional Brownian Motion with drift,

Model 1 


dXt = fxdt + τdB1
t , X0 = 0 ,

dYt = fydt + τdB2
t , Y0 = 0 ,

dZt = fzdt + τzdB
3
t , Z0 = 0 .

(10)

The three Brownian motions (Bi
t) related to each coordinate are assumed

independent; the expressions dXt, dYt and dZt are the infinitesimal displace-
ments during time dt; fx and fy are horizontal drift parameters and model
horizontal mean wind velocities and fz is the negative vertical drift due to
gravity. Parameters τ and τz are the diffusion coefficients related to horizon-
tal and vertical atmospheric turbulence. The terms dBi

t describe infinitesimal
random pertubations affecting the trajectory during dt. These models have
been investigated in Tufto et al. (1997) and Klein et al. (2003) coupled with
pollination times. This approach for pollen trajectories is actually close to the
Gaussian Plume model since (Xt, Yt) has the same marginal distribution.

4.1.2 Lagrangian Stochastic models

Aylor et al. (2003) proposed to use Lagrangian Stochastic models for wind
dispersed pollen trajectories. It relies on two Langevin equations used to
increment the wind and vertical air velocities (U, V ) surrounding a pollen
grain. These velocity increments are integrated to yield particle displacements
in the along wind direction (X) and the vertical direction (Z) over a time step
dt. Each segment of the trajectory is affected by a deterministic part and a
random part of the local fluid flow field. Let a(U) (resp. ã(W )) denote the
horizontal (resp. vertical) acceleration of the fluid element, then{

dUt = a(t, Ut)dt + b(t, Ut)dB1
t

dWt = ã(t,Wt)dt + b̃(t,Wt)dB2
t .

(11)

Integrating the velocities Ut and Wt yields the positions Xt along the wind
direction and Zt along the vertical direction,


Xt =

∫ t

0

Us ds ,

Zt =
∫ t

0

(Ws − vS) ds .

(12)

The Langevin coefficients a(.), b(.), ã(.), b̃(.) depend on time t and on the
velocities at time t, Ut and Wt. Thus, (Ut) and (Wt) are two independent
diffusion processes with drift coefficient a(.) (resp. ã(.)) and diffusion coef-
ficient b(.) (resp. b̃(.)). The vertical diffusion (Wt) is assumed centered (i.e.
∀t, E(Wt) = 0) and the additional term vS in the definition of Zt is the
settling velocity of pollen grains in still air. The order of magnitude of vS is
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0.2 − 0.3 ms−1. In this set-up, trajectories (Pt) are integrated diffusion pro-
cesses. Let us stress that dispersal is described in these models according to
one direction (the dominant wind direction) since Ut is one dimensional. We
study below a model which derives from the Langevin equations but uses a
two-dimensional approach for the horizontal components.
Model 2: Model 1 is modified by means of a more precise description of its
vertical component using the Langevin equation. The vertical position Zt is
obtained as an integrated Ornstein-Uhlenbeck process.

 Zt =
∫ t

0

Ws ds

dWt = (dz − βWt)dt + η dB3
t ,

(13)

while {
dXt = fxdt + τdB1

t , X0 = 0 ,
dYt = fydt + τdB2

t , Y0 = 0 .
(14)

Here β > 0, η > 0 and dz < 0. The vertical stochasticity of the trajectory is
more precisely described than in Model 1. If dz = 0, Vt is a positive recurrent

diffusion process with stationary distribution N (0, η
2

2β ). The additional term

dz models the vertical drift downside.

4.2. Modelling pollination times

This second step may be described with varying detail since it comprises
various functions such as rates of deposition of viable grains, fertilization
efficiency, competion rates. To keep models tractable, a simple framework is
used here. Pollination times are positive random variables TF independent of
(Xt, Yt). Various models for pollination times are related to a rather general
family of distributions, the Generalized Inverse Gaussian distributions (see
e.g. Jorgensen 1982). A distribution is GIG (α, ρ, η) with ρ > 0, η > 0 if its
density on R

+ is

fGIG(α, ρ, η; t) =
1

I(α, ρ, η)
t−αe

−ρt−η
t It>0 . (15)

The term I(α, ρ, η) is a normalizing constant with a precise form, since it is a
special function (Abramovitz and Stegun 1972). These distributions generalize
the classical Inverse Gaussian distribution IG(µ, λ)

IG(µ, λ)(t) = (
λ

2πt3
)1/2(−λ(t− µ)2

2µ2t
) It>0 = GIG(

3

2
,

λ

2µ2
,
λ

2
) (16)

The link between these two definitions is α = 3/2, λ = 2η, µ2 = η
ρ
.

Pollen is emitted by male flowers and received by female flowers which are
lower. Let h < 0 denote the difference in heights between female and male
flowers. We consider below several models for pollination times.
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Exponential time: Model BR-IG. This model has been proposed when
vegetetion is overabundant (Tufto et al. 1997, Klein et al. 2003). Given an
exponential distribution Te = E(λ) independent of (Pt), the pollination time
TF is obtained as the conditional distribution of Te given ZTe = h. Then TF

is distributed according to the Generalized Inverse Gaussian distribution

GIG(
1

2
, λ +

f2
z

2τz
,
h2

2τ2
z

). (17)

First hitting time of level h: BR-IG. Assume that Z0 = 0 and h < 0.
The pollination time is defined as TF = Th = inf{t > 0, Zt = h}. If (Zt) is a
Brownian motion with negative drift (fz < 0), TF follows an Inverse Gaussian
distribution,

IG(
h

fz
,
h2

τ2
z

) = GIG(
3

2
,
f2
z

2τ2
z

,
h2

2τ2
z

). (18)

Generalized Model: BR-GIG. Pollination times TF follow GIG(α, ρ, η)
distributions as defined in (15).

These models have been proposed in Klein et al. (2003). Models BR-EX
(α = 1

2) and BR-IG (α = 3
2) are specific cases of the BR-GIG model (α

arbitrary).

4.3. Computation of the individual dispersion function γθ(x, y)

We use a result on Brownian motion stopped at GIG random times (Barndoff-
Nielsen 1997 or Jorgensen 1982). This requires to define the Generalized
Hyperbolic Distributions (GHD). The Generalized Hyperbolic Distribution
with parameters (χ, ψ, α) is the distribution on the positive half-line with
density function for χ > 0, ψ > 0, α ∈ R,

{2(
χ

ψ
)α/2Kα(

√
χψ)−1} xα−1 × exp{−1

2
(χx−1 + ψx)} (19)

The notation Kα(s) is the modified Bessel function of the third kind
(Abramovitcz and Stegun 1972). We use in the sequel multivariate extensions
of these distributions.

PROPOSITION 1 (Barndoff-Nielsen, 1997). — Assume that (Xt, Yt) is a Brown-
ian Motion with drift on R

2 (see (10)), and that TF is distributed according to
a GIG (α, ρ, η) independent of (Xt, Yt). Then the distribution of (XTF

, YTF
)

is a GHD on R
2 with density

fGHD(θ;x, y) =
ν1−αδ2(p/q(x, y))

α
2

2π

Kα(
√

pq(x, y))

K1−α(ν)
−

(fxx + fyy

τ2

)
, where

(20)
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ν = 2(ρη)1/2, δ =
1

τ(2η)1/2
, p = 2η (2ρ+

f2
x

τ2
+

f2
y

τ2
), q(x, y) = 1+δ2(x2 +y2).

(21)

Recall that parameter h is negative (a pollen grain starts from a male
flower -height 0- and stops on lower female flowers), fz is also negative;
other parameters are positive. According to pollination times, we get several
parametric distributions for γ(., .).

Model BR-EX. The distribution of TF is E(λ) and γθ(x, y) is the GHD

associated with α = 1/2, ρ = λ + f2
z

2τz
, and η = h2

2τ2
z

.

Model BR-IG. The distribution of TF is the distribution of the first hitting
time of level h. Hence α = 3/2, TF follows an Inverse Gaussian distribution,
and γθ(x, y) is a Normal Inverse Gaussian distribution (NIG) which is a
specific case of GHD distributions

γθ(x, y) =
δ2eλz

2π

(q(x, y)−1/2 + p1/2)

q(x, y)
e−

√
pq(x,y)eδ(λxx+λyy) with (22)

λz = ν =
fzh

τ2
z

, δ =
τz

τ |h|
, λx =

fxh

ττz
, λy =

fyh

ττz
. (23)

Model BR-GIG. TF follows a GIG(α, ρ, η) with α arbitrary and γθ(x, y) is
the GHD distribution defined in (20) with parameters

ν = 2
√
ρη, δ =

1

τ
√

2η
, λx =

fx

δτ2
, λy =

fy

δτ2
. (24)

These models for pollen dispersal have been used in Klein et al. (2003),
Grimaud and Larédo (2006).

Model BR-OU. Paths of pollen grains are described in equations (13) and
(14). The vertical position (Zt) is obtained by integrating Wt defined in (13).
Pollination times are defined as Th = inf(t, Zt � h). Four parameters are now
present in this modelling: h < 0, β > 0, η > 0, dz < 0 (parameters in (Wt)).
Set b = βh

ηz
+ dz

ηzβ
, and c = − dz

ηzβ
and define three functions associated with

these parameters,

gθ(t) =
1

2
(2βt+4e−βt−3−e−2βt), fθ(t) = b+c(βt+e−βt), aθ(t) = fθ◦g−1

θ (t).

The following results holds.

PROPOSITION 2. — The hitting time Th of (Zt) is equal in distribution to
g−1
θ (ν), where ν is the first hitting time of a standard Brownian motion

starting from 0 through the curved boundary aθ(t).
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The proof is given in Grimaud and Larédo (2006) and relies on the compu-
tation of Th using a random time change. The vertical component Zt can be
split into two terms: Zt = fθ(t) + Mt where (Mt) is a martingale satisfying
< M >t = gθ(t). It follows that Th = g−1

θ (ν) with ν = inf{s > 0, B̃s � aθ(s)},
where (B̃s) is a Brownian motion and aθ(.) is the explicit function defined
above. Therefore an approximation of the distribution of ν is obtained using
a result due to Durbin (1992) for the first passage of a curved boundary:

rθ(t) =
1√
2πt

(
aθ(t)

t
− a′θ(t)

)
exp

(
−aθ(t)2

2t

)
(25)

Studying precisely aθ leads to quite good approximations of rθ(t). Using the
definition of Inverse Gaussian distributions given in (16), we obtain

COROLLARY 1. — Set µ1 = 2β2h + dz
βdz

, µ2 = 2β2h− dz
βdz

and λ = h2

τ2
z

. Clearly

µ1 > µ2 and the following holds for the distribution φθ(t) of Th,

IG(µ1, λ)(t) � φθ(t) � IG(µ2, λ).

The proof uses the definition of IG(µ, λ) as the the first hitting time distribu-

tion for a standard Brownian motion starting from 0 of a line
√

2λ −
√

2λ
µ

t.

Hence, the individual dispersal function satisfies γθ(x, y) � NIG(θ;x, y),
where θ is obtained substituting fz (Model BR-IG) by dz

β
(Model BR-OU)

and τ2
z (BR-IG) by η2

z

β2 (BR-OU). Note that this result agrees with the rough

approximation deriving from E(Zt) = fzt, Var(Zt) = τ2
z t in the BR-IG model

and E(Zt) = dz
β
t, Var(Zt) = η2

β2 (t + β
4 t

2) in the BR-OU model.

Biologists are most concerned with the tail behaviour of dispersal kernels.
Ignoring anisotropy or studying the tail in the dominant wind direction, we
get

COROLLARY 2. — Set r = (x2 + y2)1/2. Then, for r large enough, the
tail behaviour of γ(., .) in the dominant wind direction satisfies: γ(r) ∼

C r−(α+1/2)e−br with b > 0 and α > −1/2.

This is easily obtained using some classical approximations for Bessel func-
tions. The tail behaviour of γ is therefore quite similar for all models.

Remark. — Several published papers in Ecology argue that kernel dispersals
have to possess fatter tails than these ones in order to describe what is
observed in landscapes (Oddou-Muratorio et al. 2005, Devaux et al. 2005).
Models are built here to fit short and medium range dispersal, they do not
describe long-range dispersal.
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5. Statistical analyses for individual dispersal functions

Various models (BR-EX, BR-IG, BR-GIG, BR-OU) associated with different
pollen grain trajectories and pollination times were studied. Parameters of
these different models were estimated from data obtained in the experiment
described in Section 2.

5.1. Estimation results

Three different statistical methods were used: Binomial likelihood (BIN),
quasilikelihood with overdispersion (QUASI) and linear variance quasilikeli-
hood with overdispersion (LIN). The last two methods differ in the modelling
of errors variance. Since σ2 = (1 + d(N − 1)), the expression of the last two
methods is

QUASI : Var εk = N σ2 µ(xk, yk) (1 − µ(xk, yk)) (26)

LIN : Var εk = N σ2 (b + µ(xk, yk)) (27)

Results are detailed in Tables 1, 2 and 3. Model BR-EX led to results that
were always bad for any method. This model is clearly unsuitable for this
experimental data set and results are not presented here. Table 1 displays
parameter estimations for Model BR-IG and the three statistical methods,
Table 2 parameter estimation for Model BR-GIG and the three methods.
Results for Model BR-OU are shown in Table 3. A more complete presentation
of all the results obtained using various models is available in Grimaud (2005).
Drawings of individual dispersal functions are given in Figures 2 and 3.
Figure 2 displays the three individual dispersal functions obtained estimating
the parameters of the BR-IG, BR-GIG and BR-OU models using the linear
variance quasilikelihood. In Figure 2 (a) these dispersal functions are given
according to the dominant wind direction, in Figure 2 (b) they are drawn
according to the orthogonal dominant wind direction. Figures 3 (a) and (b)
display the individual dispersal function obtained for one model and the three
statistical methods according to the dominant wind direction for (a) and the
orthogonal one for (b).
For all models, we get better standard errors with “Binomial +overdispersion”
type variance than with the Binomial variance. This confirms that the
Binomial assumption is too stringent and does not lead to good results.
Moreover, a better description for v(.), (linear variance model), yielded
better residuals. The main wind direction (given by the vector (λx, λy)) was
consistently estimated with all methods and different models. Parameters
for models BR-IG and BR-GIG differed according to the statistical method.
For the BR-IG model, this led to individual dispersal functions that differed
from the ones obtained in Klein et al. (2003) (see Figures 3 (a)-(b)). The
individual dispersal functions of Klein et al. (2003) are very sharp at the origin.
Elsewhere, they are always below the two other ones (up to ten meters from
the source). Comparing now the three individual dispersal functions of the
BR-IG, BR-GIG, BR-OU models, heavier tails were obtained by the BR-OU
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in the dominant wind direction, and by the BR-IG for the orthogonal one. The
BR-OU dispersion is sharper than the two other ones at the origin. The three
estimated individual dispersal functions (BR-IG, BR-GIG, BR-OU) obtained
using quasilikelihood coupled with linear variance are presented in Figure 2.
There are differences when looking in the dominant wind direction (Figure
2-(a)). The function associated with the BR-GIG model has the thinnest tail,
while the dispersal function associated with BR-OU presents the heaviest tail
with respect to the dominant wind direction, and the thinnest tail in the
opposite direction. It also decreases faster than the other dispersal functions
at short distances. The BR-IG dispersal function decreases less rapidly near
the origin and has tails almost comparable with the BR-OU dispersal function.

5.2. Testing hypothesis

The main interest in introducing the GIG family of distributions for polli-
nation times is the ability both to estimate α and to test with accuracy the
assumption“α = 3/2” against “α 
= 3/2” , because we have nested statistical
models. Indeed, the case “α = 3/2” is particularly interesting since it leads to
easier computations for γθ.
The estimation of parameter α in the model corresponding to the GHD (α)
(model BR-GIG) is α̂ = 1.4 using the linear variance quasilikelihood method.
Now, model BR-IG corresponds to α = 3/2. It is nested in Model BR-
GIG, and we tested the hypothesis “H0 = 3/2” against “H1 
= 3/2” (the
pollination time follows a GIG(α, ρ, η), with α unknown). We used likelihood
and quasilikelihood test statistics for heteroscedastic non linear models (Huet
et al. 1996). This statistics SK converges as K → +∞ to a χ2(1). The
quantile q0.05 at level 5 % is equal to 3.84. Results for this test were different
according to the statistical method. For the Binomial likelihood, SK = 5.4.
Hence, “H0” is rejected at level 5%. The quasilikelihood method coupled with
overdispersion and linear variance leads to SK = 2.26, so “H0” is accepted
at level 5%. Hence, we inferred that modelling pollination times as hitting
times of level h by the vertical component of pollen trajectories was quite
satisfactory.

5.3. Residuals and selection criteria

The standardized residuals associated with the statistical analysis were stud-
ied. Let θ̂ denote an estimator of the true parameter value θ0 and consider
µ(θ̂, x, y) the associated backward dispersal function. Residuals are then de-
fined by

Rk =
nk −Nµ(θ̂, xk, yk)√
Nσ2v(µ(θ̂, xk, yk))

.

Displaying these residuals Rk on the experimental field shows that better
results are obtained using the NIG distribution for γθ(x, y) with parameter
θ estimated by the linear variance quasilikelihood. Let us now compare the
Model BR-OU with the first three models. We are no longer in a nested
framework and have to use selection criteria. The Akaike criterion cannot
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be used since we do not know the likelihood (the (Nk) distributions are not
specified). The Mallows Cp criterion cannot be used either since the errors
variances have to be constant in this case. However, Hurvich and Tsai (1995)
have proposed a criterion for quasilikelihoods which is a modification of the
Akaike criterion,

AICc = log(σ2) +
2(p + 1)

n− p− 2

The number of observations is n (n = 3063 here) and parameter θ has
dimension p. The AICc score is slightly lower for the BR-IG model (5.99)
than for the BR-OU model (6.04) using Binomial+overdispersion method.
For the linear variance quasilikelihood, the AICc score is 3.23 for the BR-IG
mdel and 3.94 for the BR-OU model.
Joining all the results, we have finally obtained that the model that fitted best
these experimental data was the BR-IG model, and that we had rather use
a quasilikelihood method with linear variance modelling and overdispersion
for analysing this data set. The model derived from a Lagrangian Stochastic
approach did not lead to better results in this case. A possible explanation is
as follows. In this experiment, the Lagrangian Stochastic model we have used
actually results in a similar dispersal function to the one obtained with the
BR-IG model. This is not an intrinsic feature of the L. S. model and it is due
here to the precise values of the estimated parameters. Other environmental
conditions as for instance stronger winds might lead to other conclusions. This
clearly has to be investigated on other experiments.

TABLE 1. — Parameters estimations for Model BR-IG and the three statistical
methods. Pollen trajectories (Xt, Yt, Zt) Brownian motion with drift; pollination
time TF ∼ IG.

Quasilikelihood Linear Quasilikelihood Bin Likelihood

Parameters Estimation Std error Estimation Std error Estimation Std error

δ 0.5176 0.0837 0.5177 0.0225 0.499 0.024

λx - 0.0056 0.0509 -0.0096 0.0065 -0.007 0.013

λy 0.1808 0.0244 0.1914 0.0143 0.165 0.018

λz 0.0561 0.0835 0.0669 0.0204 0.027 0.128

a - - 1.175 10−5 3.589 10−7 - -

σ2 145.9 9.261 -

[138.7 ; 156.7] [8.801 ; 9.755] -

AICc 5.986 3.2299 -
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TABLE 2. — Parameters estimations for Model BR-GIG and the three statistical
methods. Pollen trajectories (Xt, Yt, Zt) Brownian motion with drift; pollination
time TF ∼ GIG.

Quasilikelihood Linear Quasilikelihood Bin Likelihood

Parameters Estimation Std error Estimation Std error Estimation Std error

δ 0.5985 0.2334 0.5850 0.0571 0.500 0.026

λx -0.0046 0.0217 -0.0082 0.0057 -0.007 0.014

λy 0.1555 0.0746 0.1683 0.0205 0.165 0.019

λz 0.0799 0.0573 0.0853 0.0151 0.047 0.087

α 1.3986 0.1804 1.4133 0.0461 1.49 0.150

a - - 1.166 10−5 3.534 10−7 - -

σ2 155.6 9.263 -

[147.9 ; 163.8] [8.808 ; 9.752] -

AICc 6.051 3.2308 -

TABLE 3. — Parameters estimations for Model BR-OU. Pollen trajectories (Xt, Yt)
Brownian motion with drift, (Zt) modelled via its velocity (Langevin Stochastic
model); pollination time TF hitting time of female flowers height h.

Quasilikelihood Linear Quasilikelihood

Parameters Estimation Std error Estimation Std error

rx -0.1822 0.3221 -0.1903 0.1010

ry 1.4359 0.4796 1.3340 0.1620

λ 0.1571 0.0179 0.1820 0.0078

bz 0.4683 0.0532 0.4417 0.0163

cz 0.1208 0.0647 0.1299 0.0216

a - - 8.948 10−6 4.803 10−8

σ2 153.6 18.81

[ 146.03; 161.76] [17.88 ;19.82 ]

AICc 6.0384 3.9391

5.4. Comparison with the external parameters

In order to investigate whether these approaches could be used in other
situations, we compared the values of the parameters present in the models
to the values that could be obtained by other means. In Klein et al. ((2003),
results were promising in the sense that predicted/observed comparisons were
good, but residuals from the statistical analysis (either least-square estimators
or Binomial Maximum Likelihood estimators) were unsatisfactory. Moreover,
the parameters values estimated from the field experiment differed from those
calculated from external physical parameters. The differences of the calculated
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(a)

(b)

FIG 2. — Individual dispersal functions on R for Models BR-IG (dashed points),

BR-GIG (solid line) and BR-OU (points) following the dominant wind axis (a)

(distance to the source between -5 and 15 m) and the orthogonal direction (b)

(distance between -10 and 10 m) using Linear Quasilikelihood.

parameters between minimal, median or maximal cases were also large. Our
knowledge about turbulence parameters (vertical variance τz and horizontal
variance τ) is very poor for this experiment. This has consequences on the
values of parameters δ, λx, λy, λz. Moreover, the correspondence between the
parameters estimated from the dispersal pattern and those calculated from
independent measures of physical parameters was rough. This was to be
expected since getting simultaneously these meteorological data had not been
planned in this experiment, and comparisons actually relied on inaccurate
data.

97



INFERENCE FOR POLLEN DISPERSAL

(a)

(b)

FIG 3. — Individual dispersal functions on R for Model BR-IG following the dom-

inant wind axis (a) and the orthogonal direction (b) (distance from the source be-

tween -5 and 10 m) using successively Binomial likelihood (solid line), Quasilikeli-

hood (points) and Linear Quasilikelihood (dashed points).

The new estimations obtained here re-analysing this experiment significantly
improved the fits with the external parameters. Results are given in Table
4. Wind physical parameters are fx = −0.056 and fy = 0.998. They are
respectively estimated by −0.074 and 1.74 in Klein et al. (2003), and by −0.061
and 1.22 here. Turbulence coefficients are poorly known in this experiment.
The vertical turbulence or diffusion coefficient τz is approximately 1.18. It was
estimated by 2.37 and by 1.65 here. The gap is even larger for the horizontal
turbulence. It is close to 1.33 and was estimated by 5.70 in Klein et al. (2003)
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and 3.51 here. The BR-OU model led to parameters that were consistent with
the physical parameters, but not better than the ones obtained with the BR-
IG model. Although not optimal, these results seem more reliable than the
previous ones. They are moreover positive with respect to the ability to keep
in the model some a priori knowledge. Models studied here rely only on a
mean wind intensity during all the pollination period. For this experiment,
we had just this knowledge. These models could easily include a variable wind
intensity so that these results are promising concerning the ability of getting
predictions in other situations.

TABLE 4. — Comparison between physical parameters and estimated parameters
for the BR-IG model and the three methods; for the BR-GIG model and the Linear
Quasilikelihood.

BR-IG BR-IG BR-IG BR-GIG

Parameters Min Mean Max Bin Likelihood Bin QL Lin QL Lin QL

Vertical Drift, 0.183

fz (m.s−1)

Height difference, 0.831

h (m)

Horizontal drift: -0.056 -0.074 -0.042 -0.061 -0.0362

fx (m.s−1) fy (m.s−1) 0.998 1.74 1.37 1.22 0.742

Vertical variance, 0.35 1.175 2 2.37 1.65 1.51 1.33

τz (m.s−1)

Horizontal variances, 0.65 1.325 2 5.70 3.83 3.51 2.75

τx = τy (m.s−1)

6. Discussion and Conclusion

Two problems were addressed here. The first one was to build an accurate
statistical framework to analyse dispersal data obtained from these kinds of
experiments (cross-pollination rates between fields). The second one was to
investigate whether mechanistic approaches were suitable to analyse these
data. We considered models previously studied in Klein et al. (2003) and
built new models derived from the Lagrangian Stochastic approach used in
micrometeorology. We illustrated the process of estimating and comparing
individual dispersal functions.
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6.1. Statistical methodology

We have concentrated on the estimation of the individual dispersion function
from the noisy observation of the backward dispersal function (1) since cross-
pollinations strongly depend on the shapes, sizes and positions of a marked
pollen source and a non-marked one. When competition is taken into account,
this leads to a non-linar deconvolution problem. This deconvolution problem
is impossible to study with classical deconvolution methods. It also precludes
a non parametric approach. We solved the deconvolution problem by building
parametric functions for the individual dispersion function (see Tufto et al.
1997, Klein et al. 2003 for a similar approach).
Results obtained in Klein et al. (2003) were promising since predicted/obser-
ved comparisons were good, but residuals from the statistical analysis (either
least-square estimators or Maximum Likelihood estimators associated with the
Binomial model) were not satisfactory. We reconsidered the experiment stud-
ied in Klein al. (2003) and reanalysed the data here using a statistically more
accurate framework. We fitted two-dimensional models to two-dimensional
data. This is better in many regards. The model accuracy is strongly im-
proved since all data are used to fit the dispersal model. Two-dimensional
dispersal functions clearly show that a better insight is gained and that look-
ing at various directions for dispersal function is important. The Lagrangian
Stochastic approach (Aylor et al. 2003) and other models (McCartney and
Fitt 1998) model dispersal only in the dominant wind direction.
Our results stressed the importance of the statistical method for analysing the
data. We compared the Binomial likelihood method to two other quasilikeli-
hood methods. Assumptions only concern the mean and the variance of the
observations and assumptions on the precise distribution of the observations
are no longer required to get good estimation results. On the other hand the
Binomial likelihood is quite sensitive to deviations from the statistical model.
We obtained results that differed from results of Klein et al. (2003) just using
such methods. Improvements were also obtained by modelling the error vari-
ances. Observed data display at most locations very low proportions of marked
grains (µk = nk/N is generally lower than 0.2). This results in theoretical
small variances in Binomial models (Nµk(1−µk)) especially when there is no
marked pollen observed, leading to statistical analyses that implicitely take
more into account these last data. Analysing residuals confirmed that really
good predictions were obtained with these models for cross-pollination rates
among fields. The statistical analysis is performed using short and medium
range data. Hence, even if individual dispersal functions are defined on R

2 and
thus theoretically might give predictions at large distances, it is hardly possi-
ble to expect good predictions at long distances using these models. Although
the models studied here do not possess heavy tails, there is no contradiction
with other results where heavier tails of individual dispersal functions were
obtained (Oddou-Muratorio et al. 2005, Devaux et al. 2005).
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6.2. Mechanistic approaches for pollen dispersal

We proposed new models derived from aerobiological models. These models
were estimated with the above statistical framework, and compared to previ-
ous ones. Our goal was to take better into account some physical phenomena
that affect pollen dispersal. They are detailed in Aylor et al. (2003) and Mc-
Cartney and Fitt (1998). There is an interplay between physics and biology,
and between space and time. Managing this interplay is quite difficult, espe-
cially when trying (1) to keep the main important physical phenomena and
(2) to obtain tractable models that can be estimated from data.
Trajectories of pollen grains can be formulated in several ways. One way
to do it is based on the Gaussian Plume model. An alternate way is based
on a Lagrangian Stochastic particle trajectory model. According to Aylor et
al. (2003), the Gaussian Plume model lacks sufficient detail to look at short
and medium range transport, which are best approached using a L.S. pollen
trajectory model. We kept this last approach in this work. It differs with the
models previously investigated (Tufto et al. 1997, Nurminieni et al. 1998, Klein
et al. 2003) in which pollen trajectories are Brownian motion with drift. This
is similar to the Gaussian Plume model. Actually, the Lagrangian Stochastic
approach relies on the Langevin equations for modelling velocities. Vertical
and horizontal velocities satisfy stochastic differential equations having for
drift and diffusion coefficients the Langevin coefficients. Then, integrating
these velocities yields pollen trajectories, which are in this approach integrated
diffusion processes.
In this work, we investigated the contribution of models deriving from these
aerobiological approaches. We considered trajectories for the vertical com-
ponent obtained by modelling velocity with an Ornstein-Uhlenbeck diffusion
process. This aimed to take better into account the stochasticity of the ver-
tical component. An additional term modelled the settling velocity. Since we
have to deal with effective pollination, many mechanisms are involved and the
approaches used in micrometeorology are usually very detailed (Aylor et al.
2003). To keep models tractable, especially for statistical purposes, we rather
chose a simplified mechanism for pollination times: the first hitting time of silk
levels for a particle starting from a male flower. For instance, in a maize plant
3 meters high, male flowers (tassels) are higher than female flowers (cobs) with
a vertical distance of 1-1.3. This is a natural way to link together pollen trajec-
tories and pollination times without introducing many additional parameters.
We finally obtained that the best model for this experiment was the BR-IG
model. We do not know whether this is a general or a specific result due to
the precise values of the parameters. We expect that different results could
be obtained for other environmental conditions, and we do not exclude that
conclusions could be different for other experiments. We can however high-
light that we have proposed a general framework to study pollen dispersal, for
both getting various parametric individual dispersal functions and performing
accurate statistical analysis.
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6.3. Extensions and future work

In this work, we examined the Lagrangian Stochastic approach in the vertical
direction. A first modification to previous models was to introduce the
well known dependence of wind speed and turbulence on the height above
the ground. We evaluated this method on one experiment. We used here
a specific model for the Langevin equation: the Ornstein-Uhlenbeck model
(a(v) = dz − βv, b(v) = η). Other models coming from micrometeorology or
using external wind velocity measures should be studied. This approach clearly
has to be applied to other experiments to conclude about it. A model where
the two horizontal components are driven by Langevin stochastic equations
(with either simple Langevin coefficients or coefficients that are defined using
external velocities) should be considered. The vertical component would be
defined either by a Brownian motion with drift or by the Langevin equation.
Studying these models on just one experiment is not sufficient and other
experiments should be analysed in order to investigate such models.
Studying pollen dispersal in heterogeneous environments is a crucial prob-
lem which requires further attention. Various studies have described cross-
pollination rates from the observation of the backward function. This possesses
the same drawbacks as before (dependence on the spatial design, shape and
size of fields, dependence on the heterogeneous environments). The individual
dispersal function approach however presents difficulties, chief among which
is the fact that it can no longer be assumed that plants disperse their pollen
according to the same individual dispersal function. This function has to de-
pend on the respective positions of source and recipient plants. For oilseed
rape, pollen dispersal has been studied with this approach in presence of
discontinuities (Milhem et al. 2006). Results were consistent with previous
experimental results concerning the backward dispersal function. This study
remains a preliminary approach to the problem of heterogeneous environments
which certainly requires further work.
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