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Abstract: Clustering the nodes of a graph allows to analyze the topology of a network. At least three scientific
communities (Computer science, Physics and Statistics) proposed some methods to go ahead. We give here an overview
about the last developments about heterogeneous random graph models proposed by the statisticians. The Stochastic
Block Model is applied to analyze a large Protein-Protein Interaction network

Résumé : La classification non-supervisée des noeuds d’un graphe donne des éléments essentiels sur I’architecture
d’un réseau. Il existe des différences d’approche entre les communautés scientifiques (informaticiens, physiciens
et statisticiens) qui se sont attaqués a cette question. Nous présentons ici les travaux récents de la communauté des
statisticiens, basés sur des modeles de graphes aléatoires hétérogenes et nous analysons un grand réseau d’interactions
de protéines avec un modele de ce type.
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1. Introduction

Complex networks are more and more studied in different domains such as social sciences and
biology. The network representation of the data is graphically attractive, but there is clearly a
need for a synthetic model, giving an enlightening representation of complex networks. Statistical
methods have been developed for analyzing complex data such as networks in a way that could
reveal underlying data patterns through some form of classification.

Unsupervised classification of the vertices of networks is a rapidly developing area with many
applications in social and biological sciences. The underlying idea is that common connectivity
behavior shared by several vertices leads to their grouping in one meta-vertex, without losing too
much information. Then, the initial complex network can be reduced to a simpler meta-network,
with few meta-vertices connected by few meta-edges. [24] show applications of this idea to
biological networks and [23] and [14] to social networks.

The computer scientists build algorithms to cluster the network, such as hierarchical clustering,
Spectral clustering based on the Laplacian of the network [30], or Markov Chain Clustering
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Algorithm based on random walks along the graph, [29]. This is not an exhaustive list at all. Physics
scientists maximize a criteria such as Edge-betweenness or the modularity [13]. Statisticians
propose a probabilistic model which is supposed to take into account the random variability in the
data. This paper presents the most recent results from this school of thought.

The first model for random network is the well known Erdos-Renyi model which assumes that
each edge exists with probability p. The probabilistic properties of this model have been largely
studied. However it does not fit to any real network because it is too simple and is completely
homogeneous.

The first probabilistic model which integrates explicitly heterogeneity in the network topology,
the Stochastic block model called SBM in this paper, has been proposed by statisticians working
in the domain of social science, Snijders and Nowicki, [26]. Since 1997, much progress has been
made about its properties and the estimation procedures and a large part of this paper is devoted
to the presentation of the last results about this model.

SBM is a mixture model, using discrete latent variables giving the assignment of each vertex to
a group, where each vertex is supposed to pertain to only one group.

More flexible models have been proposed recently, which allows a node to pertain to more than
one group. Each vertex pertains partially to several groups, so the mixture is at the individual level
and not at the population level. This class of model has been developed in social science for usual
multivariate data, under the name of Grade of Membership (see [19] and [10]). The idea is that
there are hypothetical extreme profiles and that each sample unit is a mixture of these extreme
profiles and inherits their properties through a weighted mean.

The first part of the paper is devoted to the last developments about SBM and the second one
to the Grade of Membership models for networks. The third part illustrates the interest of SBM
on a large Protein-Protein Interaction network.

2. Recent developments about the SBM Model
2.1. SBM: a mixture model for random graphs

The SBM model is the following:

i = 1,n nodes pertains to ¢ = 1, Q classes. The class of each node is defined by a hidden discrete
latent variable, Z; = ¢ if node i pertains to class g, with Probability Distribution Function (pdf)
given by Z; ~ .4 (1,01, 00, ...0p) and .# is a multinomial pdf.

X;; = 1 if there is an edge from node i to node j and 0 if there is no edge, and conditionally to
Z, X;; are independent Bernoulli random variable with

P(Xij = 1/Zl :q,Zj = l) = nql

The Table 2.1 shows that the model is very flexible for it is able to produce hubs, separate
communities or hierarchical structures. For example the second line of table 2.1 present two hubs
each one connected to 5 vertices. This network is modelled with a four-classes SBM and the two
hubs are respectively the second and third classes in the matrix 7.
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Statistical models for clustering networks 113

TABLE 1. Examples of SBM models

Description Graph Q T

Erdos % 1 D

01 0 O
; E ; < 1 0 1 O
Hubs 4 01 0 1
0 0 1 0
... 1 €
communities m 2 ( >
e 1
01 1 0 O
0 0 0 1 O
Hierarchical 5 0 0 0 0 1
GEEE 0 0 0 0 O
0 0 0 0 O

2.2. Recent results about SBM

Model Identifiability The first results on the identifiability of the parameters of SBM have been
obtained by Allman et al ([2, 3]), for undirected network (symmetric matrix 7): for Q =2 and
n > 16, if the values of 7 are distinct, the parameters of SBM are identifiable up to label switching.
Moreover, for any Q andn > (Q — 1+ %)2 for n even, the parameters of SBM are generically
identifiable (identifiable excepted on a subspace of null Lebesgue measure).

More recently Celisse et al., [6] proved the identifiability for directed and undirected networks
for Q =2 and n > 4 and generic identifiability for any Q and n > 20.

Estimation of parameters

Snijders and Nowicki [26] used Markov Chain Monte Carlo method for estimating the parame-
ters. This method has two limits: its computational complexity is very high, so it cannot be used
for networks with more than 200 nodes, and the label switching problem associated with bayesian
methods applied to mixture models creates some difficulty to classify the nodes.

Daudin et al (2007) [8] used a variational method of estimation allowing to analyze network up
to 3000 nodes. Let b;(g,!) = x;jlog my + (1 —x;;)log(1 — 7). In the following, the subscript [n]
indicates that the indexed mathematical object is defined for n nodes.

The Log-Likelihood & (x(,; &, ) = log {Zz[,,]e %, elZijuibii(a >]PZ[n] (2 )} is not computable
even for networks with moderate size because the sum ), runs over Q" terms.

The Variational log-likelihood approximation is the following, see [8]:

n Q

0 n
j(x[n]; TUn]> 7T OC) = Z Z bij (qa l)fiqul + Z Z Tiq(log Oy — log Tiq)

(L.j#)=1(g./)=1 i=1g=1

for any T € S,,, a continuous version of z’s, with S, = {u € ([0,1]¢)" : Vi=1:n, Zgzl uig =1}.
Note that the variational likelihood is a mean field approximation. In other words, the approxima-
tion comes to the fact that P(Z;,Z;|X) is assumed to be a product, and the 7;, can be interpreted
as approximations of P(Z;|X).
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The Maximum Likelihood estimates are not computable. The E step of the Expectation-
Maximisation (EM) method is highly computationally intensive because it needs to compute
n sums of Q"' terms. It cannot be achieved for networks of size greater than 20 nodes,
but an iterative algorithm (see [8]) is available to obtain the variational estimates, (7,7) =
argmaxq, z S (Xjn)3 Tpu)» T, ). There is no proof that the algorithm gives a global maximum, but
in practice some simulations indicate that this is the case when n/Q is greater than 20. For smaller
values of n/Q, the result may depend on the initial values.

Under some mild conditions about (o, 1), and if the number of classes is fixed, the variational
estimates of (@, ) are consistent and asymptotically equivalent to the maximum-likelihood
estimates, [6]. Moreover most of the labels of the nodes can be retrieved exactly: the number of
bad classified nodes divided by n tends to zero when n — oo.

The proof uses the properties of ¢, concentration inequalities and an extension of classical
methods for proving consistency in [28]. There are two main properties of networks data and
the SBM model which are important in this proof: (i) there are n”> data which helps greatly for
obtaining strong concentration inequalities (ii) the asymptotic pdf of Z|X pertains to the factorized
class of p.d.f.s in which the variational approximation is searched. These two properties are rarely
shared by other data sets and models, so the properties of the variational estimates may be quite
specific to random networks.

At the end of 2010 three papers proposed asymptotically consistent methods for SBM for
unweighed undirected graphs:

— Bickel and Chen [5] proved a similar result for undirected networks, using a profile likelihood
and showed that the profile likelihood is a better criteria than the modularity defined by
Girvan and Newman,

— Choi et al. [7] consider a conditional version of SBM with Z = z fixed. They show that the
fraction of misclassified nodes converges in probability to zero under maximum likelihood
fitting when the number of classes is allowed to grow as the root of n and the average network
degree grows at least poly-logarithmically with n.

— Rohe et al. [25] consider the same conditional version of SBM with Z = z fixed and classified
the node using the Spectral Clustering algorithm. They show that the fraction of misclassified
nodes converges almost surely to zero when the number of classes is allowed to grow.

Latouche et al.([17] and Gazal et al. [12] proposed to make the inference using Variational
Bayesian method. This method gives results similar to the frequentist variational method and
allows to obtain credibility intervals for the parameters.

Extension to weighted networks and online estimation Mahendra et al [21] have extended
the variational estimation method to weighted networks with pdf of the weights pertaining to the
exponential family. Ambroise and Matias [4] proposed a consistent and asymptotically normal
method for estimating the parameters of weighted random graph mixture models. Zanghi et al.
[31] developed an on-line estimation procedure for weighted and unweighed networks.

3. Recent developments about Grade of membership Models

SBM model can be written under the form

Pi=PX;=1)= Y zigaquz
¢,1=1,0
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Statistical models for clustering networks 115

where z;, = 1 if the vertex i is in class ¢, and 0 if not, which gives the matrix relation

P=ZAZ,

with Z the (n, Q)-matrix containing the z;,. If we allow z;, to be in [0, 1] (and not in (0, 1)) then
each vertex does not pertain to only one group, which bears more flexibility to the model. This
leads to the following CSBM (Continuous-SBM) developed in [9].

3.1. Model CSBM

Vertices Consider a graph with n vertices, labeled in {1,...,n}. The model is based on Q
hypothetical unobserved extreme vertices.

Each vertex i is the weighted mean of Q extreme hypothetical vertices (EHV), with weights
given by Z; = (z1,. . .,Zig), with Zig > 0 and Zq Zig = 1. Q is assumed to be a fixed constant with
QO << n. The Q extreme vertices are put at the end of the canonical unit vectors (1,0...0), (0, 1,0...0)
...(0...0,1), in R in an arbitrary order. The set of vertices {1,...,n} is contained in the simplex
Sp={x,€[0,1)¢, Zqul xy = 1}, so that the EHV are extreme points of Sp. Each EHV is supposed
to be typical of the group of vertices which are near it in Sp, with more extremal connectivity
properties than its neighboring real vertices.

Edges Each edge from a vertex i to a vertex j is associated to a binary random variable X;;
following a Bernoulli distribution with probability P;;. The probability that there is an edge from
EHV ¢ to EHV [ is equal to a ;. The connectivity properties of each vertex i are a mixture of the
connectivity properties of the EHV so that P;; can be expressed using the weights z;, and z;; and
the connectivity matrix A between the EHVs:

Plj: Z ZigQqiZjl
q,1=1,0

which gives the matrix relation

P=ZAZ,

with
— P the (n,n) matrix containing the p;;,
— Z the (n,Q) matrix containing the z;, and Z’ the transpose of Z, Z € S},
— and A € [0, l]Qz, the (Q, Q) matrix containing the a,, the connectivity matrix between the
EHVs.
The random variables X;; are assumed to be independent. Let X be the (n,n) matrix containing
the random variables X;;. Finally the model is summarized by

X ~B(ZAZ') (1

where B denotes the Bernoulli distribution, Z € Sy, and A € [0, 12",

The parameters of the model are A and Z. This model may be classified in the set of the semi-
parametric statistical models, for each individual (vertex) has its own set of parameters (z;i, ...zig).
Using statistical models, it is generally impossible to estimate as many parameters as the number
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of individuals. Moreover there are Q? +n(Q — 1) parameters, so this number approaches infinity
with n. However, the number of observations contained in X is not proportional to n but to 12, so
the ratio of the number of parameters with the number of observations approaches 0 when n — oo.
In practice, for each vertex i, there are n data, (x;1,...x;, ), available to estimate the Q — 1 linearly
independent parameters contained in the vector (z;i, ...zip).

We can choose whether the graph is directed or undirected by leaving the X;; loose or setting

Xij = Xj; for all i, j. If the graph is directed A contains Q? parameters. If the graph is undirected,
A is symmetric and contains % parameters. Note that we assume in the following that there
is no self-loop (X;; =0, for i = 1,n).

As defined so far, the model is not identifiable. Daudin et al. [9], proposed to choose Z which
maximizes Tr(ZZ'") among the equivalent versions of (A,Z). The choice is motivated by two
reasons: this constraint implies unicity of (Z,A) provided that n > Q and the n vertices are
different. Moreover the EHVs should not be too far from real vertices in order to confer upon
them some reality. This closeness between EHV and some vertices is naturally provided by the

maximization of Tr(ZZ').

3.2. Parameter Estimation
The log-likelihood is

L:inflog( Z ZigAqizj1) + (1 —xij) log(1 — Z ZigAqizji) (2
i j q,1=1,0 a1=1,0

and the constraints on the parameters are

A e [0,1]¢
Z e 8

Note that the set of admissible solutions, [0, I]Q2 x §, is a convex polyhedron. An algorithm is
proposed in [9] to maximize the Log-Likelihood under the above constraints and the choice of Q
is made using Akaike criterion.

3.3. Comparison between CSBM and SBM

In SBM, the variables Z are random and are equal to 0 or to 1. In CSBM, the variables Z are fixed
parameters, and take their values in the simplex S7,. In SBM, each vertex is assumed to pertain to
only one group. The mixture model is a mixture of populations of pure vertices. In CSBM, each
vertex is a compound of EHYV, so the mixture is at the individual level. However there are two
practical applications of the two models:

— the clustering of the items, i. e. the classification of each item in a group. The key element is
E(Z/X = x) in the mixture model and directly Z for CSBM. Note that E(Z/X = x) in the
mixture model, and Z in CSBM, take their values in the same set 5.

— The connectivity matrix A is the key element for the description and interpretation of groups
in the two models, see [8] [9]. In SBM, A is the mean connectivity matrix in the sense that
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Statistical models for clustering networks 117

TABLE 2. Summary of the models X ~B(P = f(UAV')), with Sg = {x,€ [0, I}Q,):,gzl xg = 1}, B(.) is the Bernoulli
pdf and ML(.) is the multinomial pdf with one trial and Q classes

Model f VA A P

CSBM 1d zesp A€o, 1]Q2 P=((ZAZ’)
RDPG f:R—[0,1], monotone U,V e R A=1Id P=f(UAV’)
DEDICOM  Id ZeRC 7/7=1 AeRr? P=f(ZAZ’)
MMB f(x)=px, p €)0,1] Z € S$h. Uij ~M(Z), Vi ~ M(Z;) Ae [0.1]Q2 Pj = f(U[AV};)
OSBM f@)=0+e ! Z€(0,1)"C, Zy ~B(ay) Acr? P=f(Z'AZ)

the probability of connection is the weighted mean of the connections between the vertices.
In the CSBM, however, A represents an extreme connectivity matrix. As a result A is more
contrasted in CSBM than in the mixture model.

3.4. Other models with continuous latent variables

Several models have been proposed with a functional form similar to X ~ B(ZAZ'): the Random
Dot Product Graphs, DEDICOM, the Mixed Membership Stochastic Blockmodel (MMB) and the
Overlapping Stochastic Blockmodel (OSBM). The Table 2 summarizes the functional definition
of the different models.

3.4.1. Random Dot Product Graphs

The multidimensional scaling (MS) method, applied to the similarity matrix P, consists in
positioning each vertex in a metric space so that the similarity between vertices is approximatively
kept. The underlying model is P = T'T’, where the (n, k)-matrix T contains the coordinates of the
vertices in a k-dimensional metric space. The naive MS method is not well suited for modeling P,
with two major drawbacks: 7T’ does not lie in [0, 1]”2 if 7 € R¥ and TT' is symmetric so it is not
suited for the modeling of directed graphs

The Random Dot Product Graph (RDPG) defined in [20] is

P; = f(tt;) with ; €R* and f(x) €[0,1].

f is a simple threshold in [20]: f(x) =0ifx <0, f(x) =xif 0 <x<1land f(x) =lifx > I.
To get around the second drawback, the RDPG model is extended with two vectors for each
vertex, an in-vector V and an out-vector U, so the model becomes P;j = f(u}.v;)
Another way to get around the symmetry of P, called DEDICOM, was proposed by [15] and
well described in [27]. This model uses only one vector for each vertex but inserts a non-symmetric
(k,k)-matrix A in the dot product. The model is

X =TAT'+E
the matrix T is constrained by 7'T = and T and A are obtained by minimizing || X — TAT'|%.
Several algorithms have been proposed to achieve this task (see [16]).
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118 Jean-Jacques Daudin
3.4.2. Mixed Membership Stochastic Blockmodel

The Mixed Membership Stochastic Blockmodel (MMB, see [1]) is similar to CSBM, with a more
complex setting:
— The lines of Z (i.e. the random vectors of weights Z; = (z;1...zjg)) are assumed to be
identically and independently distributed along a Dirichlet distribution with parameter o
— for each pair of vertices (i, j) in this order, two Multinomial random variables U;_, ; and Vj,_;
are generated with respective probabilities Z; and Z;
— Aisa(Q,0) matrix € [0,1]2°
— p is a sparsity parameter
— X;j is a Bernoulli random variable with probability pU/., AVie
CSBM is essentially a marginalized version of the MMB model: the MMB model assumes a
hierarchical structure: X |U,V,A and U,V |Z, whereas CSBM integrates U,V from this structure to
obtain X|A,Z. Moreover the CSBM model does not need the adhoc sparsity parameter p.

3.4.3. Overlapping Stochastic Blockmodel (OSBM)

Latouche et al. [18] propose another extension of SBM. They relax the constraints ), Z;, = 1 and
use a logistic link function between P(X;; = 1) and a quadratic function of Z.

4. Analysis of a large PPIN

MS-Interactome (Ewing et al, [11]), represents the first large-scale study of protein-protein inter-
actions in human cells using a mass spectrometry approach. A total of 6,463 interactions between
2,235 distinct proteins is available. The MS-Interactome includes human protein-protein interac-
tions identified by a combination of immunoprecipitation and high-throughput mass spectrometry.
Protein complexes in Human kidney cells were pulled by immuno-precipitation using 338 bait
proteins, then identified by LC-ESI-MS/MS. Non specific interactions and false positives were
filtered out based on control experiments, quality control parameters and repeat experiments.
Bait proteins were chosen based on known functional annotation and implied disease associ-
ation. About one third of the 338 bait proteins are disease-related ones, and mainly involved
in cancer. The complete dataset comprises bait-prey pairs with associated confidence values
(complete details are in Ewing et al. 2007). We have analyzed the complete dataset using Mixnet
(http://stat.genopole.cnrs.fr/software/mixnet/) with the variationnal algorithm de-
scribed at the bottom of page 3. We present here the results obtained on a subset of the interactions
possessing a level of confidence exceeding 0.2 (the scale goes from 0 or NA to 1). This reduced
dataset contains 3,494 interactions between 1,561 proteins.

4.1. Number of groups

In the context of mixture model for graphs and using the variational estimation method, Daudin et
al. ([8]) propose to use ICL for choosing the number of groups.

Q(Q2+ 1) log [”(”2— 1)]

ICL=_7 (xp T, T, 00) — (Q — 1) logn —
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FIGURE 1. Left side: Log-Likelihood, AIC and ICL for the MS20 PPIN. x-axis : number of groups. Right side: zoom on
models Q = 10 to Q = 30. y-axis AIC for the MS20 PPIN. x-axis : number of groups

We have found in practice that ICL has a tendency to underestimate the true number of groups
and that AIC give better results for moderate ratios Q/n.

0(0+1)

AIC = 7 (X3 Ty T, 0) — (@ — 1) — 7

Note that ICL and AIC defined above are approximations of the true corresponding criteria, be-
cause the Log-Likelihood is replaced by its variational approximation. However the approximation
is precise if n is sufficiently high, because the variationnal approximation of the log-likelihood
is asymptotically equivalent to the log-ligelihood, [6]. Figure 1 shows that the best choice using
AIC (respectively ICL) is Q = 23 (resp. Q = 8).

4.2. Results for 18 groups

We have first computed the results for Q = 1 to Q = 20. The best model using AIC is Q = 18,
and we have proceed to the complete analysis of each of the 18 groups. Then we examined the
values of AIC from Q = 20 to Q = 30 to see how the curve decreases with Q, and we discovered
that AIC was better for Q = 23 than for Q = 18. However we had no time to reanalyze the 23
new groups for this paper, so we present here the results with Q = 18. We have used the GO term
Finder application from Lewis-Sigler Institute to characterize the groups obtained by Mixnet.
The Gene Ontology project (see http://www.geneontology.org/) provides an ontology of
defined terms representing gene product properties. The ontology covers three domains; cellular
component, the parts of a cell or its extracellular environment; molecular function, the elemental
activities of a gene product at the molecular level, such as binding or catalysis; and biological
process, operations or sets of molecular events with a defined beginning and end, pertinent to the
functioning of integrated living units: cells, tissues, organs, and organisms. We present above the
results obtained with the last domain (Biological process). The other two domains have also been
tested with some interesting results (data not shown). The P-Values for testing the association
between a group and a GO term is obtained by the exact Fisher test which compares the proportion
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TABLE 3. Description of the 18 groups. The proteins have been affected to one group if their probability of pertaining
1o the group is greater than 0.5. The 19" group contains the unclassified proteins

group # pro- | # unrecognized | GO Term Corrected
teins proteins P-Value
1 44 2 Cellular metabolic Process & Apoptose 4.1077
2 79 11 RNA Processing 5.1073
3 12 cell proliferation 8.1073
4 211 24 intracellular transport 9.10°8
5 55 11 macromolecule localization 1.1074
6 4 protein targeting and transport 1.10°°
7 353 57 Cellular metabolic Process 5.10°12
8 111 12 macromolecule modification 3.10°1°
9 372 73 protein complex assembly 3.1078
10 96 14 phosphorylation 7.1077
11 5 2 negative regulation of ubiquitin-protein ligase | 1.107>

activity involved in mitotic cell cycle

12 15 negative regulation of ubiquitin-protein ligase | 2.10~3%
activity involved in mitotic cell cycle

13 2 RNA metabolic process 1.1072
14 8 1 induction of apoptosis by intracellular signals 5.1073
15 8 1 ribosome biogenesis 1.1073
16 110 27 translation 41072
17 2 regulation of cellular process 8.1072
18 19 1 translational elongation 410738
19 55

of proteins associated to the GO term in one group with the same proportion in the reference set
composed of all the annotated proteins of the goa-human-hgnc database. We have also computed
the exact Fisher test by comparing to another reference set, composed of the 1561 proteins of this
study, with similar results (not shown). The P-Values are corrected for multiple testing.

Table 3 shows that each group can be identified by at least one GO term with low corrected
P-values excepted for very small groups such as groups 13 and 17 containing only 2 proteins.
It is interesting to note that some proteins were not recognized by GO term Finder. This means
that one can use the results of Mixnet to propose a classification for unknown protein. This
possibility concerns a total of 234 proteins. The larger groups have quite general GO terms: for
example the group 7, which contains 353 proteins, is characterized by the GO term "Cellular
metabolic Process" and group 9, which contains 372 proteins, is characterized by "protein complex
assembly". On the opposite small groups are characterized by GO terms which are more precise.
For example groups 11 and 12 containing respectively 5 and 15 proteins are characterized by
"negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle", and group
17 containing only two proteins is characterized by "regulation of cellular process".

Table 4 shows the connectivity between groups. One can see that some groups are highly
connected, such as group 2 with group 17, group 5 with groups 13 or 14, group 6 with groups 10
and 13, and group 15 with group 18. Large groups such as 8 and 9 are loosely connected with
other groups.

Figure 2 summarizes the connections between groups using a threshold value of 0.015. One
can see that some small groups are connected to many other groups, such as groups 1(Cellular
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tellular process

intfacellula

FIGURE 2. Representation of the 18 groups obtained with Mixnet. Edges between two nodes are present only if the
probability of connection between them is greater than 0.015. The size of each node and the size of the police are
proportional to the number of proteins contained in it. The width of the edges are proportional to the probability of

connection between the corresponding nodes
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TABLE 4. 100(Probability of connection between the groups)

group | 1 2 3 4 5 6 (7(8(9|10 |11 |12 |13 |14 |15 | 16 17 | 18
12 7 1 0 2 0(2]11]0 0 0 1 2 1 0 2 6 4
2|7 0 4 0 0 500210 0 1 0 5 2 6 0 25 0
3|1 4 0 3119 21011 0 2 0 4 0 2 0 0 0
4|0 0 3 0 0 00|00 0 0 0 8| 11 0 0 1 0
512 0|19 0 0 00110 0 1 0|24 | 38 0 0 8 0
6|0 5 2 0 0 O(1]1]0]45 0 025 0 0 0 0 3
712 0 0 0 0 110]0|0 0 1 0 5 0 0 0 8 0
8|1 2 1 0 1 1|0 1]1 0 1 0 0 1 1 0 3 1
910 0 1 0 0 00110 0 0 0 2 0 0 0 0 0

10 | O 0 0 0 0[45|10]0|0 0 0 0 6 0 1 0 0 0
1 | 0 1 2 0 1 O(1]11]0 0|8 | 84 0 0 0 0 10 1
12 | 1 0 0 0 0 00010 0| 84 0 0 5 0 0 4 0
13 | 2 5 4 8124255012 6 0 0 0 6 0 0 0 5
14 | 1 2 0| 11 | 38 00110 0 0 5 6 4 0 1 0 1
15| 0 6 2 0 0 00110 1 0 0 0 0 3110 0|58
16 | 2 0 0 0 0 00010 0 0 0 0 1|10 0 7 0
17 | 6 | 25 0 1 8 08310 0| 10 4 0 0 0 7 | 100 7
18 | 4 0 0 0 0 3101110 0 1 0 5 1|58 0 7 0

metabolic Process & Apoptose), 3 (cell proliferation), 13 (RNA metabolic process), 14 (induction
of apoptosis by intracellular signals), 15 (ribosome biogenesis) and 17 (regulation of cellular
process). On the opposite large groups are less connected.

Interestingly we note that the 17" group is composed of two proteins highly related with
tumor progression: the Von Hippel Lindau (VHL) tumor suppression protein and MCC, which
blocks cell cycle progression. A similar comment may be made for group 13, composed of
two proteins Tgfb1i4 (transforming growth factor beta 1 induced transcript), which is a growth
factor, and RNSP1, which is a part of a post-splicing multiprotein complex regulating exons.
This is consistent with the fact that about one third of the 338 bait proteins of the dataset are
disease-related ones, and mainly involved in cancer.

These results show that it is possible to use a mixture model such as Mixnet to cluster large
networks in one pass. This method gives interesting results which deserve to be compared with the
ones obtained by the two steps procedures proposed by Marras et al ([22]). We cannot make a more
precise comparison because the classification obtained in [22] is not available. A bigger dataset
(7385 proteins) described by [22] has also been analyzed with Mixnet (not shown). However this
analysis required 7 days.

5. Conclusion

Model-based clustering for networks do not give the same type of results than the communities
or cliques research algorithms. For example in table 2.1 the second line networks contains two
hubs. A community-research algorithm will give two communities whereas SBM give 4 groups.
SBM give more insight into the topology, because a node which is connected to many others
ones is basically different from the nodes which are only connected with it. SBM can detect hubs,
hierarchical structures, not only communities. Note that these models can also be used to predict
the existence of an unknown edge between two nodes.
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The algorithms associated with model-based clustering are time consuming. The variational
method which is the most efficient cannot deal with more than 5 000 nodes. This may be enough
for most of biological and ecological networks and some social networks. However very large
networks with more than 100 000 nodes remain a very hard challenge for these algorithms. On-line
SBM see [31] is promising and some other algorithms are under study.

The asymptotic behavior of the estimates of SBM and CSBM is under study and some results
are given in [6]. The framework is special because we may have an infinite number of parameters
(of order n) with n? observations. Some results have been obtained with an increasing number of
groups, Q(n). The use of covariates about the nodes and the evolution along time are also two
challenging problems.
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