NOUVELLES PROPRIÉTÉS DE L'ANALYSE EN COMPOSANTES COMMUNES ET POIDS SPÉCIFIQUES

Mohamed HANAFI¹, El Mostafa QANNARI¹

RÉSUMÉ

L'Analyse en Composantes Communes et Poids Spécifiques (ACCPS) est une méthode qui permet de traiter simultanément des tableaux multiples appariés par lignes. Elle stipule l'existence de composantes communes pour tous les tableaux mais les «poids» de ces tableaux pour chacune des composantes peuvent être différents. Cette méthode a été introduite pour analyser des tableaux dans le cadre de l'évaluation sensorielle. Par la suite, la méthode a été appliquée dans le cadre du couplage de plusieurs appareils de mesure et la caractérisation d'aliments par des méthodes instrumentales telles que la spectroscopie infrarouge et l'analyse d'images multispectrales. Des propriétés de l'ACCPS sont démontrées permettant de l'enrichir en procurant de nouveaux outils d'interprétation. En particulier, une nouvelle formulation de la méthode est proposée conduisant à un algorithme pour la détermination des composantes communes et des poids spécifiques plus rapide que l'algorithme original. L'intérêt de l'ACCPS et des propriétés discutées dans cet article est illustré sur la base d'une étude de cas en évaluation sensorielle.

Mots-clés : Analyse en composantes principales, tableaux multiples, *INDSCAL*, *STATIS*.

ABSTRACT

Common components and specific weights analysis which is a technique for the analysis of several data sets is presented. It stipulates the existence of common dimensions to the various data tables, but each dimension may be differentially weighted for each data set. The application of this method to the analysis of sensory and instrumental data was presented in previous papers. We highlight a new formulation of the method from which new properties emerge. These properties are illustrated using real data.

Keywords : Principal components analysis, multiple data sets, INDSCAL, STATIS.

^{1.} ENITIAA / INRA, Unité de Sensométrie et Chimiométrie. Rue de la Géraudière, 44072 Nantes cedex03, France. hanafi@enitiaa-nantes.fr

Journal de la Société Française de Statistique, tome 149, n° 2, 2008

1. Introduction

1.1. Généralités

La méthode Procruste Généralisée (Gower, 1975) et STATIS (L'Hermier des Plantes, 1976; Lavit, 1988) sont très populaires dans le cadre de l'analyse de profils sensoriels (Arnold et Williams, 1986; Schlich, 1993; Qannari et al., 1997). Ces deux méthodes permettent de déterminer un compromis en imposant, en particulier, un facteur d'échelle unique pour chaque tableau. L'Analyse en Composantes Communes et Poids Spécifiques (ACCPS) permet de relaxer cette hypothèse qui semble être restrictive en déterminant des composantes communes sous-jacentes aux différents tableaux mais les poids attribués à ces composantes pour les différents tableaux peuvent êtres différents. Dès lors, il apparaît que ces hypothèses sont celles qui sont à la base du modèle INDSCAL (Carroll et Chang, 1970). Cependant, L'ACCPS présente plusieurs avantages. Le premier avantage est que les poids associés aux composantes sont toujours positifs, alors qu'INDSCAL peut conduire à des solutions dégénérées. Afin de contourner cette difficulté, Ten Berge et al. (1993) ont proposé des alternatives à l'algorithme original d'INDSCAL en imposant des contraintes de positivité aux poids. Un deuxième avantage de l'ACCPS par rapport à INDSCAL réside dans le fait que les composantes communes sont contraintes d'être orthogonales, ce qui a un intérêt évident pour l'interprétation des résultats. Là aussi, nous pouvons noter que Kiers (1989) a proposé des algorithmes pour imposer aux composantes d'INDSCAL d'être orthogonales. Un troisième avantage de l'ACCPS est de procurer des espaces de représentation emboîtés ce qui, là aussi, peut présenter un grand intérêt pour l'interprétation des résultats. Enfin, il est à souligner que la démarche poursuivie dans le cadre de l'ACCPS est davantage ancrée dans un contexte de tableaux multiples plutôt que dans un contexte de positionnement multidimensionnel (multidimensional scaling) comme c'est le cas pour INDSCAL. Un des objectifs de ce papier est de souligner davantage cet ancrage en montrant de nouvelles propriétés qui, en particulier, montrent les liens et les similarités de l'ACCPS avec les méthodes d'analyse de tableaux multiples du type « analyses canoniques généralisées ».

L'ACCPS a été introduite et utilisée dans le cadre de l'analyse sensorielle (Qannari et al., 2000; Qannari et al., 2001), pour l'analyse d'images multispectrales (Courcoux et al., 2002), pour l'étude de données instrumentales (Pram Nielsen et al., 2001) et pour le couplage de plusieurs appareils de mesure (Mazerolles et al., 2002; Mazerolles et al., 2006; Hanafi et al., 2006). Cependant, son aspect algorithmique n'a jamais été discuté de manière détaillée. Ce que nous faisons dans ce papier. De plus, nous discutons une nouvelle formulation de la méthode qui permet d'exhiber de nouvelles propriétés utiles pour l'interprétation des résultats et qui suggère un nouvel algorithme plus rapide que l'algorithme original. Ce dernier aspect peut être déterminant dans des applications traitant de tableaux de grandes dimensions ou exigeant des réponses rapides comme dans le cas du contrôle de qualité en ligne (Gourvénec et al., 2005).

1.2 Données et modèles

Etant donné un ensemble de tableaux (X_k) (k = 1, ..., m), portant sur les mêmes individus (tableaux appariés par lignes), nous désignons par $W_k = X_k X'_k$ la matrice des produits scalaires associée à X_k . L'importance des matrices de produits scalaires pour l'analyse des données a été soulignée par plusieurs auteurs (Cazes *et al.*, 1976; Robert et Escoufier, 1976; L'Hermier des Plantes, 1976; Glaçon, 1981). Dans la suite, nous supposons que les tableaux X_k (k = 1, ..., m) sont centrés et, si l'utilisateur le juge utile, les tableaux peuvent être standardisés en pré-multipliant par des facteurs d'échelle appropriés de manière à avoir, par exemple, $||X_k|| = \sqrt{\text{trace } (X'_k X_k)} = 1$.

Pour l'analyse des tableaux (X_k) (k = 1, ..., m), nous pouvons définir une hiérarchie de modèles sur la base des matrices W_k (k = 1, ..., m). Les trois modèles proposés sont d'une complexité croissante car ils permettent à chaque fois de tenir compte de davantage de variations entre les configurations. Cette hiérarchie de modèles est identique à celle préconisée par Kiers (1991) et par Flury (1988) sur la base des matrices des covariances associées à des tableaux qui sont appariés par variables.

Le premier modèle stipule l'égalité des matrices des produits scalaires :

 $W_k = W + E_k$ (E_k désigne une partie résiduelle associée à la matrice W_k).

En négligeant les termes résiduels, ce modèle est équivalent à supposer que les tableaux peuvent être parfaitement ajustés à l'aide de rotations (Glaçon, 1981). Afin de déterminer une configuration compromis, une matrice W est recherchée de sorte à minimiser :

$$\sum_{k=1}^{m} ||W_k - W||^2 = \sum_{k=1}^{m} \operatorname{trace} \left((W_k - W)'(W_k - W) \right).$$

Ceci conduit à la solution : $W = \frac{1}{m} \sum_{k=1}^{m} W_k$. W étant semi-définie positive peut

s'écrire sous la forme W = CC' et C peut alors être considéré comme étant une configuration compromis. Il est bien connu que cette procédure revient en définitive à effectuer une analyse en composantes principales (*ACP*) sur le tableau obtenu par juxtaposition horizontale des tableaux $X_1, X_2, ..., X_m$. L'analyse factorielle multiple (Escofier et Pagès, 1998) rentre dans ce cadre après pondération de chacun des tableaux.

Le deuxième modèle stipule que les matrices W_k sont proportionnelles :

$$W_k = \alpha_k W + E_k.$$

Ceci conduit à rechercher des coefficients α_k (k = 1, ..., m) et une matrice W de sorte à minimiser la quantité suivante : $\sum_{k=1}^{m} ||W_k - \alpha_k W||^2$.

En choisissant une contrainte de détermination sur les coefficients α_k (k = 1, ..., m) : $\sum \alpha_k^2 = 1$, par exemple, nous pouvons vérifier que le compromis

déterminé à partir de cette stratégie est proportionnel à celui obtenu par la méthode STATIS.

Le troisième modèle qui est à la base de l'ACCPS stipule l'existence de composantes communes pour toutes les configurations; cependant, les poids des configurations sur ces composantes peuvent être différents. Ceci peut s'écrire en termes des matrices des produits scalaires $W_k(k = 1, ..., m)$:

$$W_{k} = Q\Lambda_{k}Q' + E_{k} = \sum_{r=1}^{n-1} \lambda_{r}^{(k)}q_{r}q_{r}' + E_{k} ;$$

où n est le nombre d'observations, Q est une matrice supposée être orthogonale dont les colonnes sont $q_1, q_2, ..., q_{n-1}$ (composantes communes dont le nombre est au plus égal à n-1 du fait du centrage des tableaux) et Λ_k est une matrice diagonale dont les élément diagonaux sont notés $\lambda_1^{(k)}, \lambda_2^{(k)}, ..., \lambda_{n-1}^{(k)}$ (poids associés aux composantes communes). Nous pouvons remarquer que l'appellation « composantes communes » peut apparaître comme un abus de langage car il n'est pas exclu qu'un poids $\lambda_r^{(k)}$ soit égal à zéro indiquant que la composante q_r n'est pas sous jacente à la configuration associée au tableau X_k .

2. Analyse en composantes communes et poids spécifiques (ACCPS)

La détermination des composantes communes de l'ACCPS et des poids qui leur sont associés est conduite de manière séquentielle. Dans un premier temps, une première composante, q_1 (de norme égale à 1) ainsi que les poids associés sont déterminés de manière à minimiser la fonction de perte :

$$L_1 = \sum_{k=1}^m ||W_k - \lambda_1^{(k)} q_1 q_1'||^2.$$

Il vient :

$$L_1 = \sum_{k=1}^{m} ||W_k||^2 - 2\sum_{k=1}^{m} \lambda_1^{(k)} \text{ trace } (W_k q_1 q_1') + \sum_{k=1}^{m} (\lambda_1^{(k)})^2.$$

Il apparaît, que pour $\lambda_1^{(k)}$ (k = 1, ..., m), fixés, le vecteur optimal qui minimise L_1 est donné par le vecteur propre normé de $\sum_{k=1}^m \lambda_1^{(k)} W_k$ associé à la plus grande valeur propre. Lorsque q_1 est fixé, les poids optimaux sont donnés par :

$$\lambda_1^{(k)} = \text{trace } (W_k q_1 q_1') = q_1' W_k q_1.$$

Ceci suggère l'algorithme suivant (Qannari et al., 2000) :

(a) Les poids $\lambda_1^{(k)}$ (k = 1, ..., m) sont initialisés à 1.

(b) Le vecteur q_1 est donné par le vecteur propre normé de $\sum_{k=1}^m \lambda_1^{(k)} W_k$ associé à la plus grande valeur propre.

(c) Les poids sont définis par : $\lambda_1^{(k)} = q_1' W_k q_1$. Par la suite, la fonction de perte est évaluée :

$$L_1 = \sum_{k=1}^m ||W_k - \lambda_1^{(k)} q_1 q_1'||^2 = \sum_{k=1}^m ||W_k||^2 - \sum_{k=1}^m (\lambda_1^{(k)})^2,$$

et l'algorithme commençant à partir de (b) est réitéré jusqu'à ce que la variation de cette fonction devienne inférieure à un seuil fixé par l'utilisateur. La convergence monotone est assurée par le fait que les choix successifs des composantes et des poids assurent une diminution du critère L_1 . De ce fait, les valeurs successives du critère constituent une suite décroissante, minorée par 0 et, par conséquent, convergente. Nous pouvons vérifier qu'à la convergence, nous avons les propriétés suivantes :

(i) $\left(\sum_{k=1}^{m} \lambda_{1}^{(k)} W_{k}\right) q_{1} = \mu_{1}^{max} q_{1}$ (où μ_{1}^{max} est la plus grande valeur propre de $\sum_{k=1}^{m} \lambda_{1}^{(k)} W_{k}$ associée au vecteur propre q_{1}). (ii) $\lambda_{1}^{(k)} = q'_{1} W_{k} q_{1}$ (iii) $L_{1} = \sum_{k=1}^{m} ||W_{k} - \lambda_{1}^{(k)} q_{1} q'_{1}||^{2} = \sum_{k=1}^{m} ||W_{k}||^{2} - \sum_{k=1}^{m} (\lambda_{1}^{(k)})^{2} = \sum_{k=1}^{m} ||W_{k}||^{2} - \mu_{1}^{max}$

Nous pouvons également montrer (voir annexe 1) que la composante commune q_1 est solution du problème suivant :

Maximiser
$$\sum_{k=1}^{m} (q'W_k q)^2$$
 sous la contrainte $||q|| = 1$.

Cette équivalence sera très utile, par la suite, pour la démonstration des propriétés de l'ACCPS.

Afin de déterminer la deuxième composante q_2 et les poids qui lui sont associés, nous proposons de considérer les tableaux $X_k^{(2)} = X_k - q_1 q'_1 X_k$ qui contiennent les résidus des projections orthogonales des variables de X_k sur la composante q_1 . Soit $W_k^{(2)} = X_k^{(2)} X_k^{(2)'}$ la matrice des produits scalaires associés à $X_k^{(2)}$. La composante q_2 est déterminée en effectuant le même algorithme présenté ci-dessus en considérant $W_k^{(2)}$ à la place de W_k (k = 1, ..., m). Nous pouvons intuitivement concevoir que q_2 ainsi obtenue est orthogonale à q_1 ; une démonstration de cette propriété est donnée en annexe 2. Nous pouvons également montrer que la deuxième composante commune est solution du problème consistant à minimiser (relativement à q et $\lambda_2^{(k)}$) la fonction $L_2 = \sum_{k=1}^{m} ||W_k - \lambda_1^{(k)} q_1 q'_1 - \lambda_2^{(k)} q q'||^2$ où q_1 est la composante déterminée ci-dessus et q est supposée orthogonale à q_1 . La démonstration de cette propriété est donnée en annexe 3.

Nous pouvons facilement vérifier les propriétés suivantes :

(i)
$$\left(\sum_{k=1}^{m} \lambda_2^{(k)} W_k^{(2)}\right) q_2 = \mu_2^{max} q_2$$
 (où μ_2^{max} est la plus grande valeur propre
de $\sum_{k=1}^{m} \lambda_2^{(k)} W_k^{(2)}$ associée au vecteur propre q_2):

de $\sum_{k=1} \lambda_2^{(k)} W_k^{(2)}$ associée au vecteur propre q_2);

(*ii*)
$$\lambda_2^{(k)} = q_2' W_k^{(2)} q_2 = q_2' W_k q_2 ;$$

(iii)
$$L_{1} = \sum_{k=1}^{m} ||W_{k} - \lambda_{1}^{(k)}q_{1}q_{1}' - \lambda_{2}^{(k)}q_{2}q_{2}'||^{2}$$
$$= \sum_{k=1}^{m} ||W_{k}||^{2} - \sum_{k=1}^{m} (\lambda_{1}^{(k)})^{2} - \sum_{k=1}^{m} (\lambda_{2}^{(k)})^{2} = \sum_{k=1}^{m} ||W_{k}||^{2} - \mu_{1}^{max} - \mu_{2}^{max}.$$

La même stratégie peut être adoptée afin de déterminer des composantes communes d'ordre supérieur à deux ainsi que les poids qui leur sont associés. A chaque étape r, une composante commune est déterminée en considérant les matrices $W_k^{(r)} = X_k^{(r)} X_k^{(r)'}$, où $X_k^{(r)} = X_k - \sum_{j < r} q_j q'_j X_k$. Les propriétés

énoncées ci-dessus s'étendent comme suit :

(i) $\left(\sum_{k=1}^{m} \lambda_r^{(k)} W_k^{(r)}\right) q_r = \mu_r^{max} q_r$ (où μ_r^{max} est la plus grande valeur propre de $\sum_{k=1}^{m} \lambda_r^{(k)} W_k^{(r)}$ associée au vecteur propre q_r); (ii) $\lambda_r^{(k)} = q_r' W_k^{(r)} q_r = q_r' W_k q_r$;

(*iii*)
$$L_r = \sum_{k=1}^m ||W_k - \sum_{j=1}^r \lambda_j^{(k)} q_j q'_j||^2$$

= $\sum_{k=1}^m ||W_k||^2 - \sum_{k=1}^m \sum_{j=1}^r (\lambda_j^{(k)})^2 = \sum_{k=1}^m ||W_k||^2 - \sum_{j=1}^r \mu_j^{max}.$

Nous pouvons remarquer que les poids spécifiques associés à chaque composante commune sont positifs et qu'ils reflètent la part d'inertie des différents tableaux expliquée par la composante commune considérée. De ces propriétés, il ressort, en particulier, que l'importance relative de la composante commune déterminée à l'ordre r peut être évaluée à l'aide de :

$$V_r = \frac{\sum_{k=1}^{m} (\lambda_r^{(k)})^2}{\sum_{k=1}^{m} ||W_k||^2} = \frac{\mu_r^{max}}{\sum_{k=1}^{m} ||W_k||^2}.$$

3. Nouvelle Formulation de l'ACCPS

Une nouvelle formulation de l'ACCPS basée sur un nouveau critère est proposée. Son intérêt est multiple.

- (i) Elle permet de jeter un nouvel éclairage sur l'ACCPS en exhibant des composantes partielles dans les différents tableaux qui sont associées de manière optimale aux composantes communes.
- (ii) Elle procure de nouveaux éléments d'interprétation qui précisent davantage la nature des composantes communes et des poids spécifiques.
- (iii) Elle suggère un nouvel algorithme pour la détermination des composantes communes et des poids spécifiques ainsi que des composantes partielles. Dans la pratique, cet algorithme s'est avéré plus rapide que l'algorithme discuté ci-dessus.
- (iv) Elle permet de mieux positionner l'ACCPS par rapport à d'autres méthodes d'analyse de tableaux multiples notamment l'analyse de Coinertie multiple (Chessel et Hanafi, 1996)) ou les méthodes de type analyses canoniques généralisées (Kettenring, 1971; Hanafi et Kiers, 2006).

La nouvelle formulation stipule que la première étape de l'ACCPS consiste à déterminer une composante commune q_1 ainsi que les composantes partielles $c_1^{(k)} = X_k u_1^{(k)}$ de manière à maximiser la quantité :

$$G_1(q, u^{(1)}, u^{(2)}, ..., u^{(m)}) = \sum_{k=1}^m cov^4(X_k u^{(k)}, q), \text{ sous les contraintes } ||q|| = ||u^{(k)}|| = 1.$$

Les poids spécifiques associés à la composante q_1 sont donnés par :

$$\lambda_1^{(k)} = cov^2(X_k u_1^{(k)}, q_1).$$

De manière analogue, nous montrons que l'étape r (r > 1) de l'ACCPS, consiste à déterminer la composante commune q_r ainsi que les composantes partielles $c_r^{(k)} = X_k^{(r)} u_r^{(k)}$ de manière à maximiser la quantité :

$$\begin{aligned} G_r(q, u^{(1)}, u^{(2)}, ..., u^{(m)}) &= \sum_{k=1}^m cov^4(X_k^{(r)}u^{(k)}, q), \text{ sous les contraintes } ||q|| = \\ ||u^{(k)}|| &= 1, \\ \text{où } X_k^{(r)} &= X_k - \sum_{j < r} q_j q'_j X_k \end{aligned}$$

Les poids spécifiques associés à la composante q_r sont donnés par :

$$\lambda_r^{(k)} = cov^2 (X_k^{(r)} u_r^{(k)}, q_r).$$

La démonstration de ces propriétés est reportée à l'annexe 4.

4. Propriétés des composantes communes et des poids spécifiques

Comme cela est souligné ci-dessus, les propriétés qui sont discutées dans cette partie sont notamment utiles pour l'interprétation des résultats.

4.1. Propriétés des poids spécifiques

Nous avons déjà montré que $\lambda_r^{(k)} = q'_r W_k^{(r)} q_r = q'_r W_k q_r$. Ainsi $\lambda_r^{(k)}$ reflète une part de variabilité du tableau X_k expliquée par la composante commune q_r . Il est possible d'évaluer l'importance de chaque variable du tableau X_k dans la détermination de la composante q_r en remarquant que :

$$\lambda_r^{(k)} = \sum_{j=1}^{p_k} cov^2(x_k^{(j)}, q_r)$$

où $x_k^{(j)}$ est la j^{ième} variable du tableau X_k et p_k est le nombre de variables de ce tableau.

Propriété 1. —

Inertie(X_k) =
$$\sum_{r=1}^{n-1} \lambda_r^{(k)}$$
 k = 1, ..., m.

En effet, la matrice des composantes communes Q étant orthogonale, il en résulte :

Inertie(X_k) = trace (W_k) = trace (Q'W_kQ) =
$$\sum_{r=1}^{n-1} (q'_r W_k q_r) = \sum_{r=1}^{n-1} \lambda_r^{(k)}.$$

Cette propriété pourrait être utile pour choisir le nombre de composantes communes en adoptant une stratégie similaire à celle poursuivie en ACP consistant à évaluer l'inertie restituée par les composantes successives.

PROPRIÉTÉ 2. — Pour tout k = 1, ..., m et pour tout r = 1, ..., n - 1, nous avons :

$$\lambda_r^{(k)} = cov^2(X_k u_r^{(k)}, q_r).$$

En effet, nous avons $\lambda_r^{(k)} = cov^2(X_k^{(r)}u_r^{(k)}, q_r)$. Comme les composantes communes sont orthogonales, il s'ensuit : $cov^2(X_k^{(r)}u_r^{(k)}, q_r) = cov^2(X_ku_r^{(k)}, q_r)$.

Ainsi le poids spécifique $\lambda_r^{(k)}$ apparaît comme étant la part de variance de la composante partielle $X_k u_r^{(k)}$ expliquée par la composante commune q_r .

4.2. Propriétés des composantes communes

La nouvelle formulation de l'ACCPS permet d'établir deux liens intéressants entre l'ACCPS et l'ACP. Ces liens sont résumés dans les deux propriétés suivantes.

PROPRIÉTÉ 1. — La composante commune q_r (r = 1, ..., n-1) est la première composante principale standardisée du tableau global suivant :

$$\left[\sqrt{\lambda_r^{(1)}}X_1^{(r)} \quad \sqrt{\lambda_r^{(2)}}X_2^{(r)} \quad \cdots \quad \sqrt{\lambda_r^{(m)}}X_m^{(r)}\right]$$

Cette propriété résulte directement des équations qui caractérisent la composante commune q_r , à savoir que q_r est le premier vecteur propre associé à la grande valeur propre de la matrice $\left(\sum_{k=1}^m \lambda_r^{(k)} W_k^{(r)}\right)$. De ce fait, elle est la première composante principale du tableau

$$\left[\sqrt{\lambda_r^{(1)}}X_1^{(r)} \quad \sqrt{\lambda_r^{(2)}}X_2^{(r)} \quad \cdots \quad \sqrt{\lambda_r^{(m)}}X_m^{(r)}\right].$$

Le fait que chaque composante commune apparaisse comme la composante principale d'un tableau permet d'adopter dans le cadre de l'ACCPS une stratégie de représentation des résultats similaire à celle adoptée en ACP, no-tamment la représentation simultanée individus-variables dite représentation Biplot (Gabriel, 1971). Ce dernier point sera davantage précisé par la propriété 3 ci-après.

PROPRIÉTÉ 2. — La composante commune q_r est la première composante principale standardisée du tableau constitué par les composantes partielles $X_k^{(r)} u_r^{(k)}$; ces composantes étant respectivement pondérées par les poids $\alpha_r^{(k)} = |cov(X_k^{(r)} u_r^{(k)}, q_r)| = \sqrt{\lambda_r^{(k)}}$ i.e. ACP du tableau :

$$\left[\alpha_r^{(1)}X_1^{(r)}u_r^{(1)} \ \alpha_r^{(2)}X_2^{(r)}u_r^{(2)} \ \cdots \ \alpha_r^{(m)}X_m^{(r)}u_r^{(m)}\right].$$

Cette propriété découle directement de la nouvelle caractérisation des composantes communes en tant que solution du problème de maximisation de la quantité :

$$G_1(q, u^{(1)}, u^{(2)}, ..., u^{(m)}) = \sum_{k=1}^m cov^4(X_k u^{(k)}, q)$$

L'intérêt de cette propriété sera souligné dans le cadre de l'étude de cas.

PROPRIÉTÉ 3. — Les composantes communes q_j et les axes $u_j^{(k)}$ (j = 1, ..., n-1; k = 1, ..., m) permettent la reconstitution des tableaux de données :

$$X_{k} = \sum_{j=1}^{n-1} \sqrt{\lambda_{j}^{(k)}} q_{j} u_{j}^{(k)'}$$

Cette formule de reconstitution peut être interprétée comme une généralisation de la décomposition en valeurs singulières à plusieurs tableaux. Cependant, Il faut noter qu'en général les axes $u_i^{(k)}$ ne sont pas orthogonaux.

Afin de montrer cette propriété, nous pouvons remarquer que $X_k = \sum_{j=1}^{n-1} q_j q'_j X_k.$

Comme $u_j^{(k)}=\frac{X_k'q_j}{||X_k'q_j||}$ (voir annexe 4) et $\lambda_j^{(k)}=q_j'W_k^{(j)}q_j=q_j'W_kq_j,$ il en résulte :

$$X_k = \sum_{j=1}^{n-1} q_j q'_j X_k = \sum_{j=1}^{n-1} ||X'_k q_j|| q_j u_j^{(k)'} = \sum_{j=1}^{n-1} \sqrt{\lambda_j^{(k)}} q_j u_j^{(k)'}$$

4.3. Nouvel algorithme pour la détermination des composantes communes et des poids spécifiques

La nouvelle formulation de l'ACCPS suggère un nouvel algorithme pour la détermination des composantes communes et partielles; les poids spécifiques se déduisent en considérant la relation établie ci-dessus (propriété 2 des poids spécifiques). Les étapes suivantes de l'algorithme correspondent à la première étape de l'ACCPS.

Choisir m + 1 vecteurs normés $(q, u^{(1)}, u^{(2)}, \dots u^{(m)})$.

Répéter jusqu'à convergence, les étapes suivantes :

- a) Calculer $\alpha_k = |\text{cov}(X_k u^{(k)}, q)| \ (k = 1, ..., m).$
- b) Considérer le tableau $[\boldsymbol{\alpha}_1 X_1 \boldsymbol{u}^{(1)} \ \boldsymbol{\alpha}_2 X_2 \boldsymbol{u}^{(2)} \cdots \boldsymbol{\alpha}_m X_m \boldsymbol{u}^{(m)}]$, puis extraire la première composante principale standardisée \tilde{q}

c) Calculer
$$\tilde{u}^{(k)} = \frac{X_k^{i}q}{||X_k^{\prime}\tilde{q}||}, (k = 1, ..., m)$$

d) mettre à jour : $u^{(k)}$ par $\tilde{u}^{(k)}$ (k=1,...,m) et q par \tilde{q} et aller à a)

Nous pouvons montrer (voir annexe 5) que l'algorithme converge de façon monotone croissante.

Pour les composantes (communes et partielles) de rang r supérieur à 1, le même algorithme peut être mis en œuvre en remplaçant les tableaux X_k (k = 1, ..., m) par les matrices $X_k^{(r)}$ (k = 1, ..., m).

Sur la base de plusieurs exemples et d'une étude de simulation que nous ne présentons pas ici par manque de place, l'algorithme discuté ici s'est avéré beaucoup plus rapide que l'algorithme original. De plus, il parait clair que ce nouvel algorithme peut être plus facilement adapté pour le cas où les tableaux comporteraient des données manquantes en adoptant une stratégie de type NIPALS (Wold, 1966).

Remarques. — Des propriétés énoncées ci-dessus, il apparaît que l'ACCPS permet de déterminer des composantes partielles $c_k = X_k u^{(k)}$ (k = 1, ..., m) associées aux différents tableaux. Ces composantes sont liées de manière optimale à une composante commune q, déterminée à partir de l'ensemble des tableaux. De ce fait, l'ACCPS apparaît ici comme une méthode qui réalise simultanément une double synthèse : une synthèse par tableau et une synthèse globale de l'ensemble des tableaux.

La nouvelle formulation permet de mieux clarifier les similarités de l'ACCPS avec les méthodes de type « analyses canoniques généralisées » (Kettenring; 1971) et surtout l'ACOM (Analyse de Co-inertie Multiple; Chessel et Hanafi; 1996). En effet, ces méthodes visent également à déterminer des composantes partielles et des composantes globales mais elles sont basées sur des critères différents.

Il faut, en particulier, souligner que la nouvelle formulation de l'ACCPS permet de déterminer des axes $u_r^{(1)}, u_r^{(2)}, ..., u_r^{(m)}$ (r = 1, ..., n - 1) que nous appellerons, par analogie avec la terminologie utilisée dans le cadre de l'ACOM, axes de co-inertie. Bien évidemment, l'intérêt pratique de ces axes réside dans l'interprétation des résultats et dans la représentation graphique des variables par tableau.

5. Applications

Nous considérons un jeu de données à caractère didactique qui a été proposé par Williams et Langron (1984). Nous renvoyons le lecteur aux références données en introduction qui présentent des applications réelles de l'ACCPS dans le cadre de la chimiométrie et la sensométrie.

Un jury constitué de quatre juges a évalué l'apparence de huit vins selon la procédure dite de profil libre où chaque juge note sur une échelle allant de 0 à 10 les produits selon ses propres descripteurs (variables). Pour un produit et un descripteur donnés, la note attribuée par un juge correspond à l'intensité qu'il perçoit et qu'il est capable, grâce à un entraînement préalable, de traduire sous forme d'une note. Les données sont reproduites dans l'annexe 6.

Les inerties associées aux tableaux des juges varient de 3.1 (pour le juge 4) à 13.4 (pour le juge 1) indiquant que la dispersion des produits dans l'espace est très différente d'un juge à un autre (problème d'échelle de notation). Pour cette raison, nous avons jugé utile de centrer chaque tableau et de le normaliser de manière à ramener touts les inerties à 1.

Le tableau 1 donne les poids spécifiques associés aux quatre juges pour les composantes communes déterminées par l'ACCPS. Comme l'inertie de chacun des tableaux a été ramenée à 1, chaque poids spécifique s'apparente à un pourcentage d'inertie restituée par la composante commune (propriété 1 des poids spécifiques). Il ressort que trois composantes communes permettent de restituer un pourcentage d'inertie de l'ordre de 90% pour chacun des juges offrant ainsi une bonne synthèse de l'ensemble. Les poids spécifiques relatifs aux deux premières composantes communes sont représentés sur la figure 1 qui met clairement en évidence la particularité du juge 4 qui a nettement privilégié la deuxième composante par rapport à la première composante.

TABLEAU 1. — Poids spécifiques, pour centage des inerties des différents tableaux restituées par les composantes communes.

dimension		1	2	3	4	5	6	7
	Poids spécifiques	0.67	0.01	0.19	0.08	0.02	0.01	0.02
Juge 1	% Inertie Cumulée	0.67	0.68	0.87	0.95	0.97	0.98	1.00
	Poids spécifiques	0.66	0.04	0.22	0.03	0.01	0.03	0.01
Juge 2	% Inertie Cumulée	0.66	0.70	0.92	0.95	0.96	0.99	1.00
	Poids spécifiques	0.78	0.06	0.11	0.01	0.02	0.01	0.01
Juge 3	% Inertie Cumulée	0.78	0.84	0.95	0.96	0.98	0.99	1.00
	Poids spécifiques	0.21	0.47	0.28	0.03	0.01	0.00	0.00
Juge 4	% Inertie Cumulée	0.21	0.68	0.96	0.99	1.00	1.00	1.00

Sur la figure 2, les huit variétés de vin (désignées par v1, v2, ...v8) sont représentées sur la base des deux premières composantes communes. Les configurations individuelles des juges pourraient être représentées dur la même figure et correspondraient à un étirement ou une contraction selon la première ou la deuxième dimension.

FIG 1. — Représentation des juges à l'aide des poids associés aux deux premières composantes.

FIG 2. — Représentation des huit variétés de vins (v1, v2, ...v8) sur la base des deux premières composantes communes.

L'interprétation des composantes communes peut être faite sur la base de la figure 3 qui montre une représentation simultanée des vins et des descripteurs individuels des juges (propriété 3). En particulier, nous retrouvons le constat établi précédemment concernant la deuxième dimension qui est spécifique du juge 4. En effet, ce juge différencie les produits sur la base des descripteurs « brillant » et « frais » et cette description ne semble pas se recouper avec les descriptions des autres juges.

FIG 3. — Représentation simultanée des vins et des descripteurs par juge.

6. Conclusion

Comme nous l'avons souligné, l'*ACCPS* est une méthode d'analyse d'un ensemble de tableaux qui est basée sur un modèle moins restrictif que d'autres méthodes classiques telles que la méthode STATIS. De ce fait, elle permet un meilleur ajustement des données et jette davantage de lumière sur la structure des tableaux.

Les nouvelles propriétés qui sont discutées dans ce papier permettent de mieux situer cette méthode d'analyse par rapport à d'autres méthodes et procurent de nouveaux outils pour l'interprétation et la représentation des données. Dans cette perspective, les composantes partielles associées aux différents tableaux revêtent un intérêt particulier car elles reflètent à l'échelle de chaque tableau l'information véhiculée par les composantes communes; l'intensité de ce reflet étant évaluée par les poids spécifiques.

L'étude de cas illustre bien la pertinence de l'ACCPS par rapport à une méthode alternative commeSTATIS. En effet, si du point de vue de la disposition des produits les uns par rapport aux autres les résultats de l'ACCPS (figure 2) et de STATIS (résultats non présentés) se recoupent dans une large mesure, il n'en demeure pas moins vrai que l'ACCPS permet d'accéder directement à des informations qui sont utiles pour le décideur. En effet, bien que l'objectif en évaluation sensorielle soit, *in fine*, de caractériser les produits et les positionner les uns par rapport aux autres, il est, cependant,

primordial de jeter un regard critique sur les données collectées et d'évaluer la performance des juges. Dans cette perspective, l'ACCPS a permis de révéler le comportement atypique du juge 4 en indiquant (et en quantifiant grâce aux poids spécifiques) en quoi ce juge est en désaccord avec les autres. Par comparaison, les résultats de STATIS ont bien indiqué que le juge 4 est en désaccord avec les autres juges car son poids est relativement faible (tableau 2) mais des investigations supplémentaires auraient été nécessaires afin de localiser la nature du désaccord de ce juge avec les autres juges. Soulignons également que la pondération attribuée par STATIS aux différents tableaux est une pondération globale qui peut cacher des disparités. De ce point de vue, les pondérations attribuées par l'ACCPS sont plus pertinentes car elles tiennent compte de manière différentielle de l'accord des juges sur les dimensions sous-jacentes aux données. Soulignons, enfin, que STATIS procède en deux étapes : détermination d'un tableau compromis puis application de l'ACP sur ce tableau compromis afin de permettre une visualisation des données. A contrario, les composantes utiles pour la représentation des données sont directement déterminées par l'ACCPS.

TABLEAU 2. — Poids des juges dans la détermination du compromis de STATIS.

Juges	1	2	3	4
Poids	0.528	0.541	0.599	0.263

A l'avenir, il serait utile d'explorer l'intérêt des composantes partielles en considérant différents cadres d'application. Il serait également intéressant d'explorer de manière plus approfondie les propriétés de l'ACCPS duale basée sur les matrices de covariances de tableaux qui portent sur les mêmes variables (Courcoux et al., 2002).

7. Références

- ARNOLD G. M., WILLIAMS A. A. (1986). The use of Generalised Procrustes analysis in sensory analysis. In *statistical Procedures in Food Research*, ed. J. R. Piggott. North Holland, Amsterdam.
- CARROLL J. D., CHANG J. J. (1970). Analysis of individual differences in multidimensional scaling via an N-way generalisation of 'Eckart-Young' decomposition. *Psychometrika*, 35, 283-319.
- CAZES P., BONNEFOUS S., BAUMERDER A., PAGES J. P. (1976). Description cohérente des variables qualitatives prises globalement et de leurs modalités. *Statistique et analyse des données*, 2 et 3, 48-62.
- CHESSEL D., HANAFI M. (1996). Analyses de la co-inertie de K nuages de points. Revue de Statistique Appliquée. XLVI, 35-60.

- COURCOUX Ph., DEVAUX F., BOUCHET B. (2002). Simultaneous decomposition of multivariate images using three-way data analysis : Application to the comparison of cereal grains by confocal Chemometrics methods for the coupling of spectroscopic techniques and for the extraction of the relevant information contained in the spectra data tables. *Chemometrics and Intelligent Laboratory Systems.* 63, 57-68.
- ESCOFIER B., PAGÈS J. (1998). Analyses factorielles simples et multiples. Dunod.
- FLURY B. (1988). Common Principal Components and related multivariate models. Wiley.
- GABRIEL K. R. (1971). The Biplot graphic display of matrices with applications to principal component analysis. *Biometrika*. 58, 3, 453-467.
- GLAÇON F. (1981). Analyse conjointe de plusieurs matrices de données; comparaisons de plusieurs méthodes. Thèse, Université des Sciences de Grenoble.
- GOURVÉNEC S., STANIMIROVA I., SABY C. A, AIRIAU C. Y., MASSART D. L. (2005). Monitoring batch processes with the STATIS approach. Journal of Chemometrics. 19, 288-300.
- GOWER J. C. (1975). Generalised Procrustes analysis. Psychometrika, 40, 33-51.
- HANAFI M., KIERS H. A. (2006). Analysis of K sets of data, with differential emphasis on agreement between and within sets. Computational Statistics and Data Analysis, Vol 51, 3, 1491-1508.
- HANAFI M., MAZEROLLES G., DUFOUR E., QANNARI E. M. (2006). Common components and specific weight analysis and multiple Co-inertia analysis applied to the coupling of several measurement techniques. *Journal of Chemometrics*. Vol 20, 5, 172-183.
- KETTENRING R. (1971). Canonical analysis of several sets of variables. *Biometrika*, 58, 3, 433- 450.
- KIERS H. A. L. (1989). A computational short-cut for Indscal with constraint on positive semi-definite matrices of low rank. *Comutational Statistics Quarterly*, 2, 119-135.
- KIERS H. A. L. (1991). Hierarchical relations among three-way methods. Psychometrika, 56, 449-470.
- LAVIT Ch. (1988). Analyse conjointe de tableaux quantitatifs. Masson, Paris.
- L'HERMIER DES PLANTES H. (1976). Structuration des tableaux à trois indices de la statistique. Thèse, Univ. des Sciences et Techniques du Languedoc Montpellier II
- MAZEROLLES G., DEVAUX F, DUFOUR E., QANNARI E. M., COURCOUX Ph. (2002). Chemometrics methods for the coupling of spectroscopic techniques and for the extraction of the relevant information contained in the spectra data tables. Chemometrics and Intelligent Laboratory Systems. 63, 57-68.
- MAZEROLLES G., HANAFI M., DUFOUR E., QANNARI E. M., BERTRAND D. (2006). Common Components and specific weights analysis : a chemometric method for dealing with complexity of food products. *Chemometrics and Intelligent Laboratory Systems.*81, 41-49.
- PRAM NIELSEN J., BERTRAND D., MICKLANDER E., COURCOUX Ph., MUNCK L. (2001). Study of NIR spectra, particle size distribution and chemical parameters of wheat flours : a multi-way approach, *Journal of Near Infrared Spectroscopy*. 9, 275 -285.
- QANNARI E. M., COURCOUX Ph., LEJEUNE M., MAYSTRE O. (1997). Comparaison de trois stratégies de détermination d'un compromis en évaluation sensorielle. *Revue de Statistique Appliquée*, XLV(1), 61-74.

- QANNARI E. M., WAKELING I., COURCOUX Ph., MACFIE M.F. (2000). Defining the underlying sensory dimensions. Food Quality and Preference. 11, 151-154.
- QANNARI E. M., COURCOUX Ph., VIGNEAU E. (2001). Common Components and specific weights analysis performed on preference data. Food Quality and Preference. 12, 365-368.
- ROBERT P. & ESCOUFIER Y. (1976). A unifying tool for linear multivariate statistical methods : the RV coefficient. Applied Statistics, 25, 257-267.
- SCHLICH P. (1993). Contribution à la sensométrie. Thèse, Université Paris Sud.
- TEN BERGE J. M. F., KIERS H.A.L. & KRIJNEN W. P. (1993). Computational solutions for the problem of negative saliences and nonsymetry in Indscal. *Journal of classification*, 10, 115-124.
- WILLIAMS A., LANGRON S. P. (1984). The use of free-choice profiling for the evaluation of commercial ports. J. Sci. Food Agric, 35, 558-568.
- WOLD H. (1966). Estimation of principal components and related models by iterative least squares, *Multivariate Analysis* (Ed., Krishnaiah, P. R.), Academic Press, NY, pp. 391-420.

8. Annexes

Annexe 1

Nous montrons l'équivalence entre les deux problèmes suivants :

Minimiser
$$L_r(q, \lambda^{(1)}, \lambda^{(2)}, ..., \lambda^{(m)}) = \sum_{k=1}^m ||W_k^{(r)} - \lambda^{(k)}qq'||^2$$

(A1.1)

sous la contrainte $||q||^2 = 1$

Maximiser
$$\sum_{k=1}^{m} (q'W_k^{(r)}q)^2$$
 sous la contrainte $||q|| = 1.$ (A1.2)

Pour la démonstration, nous nous limitons au cas (r = 1). Pour le cas (r > 1), la démonstration est identique; la seule modification consiste à remplacer dans le développement qui suit W_k par $W_k^{(r)}$.

La première composante commune q_1 et les poids spécifiques associés $\lambda_1^{(1)}, \lambda_1^{(2)}, ..., \lambda_1^{(m)}$ sont solutions du problème (A1.1). Il en résulte, pour tout choix d'un vecteur normé q et de m scalaires $\lambda^{(1)}, \lambda^{(2)}, ..., \lambda^{(m)}$:

$$L_1(q,\lambda^{(1)},\lambda^{(2)},...,\lambda^{(m)}) \ge L_1(q_1,\lambda_1^{(1)},\lambda_1^{(2)},...,\lambda_1^{(m)})$$
(1.1)

Cette inégalité est en particulier vraie pour les m scalaires $\lambda^{(k)} = q' W_k q$ (k = 1, ..., m). De plus, sachant que $\lambda_1^{(k)} = q'_1 W_k q_1$ (k = 1, ..., m), le développement des deux membres de l'inégalité (1.1) conduit à l'inégalité suivante :

$$\sum_{k=1}^{m} ||W_k||^2 - \sum_{k=1}^{m} (q'W_k q)^2 \ge \sum_{k=1}^{m} ||W_k||^2 - \sum_{k=1}^{m} (q'_1 W_k q_1)^2$$
(1.2)

Il en résulte que :

$$\sum_{k=1}^{m} (q'W_k q)^2 \leqslant \sum_{k=1}^{m} (q'_1 W_k q_1)^2 \text{ pour tout vecteur normé } q.$$
(1.3)

Cette inégalité signifie que la première composante commune q_1 est solution du problème de maximisation (A1.2).

Inversement, si nous désignons par $q_1^{(*)}$ la solution du problème (A1.2), alors le vecteur $q_1^{(*)}$ vérifie l'inégalité suivante :

$$\sum_{k=1}^{m} (q'W_k q)^2 \leqslant \sum_{k=1}^{m} (q_1^{(*)'}W_k q_1^{(*)})^2,$$
(1.4)

pour tout choix d'un vecteur normé q.

Il en résulte l'inégalité suivante :

$$\sum_{k=1}^{m} ||W_k||^2 - \sum_{k=1}^{m} (q'W_k q)^2 \ge \sum_{k=1}^{m} ||W_k||^2 - \sum_{k=1}^{m} (q_1^{(*)'}W_k q_1^{(*)})^2$$
(1.5)

Soit $\lambda_*^{(k)}\ m$ scalaires donnés par la relation : $\lambda_*^{(k)}=q_1^{(*)'}W_kq_1^{(*)}\ k=1,...,m$ alors :

$$L_1(q_1^{(*)}, \lambda_*^{(1)}, \lambda_*^{(2)}, ..., \lambda_*^{(m)}) = \sum_{k=1}^m ||W_k||^2 - \sum_{k=1}^m (q_1^{(*)'} W_k q_1^{(*)})^2.$$
(1.6)

De plus, pour tout choix de m scalaires $(\lambda^{(1)}, \lambda^{(2)}, ..., \lambda^{(m)})$, nous avons :

$$L_1(q,\lambda^{(1)},\lambda^{(2)},...,\lambda^{(m)}) \ge \sum_{k=1}^m ||W_k||^2 - \sum_{k=1}^m (q'W_kq)^2.$$
(1.7)

A partir des inégalités (1.5) et (1.7), nous pouvons déduire l'inégalité suivante :

$$L_1(q,\lambda^{(1)},\lambda^{(2)},...,\lambda^{(m)}) \ge L_1(q_1^{(*)},\lambda_*^{(1)},\lambda_*^{(2)},...,\lambda_*^{(m)}).$$
(1.8)

Ceci montre que la composante $q_1^{(*)}$ et les scalaires $\lambda_*^{(k)}$ sont bien solutions du problème (A1.1).

Annexe 2

Nous montrons que les composantes communes q_j (j = 1, 2, ..., r) sont orthogonales. Nous précédons par récurrence en utilisant les équations stationnaires qui caractérisent les composantes communes (voir § 2), à savoir :

$$\left(\sum_{k=1}^{m} \lambda_r^{(k)} W_k^{(r)}\right) q_r = \mu_r^{max} q_r \tag{2.1}$$

où
$$W_k^{(r)} = \left[\prod_{j=1}^{r-1} (I - q_j q'_j)\right] W_k \left[\prod_{j=1}^{r-1} (I - q_j q'_j)\right]$$

Nous nous restreignons au cas $\mu_r^{max} \neq 0$ car le cas contraire ne présente pas d'intérêt pratique puisque qu'il est équivalent à supposer que tous les poids spécifiques $\lambda_r^{(k)}$ sont égaux à 0.

Dans un premier temps, nous montrons que les deux premières (r = 2) composantes sont orthogonales. Dans ce cas, l'équation (2.1) peut s'écrire sous la forme :

$$(I - q_1 q_1') \left(\sum_{k=1}^m \lambda_2^{(k)} W_k\right) (I - q_1 q_1') q_2 = \mu_2^{max} q_2 \tag{2.2}$$

En multiplant les deux membres de cette équation par q'_1 et en remarquant que $q'_1(I - q_1q'_1) = 0$, il est facile de conclure que $q'_1q_2 = 0$.

Supposons maintenant l'orthogonalité entre les r-1 composantes communes : (*i.e.* $q'_j q_l = 0$ pour $1 \leq j \neq l \leq r-1$). Ceci permet d'écrire :

$$\prod_{j=1}^{r-1} (I - q_j q'_j) = I - \sum_{j=1}^{r-1} q_j q'_j.$$
(2.3)

Par conséquent, l'équation (2.1) peut s'écrire :

$$\left[\prod_{j=1}^{r-1} (I - q_j q'_j)\right] \left(\sum_{k=1}^m \lambda_r^{(k)} W_k\right) \left[\prod_{j=1}^{r-1} (I - q_j q'_j)\right] q_r = \mu_r^{max} q_r.$$
(2.4)

La multiplication de l'équation (2.4) par q'_j pour $1 \leq j \leq r-1$ donne

$$q'_{j} \left[\sum_{l=1}^{r-1} (I - q_{l}q'_{l}) \right] \left(\sum_{k=1}^{m} \lambda_{r}^{(k)} W_{k} \right) \left[\sum_{l=1}^{r-1} (I - q_{l}q'_{l}) \right] q_{r} = \mu_{r}^{max} q'_{j} q_{r}$$

L'hypothèse de récurrence implique que $q'_j \left[\left(I - \sum_{l=1}^{r-1} q_l q'_l \right) \right] = 0$; ce qui permet de conclure que pour $1 \leq j \leq r-1$ nous avons $q'_j q_r = 0$.

Annexe 3

Nous montrons l'équivalence entre les deux problèmes suivants :

Minimiser
$$\sum_{k=1}^{m} ||W_k - \sum_{j \leqslant r-1} \lambda_j^{(k)} q_j q'_j - \lambda^{(k)} q q'||^2$$

sous les contraintes $||q|| = 1$ pour $1 \leqslant j \leqslant r-1$ (A3.1)

Minimiser
$$\sum_{k=1}^{m} ||W_k^{(r)} - \lambda^{(k)} qq'||^2$$
sous la contrainte $||q|| = 1$
(A.3.2)

où
$$W_k^{(r)} = X_k^{(r)} X_k^{(r)} \text{et} X_{(r)} k = X_k - \sum_{j \leq r-1} q_j q'_j X_k$$

Nous désignons par $q_r^{(*)}$ la solution du problème (A3.1) et par q_r la solution du problème (A3.2).

D'après l'annexe 1, la démonstration de l'équivalence entre les deux problèmes (A3.1) et (A3.2) revient à la démonstration de l'équivalence des deux problèmes suivants :

Maximiser
$$\sum_{k=1}^{m} \left(q' \left[W_k - \sum_{j \leqslant r-1} \lambda_j^{(k)} q_j q'_j \right] q \right)^2$$

sous les contraintes $||q|| = 1$ et $q' q_j = 0$
pour $\leqslant j \leqslant r-1$ (A.3.1bis)

Maximiser
$$\sum_{k=1}^{m} (q' W_k^{(r)} q)^2$$
 sous la contrainte $||q|| = 1.$ (A3.2bis)

Sous les contraintes $||q||^2 = 1$ et $q' q_j = 0$ $1 \le j \le r-1$, nous avons l'égalité suivante :

$$\sum_{k=1}^{m} \left(q' \left[W_k - \sum_{j \leqslant r-1} \lambda_j^{(k)} q_j q'_j \right] q \right)^2 = \sum_{k=1}^{m} (q' W_k q)^2$$
(3.1)

Comme vérifie la contrainte du problème (A3.1), nous avons l'inégalité suivante :

$$\sum_{k=1}^{m} (q_r' W_k q_r)^2 \leqslant \sum_{k=1}^{m} (q_r^{(*)'} W_k q_r^{(*)})^2$$
(3.2)

Par ailleurs, comme q_r est solution du problème (A3.2 et A3.2bis), il vient :

$$\sum_{k=1}^{m} (q_r^{(*)'} W_k q_r^{(*)})^2 = \sum_{k=1}^{m} (q_r^{(*)'} W_k^r q_r^{(*)})^2 \leqslant \sum_{k=1}^{m} (q_r' W_k^{(r)} q_r)^2 = \sum_{k=1}^{m} (q_r' W_k q_r)^2$$
(3.3)

Il résulte des inégalités (3.2) et (3.3) l'équivalence entre les deux problèmes considérés.

Annexe 4

Nous démontrons l'équivalence les deux problèmes suivants :

Minimiser
$$L_r(q, \lambda_1, \lambda_2, ..., \lambda_m \sum_{k=1}^m ||W_k^{(r)} - \lambda^{(k)}qq'||^2$$

sous la contrainte $||q|| = 1$ (A4.1)

Maximiser
$$G_r(q, u^{(1)}, u^{(2)}, ..., u'^m) = \sum_{k=1}^m cov^4(X_k^{(r)}u^{(k)}, q),$$

sous les contraintes $||q|| = ||u^{(k)}|| = 1$ (A4.2).

D'après l'annexe 1, il suffit de montrer que le problème (A4.2) est équivalent au problème (A4.1bis) suivant :

Maximiser
$$\sum_{k=1}^{m} (q'W_k^{(r)}q)^2$$
 sous la contrainte $||q|| = 1.$ (A4.1bis)

Il suffit alors de remarquer que pour tout vecteur normé q fixé :

$$(q'W_k^{(r)}q)^2 = \max_{u'_k u_k = 1} \quad cov^4(X_k^{(r)}u_k, q)$$
(4.1)

La substitution de l'égalité (4.1) dans le critère du problème (A4.1bis) conduit à définir la composante commune de l'ACCPS à l'étape r comme la solution du problème de maximisation (A4.2).

Inversement, si nous désignons par $q_1^{(*)}$, $u^{*(k)}$ (k = 1, ..., m) la solution du problème (A4.2), alors pour tout choix de m + 1 vecteurs normés q, $u^{(k)}$, k = 1, ..., m, nous avons :

$$\sum_{k=1}^{m} cov^4(X_k^{(r)}u^{(k)}, q) \leqslant \sum_{k=1}^{m} cov^4(X_k^{(r)}u^{*(k)}, q_1^{(*)})$$
(4.2)

En particulier, pour les vecteurs normés $u^{(k)} = \frac{X_k^{(r)'}q}{||X_k^{(r)'}q||},$ nous avons :

$$\sum_{k=1}^{m} cov^{4}(X_{k}^{(r)}u^{(k)}, q) = \sum_{k=1}^{m} ||X_{k}^{(r)'}q||^{2}$$
$$= \sum_{k=1}^{m} (q'W_{k}^{(r)}q)^{2} \leq \sum_{k=1}^{m} cov^{4}(X_{k}^{(r)}u^{*(k)}, q_{1}^{(*)}) \quad (4.3)$$

Par application de l'inégalité de Cauchy-Schwartz, nous déduisons l'inégalité suivante :

$$\sum_{k=1}^{m} cov^{4}(X_{k}^{(r)}u^{*(k)}, q^{(*)}) = \sum_{k=1}^{m} (u^{*(k)'}X_{k}^{(r)'}q^{(*)})^{4}$$
$$\leqslant \sum_{k=1}^{m} ||X_{k}^{(r)'}q^{(*)}||^{4} = \sum_{k=1}^{m} (q^{(*)}W_{k}^{(r)}q^{(*)})^{2} \quad (4.4)$$

La combinaison des inégalités (4.3) et (4.4) donne l'inégalité suivante :

$$\sum_{k=1}^{m} (q' W_k^{(r)} q)^2 \leqslant \sum_{k=1}^{m} (q^{(*)'} W_k^{(r)} q^{(*)})^2, \text{ pour tout vecteur } q \text{ normé.}$$

Ceci montre que $q^{(*)}$ est bien solution du problème (A4.1bis).

Annexe 5

Nous démontrons la convergence monotone de l'algorithme de détermination des composantes communes et des poids spécifiques discuté dans le paragraphe 4.3.

Soit $\alpha_k = |\operatorname{cov}(X_k u^{(k)}, q)|$, nous considérons le problème suivant :

Maximiser
$$\sum_{k=1}^{m} \operatorname{cov}^2(\alpha_k X_k u^{(k)}, q)$$
 sous la contrainte $||q|| = 1.$ (5.1)

La solution de ce problème est bien connue. Il s'agit de la première composantes principale normée \tilde{q} du tableau $[\alpha_1 X_1 u^{(1)} \ \alpha_2 X_2 u^{(2)} \ \cdots \ \alpha_m X_m u^{(m)}]$. Il en résulte l'inégalité suivante :

$$\sum_{k=1}^{m} \operatorname{cov}^{4}(X_{k}u^{(k)}, q) = \sum_{k=1}^{m} \operatorname{cov}^{2}(\alpha_{k}X_{k}u^{(k)}, q) \leqslant \sum_{k=1}^{m} \operatorname{cov}^{2}(\alpha_{k}X_{k}u^{(k)}, \tilde{q}) \quad (5.2)$$

Par ailleurs, pour α_k fixé le vecteur $\tilde{u}^{(k)}=\frac{X'_k\tilde{q}}{||X'_k\tilde{q}||}$ est solution du problème suivant :

Maximiser $\operatorname{cov}^2(\alpha_k X_k u^{(k)}, \tilde{q})$ sous la contrainte $||u^{(k)}|| = 1.$ (5.3)

Il en résulte :

$$\operatorname{cov}^{2}(\alpha_{k}X_{k}u^{(k)},\tilde{q}) \leqslant \operatorname{cov}^{2}(\alpha_{k}X_{k}\tilde{u}^{(k)},\tilde{q})$$
(5.4)

Après sommation sur k des inégalités (5.4), on obtient, compte tenu de (5.2), et en remplaçant α_k par sa valeur $|\operatorname{cov}(X_k u^{(k)}, q)|$ l'inégalité suivante :

$$\sum_{k=1}^{m} \operatorname{cov}^{4}(X_{k} u^{(k)}, q) < \sum_{k=1}^{m} \operatorname{cov}^{2}(X_{k} u^{(k)}, q) \operatorname{cov}^{2}(X_{k} \tilde{u}^{(k)}, \tilde{q})$$
(5.5)

L'application de l'inégalité de Cauchy Schwartz au membre de droite conduit à :

$$\sum_{k=1}^{m} \operatorname{cov}^{4}(X_{k}u^{(k)}, q) < \sqrt{\sum_{k=1}^{m} \operatorname{cov}^{4}(X_{k}u^{(k)}, q)} \sqrt{\sum_{k=1}^{m} \operatorname{cov}^{4}(X_{k}\tilde{u}^{(k)}, \tilde{q})}$$
(5.6)

Après simplification, nous obtenons :

$$\sum_{k=1}^{m} \cos^4(X_k u^{(k)}, q) < \sum_{k=1}^{m} \cos^4(X_k \tilde{u}^{(k)}, \tilde{q})$$

Autrement dit $G_1(q, u^{(1)}, u^{(2)}, ..., u^{(m)}) < G_1(\tilde{q}, \tilde{u}^{(1)}, \tilde{u}^{(2)}, ..., \tilde{u}^{(m)})$. Ainsi l'algorithme définit itérativement une suite réelle $G(q, u^{(1)}, u^{(2)}, ..., u^{(m)})$ croissante. Cette suite étant de plus bornée, par conséquent, elle converge.

Annexe 6 : données

\mathbf{v}	
Λ_1	

	rouge	Doré	Doux	prune
V1	7	0	5	8
V2	5	6	6	3
V3	7	2	5	5
V4	5	7	7	4
V5	5	7	6	4
V6	6	8	6	1
V7	5	4	10	3
V8	6	6	6	5

 X_2

Rubis	fauve	intensité	
4	0	5	V1
3	6	5	V2
3	3	7	V3
1	6	3	V4
2	5	5	V5
1	5	4	V6
0	4	2	V7
2	6	4	V8
	-	•	

 X_3

 X_4

	rouge	bleu	doré	intensité
V1	7	4	2	6
V2	2	0	6	6
V3	6	3	4	7
V4	2	0	6	4
V5	5	1	5	6
V6	3	0	5	5
V7	2	0	4	3
V8	4	0	4	5

Profond	frais	brillant	
9	7	9	V1
8	6	7	V2
10	6	7	V3
7	7	8	V4
8	7	8	V5
8	8	10	V6
6 5		10	V7
8	9	10	V8