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Asymptotically efficient statistical predictors
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Abstract: Asymptotic efficiency is an optimality criteria for estimators in the theory of point estimation. Here we
present an extension of this criteria to plug-in predictors, under the quadratic risk, for parametric prediction problems.

First, asymptotic efficiency is defined for the quadratic error of estimation of the regression function (QER). Under
suitable conditions, the QER is asymptotically equivalent to the quadratic error of prediction (QEP). A definition of
asymptotic efficiency for predictors is deduced.

Then, a result about limit in distribution for predictors is proved. This yields an alternative definition of asymptotic
efficiency for predictors. The results are applied to the problem of forecasting the Ornstein-Uhlenbeck process
throughout the paper and simulation results are presented.

Résumé : L’efficacité asymptotique est un critère d’optimalité pour les estimateurs dans la théorie de l’estimation
ponctuelle. Nous présentons ici une extension de ce critère pour les prédicteurs plug-in, sous risque quadratique, pour
des problèmes de prédiction paramétriques.

On commence par définir l’efficacité asymptotique pour l’erreur quadratique d’estimation de la fonction de
régression (EQR). Sous certaines conditions, l’EQR est asymptotiquement équivalente à l’erreur quadratique de
prédiction (EQP). On en déduit une définition de l’efficacité asymptotique pour les prédicteurs.

Un résultat de limite en loi pour les prédicteurs est démontré. Une définition alternative de l’efficacité asymptotique
pour les prédicteurs en découle. Les résultats sont appliqués au problème de prévision du processus de Ornstein-
Uhlenbeck tout au long de l’article et des résultats de simulation sont présentés.
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1. Introduction

In this paper we are interested in predicting an unknown real random variable Y based on a known
random variable X , assuming the couple (X ,Y ) follows the distribution Pθ where θ is an unknown
parameter that belongs to the domain Θ ⊂R. If p(X) is a predictor of Y , then we measure its
performance by the quadratic error of prediction (QEP hereafter) which breaks down into the sum
of the following two terms

Eθ

(
p(X)−Y

)2
= Eθ

(
p(X)−Eθ [Y |X ]

)2
+Eθ

(
Eθ [Y |X ]−Y

)2
.

We call Eθ

(
p(X)−Eθ [Y |X ]

)2 the statistical prediction error and Eθ

(
Eθ [Y |X ]−Y

)2 the prob-
abilistic prediction error. We see that minimizing the QEP of p(X) as a predictor of Y is the
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Asymptotically efficient statistical predictors 23

same as minimizing the statistical prediction error, which is the QEP of p(X) as a predictor of
r(X ,θ) = Eθ [Y |X ]. Thus, for the prediction problem under quadratic loss, the quantity of interest
in its most general form is r(X ,θ). And in what follows, the QEP will always refer to the error
with respect to r(X ,θ).

It is natural to see the function x 7→ r(x,θ) as the regression function with regressor X and
regressand Y . The problem of estimation of the regression function r(·,θ) is related to the problem
of prediction of r(X ,θ) since if r̂ is an estimator of the function r(·,θ) then p(X) = r̂(X) can be
seen as a predictor of r(X ,θ). Nonetheless they are two distinct problems since the regression
function r(·,θ) is an unknown deterministic quantity while r(X ,θ) is an unknown random element.
This is why the risk of a predictor and the risk of an estimator of the regression function are
measured differently. We define the quadratic error with respect to the regression function (QER
hereafter) of r̂ to estimate r(·,θ) as follows

ρ(θ) =
∫

X
Eθ

(
r̂(x)− r(x,θ)

)2dµθ (x),

where we choose µθ , a measure on (X ,A ), with X the range of the random variable X .
Oftentimes µθ will be the distribution of X under Pθ . Here r̂ is a random function based on X
such that for all x ∈X , r̂(x) is an estimator of r(x,θ) (in some sense the dependence of r̂(X) on
X is twofold). If the function r is known then r̂(x) can take the form r̂(x) = r(x, θ̂) where θ̂ is an
estimator of θ , we will call such estimators plug-in estimators.

One approach to the problem of prediction is the extension of the theory of UMVUE (uniformly
minimum variance unbiased estimation, see for instance [8]) to the case of statistical prediction
(see [14], [9], [3] ch. 1). In particular a Cramér-Rao type lower bound has been derived for the
QEP (see [14], [10], [11]), and predictors which QEP attain the bound are said to be efficient
predictors in an analogy with efficient estimators. This information inequality reads

Eθ (p(X)− r(X ,θ))2 > b(θ)2 +
(b′(θ)+Eθ [∂θ r(X ,θ)])2

I(θ)
,

where b(θ) = Eθ p(X)−Eθ r(X ,θ) is the bias of p(X) to predict r(X ,θ) and I(θ) the Fisher
information of X . Unsurprisingly this lower bound for predictors suffers the same drawbacks
as the Cramér-Rao bound for estimators. More often than not it is not attainable and it depends
on the bias of the predictor. In the case of point estimation, a theory of asymptotic efficiency
for sequences of estimators has been developped, in order to go past these limitations (see for
instance [5], [7], [12] and [8] ch. 6). Roughly speaking, this theory gives asymptotic lower bounds
on the (normalized) risk of the estimator when the number of observations tends to the infinity.

In this article we attempt to follow such an approach for sequences of predictors and estimators
of the regression function. We are interested in dependent data such as time series indexed byN or
random processes indexed byR+. We will denote by X(T ) = (Xt ,0 6 t 6 T ) the observations until
time T > 0 with Xt taking its values in a measurable space (E,B). We will consider problems of
estimation of the function rT (·,θ) and of prediction of rT (ZT ,θ) given X(T ), where ZT is some
X(T )-measurable random variable taking values in some measurable space (ZT ,CT ), and rT (·,θ)
is some function defined on ZT and taking values in R. For instance, assuming E = R, one
may want to predict rT (ZT ,θ) = Eθ [XT+h|X(T )] for some h > 0. We will restrict our attention to
plug-in predictors, i.e. predictors of the form p(ZT ) = rT (ZT , θ̂T ) where θ̂T is an estimator of the

Journal de la Société Française de Statistique, Vol. 153 No. 1 22-43
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2012) ISSN: 2102-6238



24 D. Bosq and E. Onzon

parameter θ based on X(T ). In sections 2 and 3, we assume the process (Xt , t > 0) is Markov, hence
ZT = XT . In this setting, the QEP and the QER will refer to the following respective quantities.

RT (θ) = Eθ

(
rT (XT , θ̂T )− rT (XT ,θ)

)2
,

and

ρT (θ) =
∫

E
Eθ

(
r̂T (x)− rT (x,θ)

)2dµθ ,T (x),

where r̂T is an estimator of the regression function rT (·,θ), that may be the plug-in estimator
r̂T = rT (·, θ̂T ) and µθ ,T is a measure on (E,B), for instance the distribution of XT .

To motivate our approach, let us illustrate the limitations of the information inequality on the
following prediction problem. Let (Xt , t > 0) be a stationary Ornstein-Uhlenbeck process with
unknown drift coefficient θ ∈R∗+ and known diffusion coefficient σ = 1. We consider the pre-
diction of XT+h given X(T ). The conditional expectation is Eθ [XT+h|X(T )] = e−θhXT = rT (XT ,θ).
The expectation of its derivative vanishes, since the process is centered, Eθ [∂θ rT (XT ,θ)] =
Eθ [−he−θhXT ] = 0. Therefore the bound for an unbiased predictor is zero, i.e. an unbiased ef-
ficient predictor is equal to the conditional expectation e−θhXT which is not possible since it
depends on the unknown parameter θ . Hence the bound is not attainable. Even worse, no uni-
formly best unbiased predictor exists since for any fixed θ0 ∈R∗+, p0(XT ) = e−θ0hXT is an optimal
unbiased predictor at θ0. Here it will be more fruitful to consider the behavior of the predictor
when T → ∞. We will see that for this problem, plug-in predictors based on asymptotically
efficient estimators of θ , are asymptotically efficient predictors.

We will consider two different ways of defining asymptotic efficiency for plug-in predictors in
section 3 and section 4 respectively.

In section 2 we study asymptotic efficiency for the estimation of the regression function.
In section 3, the first definition of asymptotic efficiency for plug-in predictors follows from
asymptotic equivalence of the QER and the QEP, under suitable conditions. While the second
definition follows, in section 4, from a result about the limit in distribution of the predictor.

In section 2 we consider the problem of estimation of the regression function rT (·,θ). We
assume the process (Xt , t > 0) is Markov, hence the function rT (·,θ) is defined on the space E,
where the process (Xt , t > 0) takes its values. Then under suitable assumptions on the process and
on the estimator r̂T , the limit of the QER is bounded from below as follows,

lim
T→∞

ρT (θ)

νT (θ)
> 1, with νT (θ) =

‖∂θ rT (·,θ)‖2
µθ ,T

IT (θ)
,

where IT (θ) is the Fisher information of X(T ), and ‖·‖µθ ,T denotes the norm of L2(µθ ,T ). Moreover
for plug-in estimators rT (·, θ̂T ), and under additional assumptions,

lim
T→∞

T ρT (θ) =U(θ)V (θ),

where
U(θ) = lim

T→∞
‖∂θ rT (·,θ)‖2

µθ ,T
and V (θ) = lim

T→∞
T Eθ (θ̂T −θ)2.

Journal de la Société Française de Statistique, Vol. 153 No. 1 22-43
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2012) ISSN: 2102-6238



Asymptotically efficient statistical predictors 25

Now in section 3, asymptotic equivalence of the QER and the QEP is derived, under some
conditions, when µθ ,T is the distribution of XT . This will allow to define asymptotic efficiency for
a plug-in predictor, under the assumptions of the results, as

T Eθ (θ̂T −θ)2 −−−→
T→∞

I(θ)−1,

where I(θ) = limT→∞
IT (θ)

T .
In a second attempt to define asymptotic efficiency for plug-in predictors we consider, in

section 4, the limit in distribution of
√

T
(
rT (ZT , θ̂T )− rT (ZT ,θ)

)
. Here we do not assume the

process is Markov but that ZT is σ
(
Xt ,φ(T )6 t 6 T

)
-measurable, with φ(T )

T → 1. Under suitable
assumptions,

√
T
(
rT (ZT , θ̂T )− rT (ZT ,θ)

) d−−−→
T→∞

UV,

where ∂θ rT (ZT ,θ)
d−−−→

T→∞
U and

√
T (θ̂T −θ)

d−−−→
T→∞

V , with U and V independent random vari-

ables. When the assumptions are fulfilled, this result allows to define asymptotic efficiency of the
plug-in predictor as being equivalent to the asymptotic efficiency of the estimator θ̂T .

2. Asymptotic efficiency for the QER

2.1. Model

Let (Xt , t > 0), where t ∈N or t ∈R+, be a Markov process taking its values in E. Its distribution
is denoted by Pθ where θ ∈Θ is an unknown real parameter.

For any T > 0, we consider the problem of estimation of a regression function E → R,
x 7→ rT (x,θ) given the past values of the process until time T ,

X(T ) = (Xt ,0 6 t 6 T ).

For instance rT (·,θ) may be the following conditional expectation.

x 7→ rT (x,θ) = Eθ [Y |XT = x],

with Y a real random variable which is σ(Xt , t > T +h) measurable and h > 0.
We consider the following QER.

ρT (θ) =
∫

E
Eθ

(
r̂T (x)− rT (x,θ)

)2dµθ ,T (x),

where we choose µθ ,T , a measure on (E,B), with E the range of the random variable XT , and
r̂T is an estimator of the regression function rT (·,θ). Oftentimes µθ ,T will be the distribution of
XT under Pθ , and r̂T will be a plug-in estimator r̂T = r(·, θ̂T ). We will always assume that the
function (x,θ) 7→ rT (x,θ) is measurable for any T > 0.
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26 D. Bosq and E. Onzon

2.2. Information inequality for the QER

We denote by XT the space of the sample paths of X(T ). We make the following assumptions.

Assumption 2.1. For any T > 0 and any θ ∈Θ, the following conditions hold.

1. Θ⊂R is an open set.

2. The distribution of X(T ) under Pθ has density fT (·,θ) with respect to some σ -finite measure
ν .

3. The set {ξ ∈XT | fT (ξ ,θ)> 0} does not depend on θ .

4. The derivative ∂θ fT (ξ ,θ) exists and is finite for any ξ ∈XT .

5. The equality
∫
XT

fT (X(T ),θ)dν(ξ ) = 1 is differentiable under the
∫

sign.

6. IT (θ) = Eθ

(
∂θ log fT (X(T ),θ)

)2 ∈ (0,∞).

7. The derivative ∂θ rT (x,θ) exists and is finite for any x ∈ E.

8. For any x ∈ E, Eθ (r̂T (x))2 < ∞ and ∂θ Eθ [r̂T (x)] exists and is differentiable under
∫

, i.e.

∂θ Eθ [r̂T (x)] =
∫

XT

∂θ r̂T (x) fT (·,θ)dν .

Remark 2.1. In condition 8 above, the integration is not performed with respect to x, but with
respect to the first variable of fT , this is a sample path of X(T ), which the estimator r̂T depends on.

We denote by
bT (x,θ) = Eθ r̂T (x)− rT (x,θ), x ∈ E, T > 0,

the bias of r̂T (x) for the estimation of rT (x,θ).

Proposition 2.1. Under Assumption 2.1,

ρT (θ) =
∫

E
Eθ

(
r̂T (x)− rT (x,θ)

)2dµθ ,T (x)>
‖∂θ Eθ r̂T‖2

µθ ,T

IT (θ)
+‖bT (·,θ)‖2

µθ ,T
. (1)

In particular if r̂T = rT (·, θ̂T ) with θ̂T an estimator of θ , then

ρT (θ) =
∫

E
Eθ

(
rT (x, θ̂T )− rT (x,θ)

)2dµθ ,T (x)>
‖∂θ Eθ rT (·, θ̂T )‖2

µθ ,T

IT (θ)
+‖bT (·,θ)‖2

µθ ,T
. (2)

Proof. Let x ∈ E. Applying the Cramér-Rao inequality (see [8] p. 120) we get

Eθ

(
r̂T (x)− rT (x,θ)

)2
>

(
∂θ Eθ r̂T (x)

)2

IT (θ)
+bT (x,θ)2.

One integrates with respect to µθ ,T and obtains the desired result.

Remark 2.2. The lower bound only depends on the estimator r̂T through its bias bT (·,θ) and the
derivative of its bias with respect to θ , since Eθ r̂T = rT (·,θ)+bT (·,θ).
Remark 2.3. Obviously the same result holds when there is no dependence in T .
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Asymptotically efficient statistical predictors 27

2.3. Asymptotic efficiency

In addition to Assumption 2.1 we do the following assumption on the bias of the estimator r̂T .

Assumption 2.2.
‖∂θ bT (·,θ)‖µθ ,T = o(‖∂θ rT (·,θ)‖µθ ,T ), T → ∞

We now state an asymptotic bound on the QER under Assumptions 2.1 and 2.2. We will use
the following notation.

νT (θ) =
‖∂θ rT (·,θ)‖2

µθ ,T

IT (θ)

Proposition 2.2. Under Assumptions 2.1 and 2.2, for any θ ∈Θ,

lim
T→∞

ρT (θ)

νT (θ)
> 1.

Proof. From the information inequality (1)

ρT (θ)>
‖∂θ Eθ r̂T‖2

µθ ,T

IT (θ)
+‖bT (·,θ)‖2

µθ ,T
>
‖∂θ Eθ r̂T‖2

µθ ,T

IT (θ)
.

Hence
ρT (θ)

νT (θ)
>
‖∂θ Eθ r̂T‖2

µθ ,T

‖∂θ rT (·,θ)‖2
µθ ,T

. (3)

Now
∂θ Eθ r̂T (x) = ∂θ rT (x,θ)+∂θ bT (x,θ), x ∈ E

hence
‖∂θ Eθ r̂T‖µθ ,T

‖∂θ rT (·,θ)‖µθ ,T

> 1−
‖∂θ bT (·,θ)‖µθ ,T

‖∂θ rT (·,θ)‖µθ ,T

.

Now using Assumption 2.2 we obtain

lim
T→∞

‖∂θ Eθ r̂T‖µθ ,T

‖∂θ rT (·,θ)‖µθ ,T

> 1. (4)

Combining with (3) we obtain the result.

Proposition 2.2 leads naturally to the following definition of asymptotic efficiency for estimators
of the regression function.

Definition 2.1. Suppose the model satisfies Assumption 2.1 and let r̂T be an estimator of rT (·,θ)
that satisfies Assumptions 2.1 and 2.2. Let µθ ,T be a measure on (E,B) to define the QER. We
will say that r̂T is an asymptotically efficient estimator of rT (·,θ) if

ρT (θ)∼ νT (θ) =
‖∂θ rT (·,θ)‖2

µθ ,T

IT (θ)
, T → ∞, ∀θ ∈Θ.
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28 D. Bosq and E. Onzon

Remark 2.4. While developping our results, we always have in mind the regression function
for rT (·,θ), but all the results remain true for any other function satisfying the assumptions. In
particular, taking rT (·,θ)≡ θ , the constant function uniformly equals to θ , in the definition above
and in the corresponding assumptions, yields a definition of asymptotic efficiency for estimators
of the parameter θ .

Remark 2.5. Denote by

mT (θ) =
‖∂θ Eθ r̂T‖2

µθ ,T

IT (θ)
+‖bT (·,θ)‖2

µθ ,T
,

the lower bound in (1). It might seem more natural to define asymptotic efficiency as ρT (θ)∼
mT (θ), T → ∞, ∀θ ∈Θ. However mT (θ) depends on the estimator r̂T (through its bias and the
derivative of its bias), while νT (θ) does not depend at all on the estimator, which makes it more
suitable for the definition of an optimality criteria. It is an advantage of asymptotic efficiency
over the Cramér-Rao lower bound. Moreover we see in the following proposition that in case of
asymptotic efficiency, mT (θ)∼ νT (θ) holds.

Proposition 2.3. Let r̂T be an asymptotically efficient estimator of rT (·,θ), and let θ ∈Θ. Then,
under Assumptions 2.1 and 2.2, as T → ∞, the following conditions hold

‖∂θ Eθ r̂T‖µθ ,T ∼ ‖∂θ rT (·,θ)‖µθ ,T , (5)

‖bT (·,θ)‖2
µθ ,T

‖∂θ rT (·,θ)‖2
µθ ,T

= o(I−1
T (θ)), (6)

νT (θ)∼ mT (θ)∼ ρT (θ). (7)

Proof. From
∂θ Eθ r̂T (x) = ∂θ rT (x,θ)+∂θ bT (x,θ), x ∈ E

we get
‖∂θ Eθ r̂T‖µθ ,T

‖∂θ rT (·,θ)‖µθ ,T

6 1+
‖∂θ bT (·,θ)‖µθ ,T

‖∂θ rT (·,θ)‖µθ ,T

.

thus Assumption 2.2 implies

lim
T→∞

‖∂θ Eθ r̂T‖µθ ,T

‖∂θ rT (·,θ)‖µθ ,T

6 1.

Combining with (4) we obtain (5).
On the other hand, from the information inequality (1)

ρT (θ)

νT (θ)
>
‖∂θ Eθ r̂T‖2

µθ ,T

‖∂θ rT (·,θ)‖2
µθ ,T

+ εT

where

εT =
‖bT (·,θ)‖2

µθ ,T

I−1
T (θ)‖∂θ rT (·,θ)‖2

µθ ,T
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Asymptotically efficient statistical predictors 29

therefore the condition ρT (θ)
νT (θ)

→ 1 and (5) imply limεT 6 0, hence (6).
Finally with (5) and (6)

mT (θ)

νT (θ)
=
‖∂θ Eθ r̂T‖2

µθ ,T

‖∂θ rT (·,θ)‖2
µθ ,T

+ εT −−−→
T→∞

1.

Example 2.1. Ornstein-Uhlenbeck process
We resume with the problem of prediction of a stationary Ornstein-Uhlenbeck process as stated in
the introduction. In this problem the conditional expectation of interest is Eθ [XT+h|XT ] = XT e−θh.
We consider the associated problem of estimation of the regression function x 7→ rT (x,θ) = xe−θh

and the plug-in estimator rT (x, θ̂T ) = xe−θ̂T h, where θ̂T is the maximum likelihood estimator
(MLE) of θ based on X(T ). We choose µθ ,T as the distribution of XT , i.e. µθ ,T = N (0, 1

2θ
).

The Fisher information associated with X(T ) is (see [6] p. 55)

IT (θ) = I0(θ)+T I(θ) with I(θ) =
1

2θ
.

Let us see that Assumption 2.1 is satisfied. All the distributions of the model are mutally
absolutely continuous and the same is true for the corresponding distributions of X(T ). Hence we
can choose ν = Pθ0 for some fixed θ0 ∈R∗+. Then the density of X(T ) with respect to Pθ0 is the
function fT (·,θ) such that (see [6] p. 37–38)

fT (X(T ),θ) =

√
θ

θ0
exp
{

θ −θ0

2
(T −X2

0 −X2
T )−

θ 2−θ 2
0

2

∫ T

0
X2

t dt
}
.

The function bT (·,θ) is
bT (x,θ) = x

(
Eθ

(
e−θ̂T h

)
− e−θh

)
.

It is straightforward to see that Assumption 2.1 is fulfilled.
[2] proved that Eθ

(
e−θ̂T h

)
− e−θh −−−→

T→∞
0. Hence ‖∂θ bT (·,θ)‖2

µθ ,T
−→ 0. Now

‖∂θ rT (·,θ)‖µθ ,T =
∫

E
(−he−θh)2x2dµθ ,T (x) =

h2e−2θh

2θ
,

which does not depend on T . We deduce that Assumption 2.2 is fulfilled.
Now we are going to see that the plug-in estimator rT (x, θ̂T ) = xe−θ̂T h, where θ̂T is the MLE

of θ , is asymptotically efficient for estimating the regression function x 7→ xe−θh. First

νT (θ) =
‖∂θ rT (·,θ)‖2

µθ ,T

IT (θ)
=

h2e−2θh

T +2θ I0(θ)

thus the condition of asymptotic efficiency is

ρT (θ) = Eθ (e−θ̂T h− e−θh)2
∫

E
x2dµθ ,T ∼

h2e−2θh

T
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30 D. Bosq and E. Onzon

i.e.

Eθ (e−θ̂T h− e−θh)2 ∼ 2θh2e−2θh

T
.

Now if η = e−θh, then the MLE of η is η̂T = e−θ̂T h and the following holds (see [6] p. 121)

lim
T→∞

T Eη(η̂T −η)2 = lim
T→∞

T
IT (η)

= I−1(η)

with an abuse of notation, IT (η) and I(η) stand for the Fisher information and the asymptotic
Fisher information when η is the parameter of the model.

The formula of change of parameterization for the Fisher information ([8] p. 125) gives

I(θ) = I(η)h2e−2θh.

Hence
T Eη(η̂T −η)2 −→ 2θh2e−2θh,

and therefore

Eθ (e−θ̂T h− e−θh)2 ∼ 2θh2e−2θh

T
,

which shows the asymptotic efficiency of the estimator r̂T : x 7→ xe−θ̂T h for estimating the regres-
sion function x 7→ xe−θh. In particular Proposition 2.3 applies.

2.4. Conditions for asymptotic efficiency

From now on we are interested in plug-in estimators of the form r̂T = rT (·, θ̂T ) where θ̂T is an
estimator of θ based on X(T ).

We first remark that under a simple (but restrictive) condition the estimator of the regression
function rT (·, θ̂T ) and the predictor rT (XT , θ̂T ) converge at least at the same rate than the associated
estimator θ̂T of the parameter θ .

Proposition 2.4. If rT (x,θ) is Lipschitz with respect to θ , uniformly in x, i.e. there exists c > 0
such that ∀θ ,θ ′ ∈Θ

sup
x∈E

∣∣rT (x,θ ′)− rT (x,θ)
∣∣6 c|θ ′−θ |,

then for any estimator θ̂T of θ , the QER of rT (·, θ̂T ) and the QEP of rT (XT , θ̂T ) are O
(
Eθ (θ̂T −

θ)2
)
.

Proof. The Lipschitz condition gives∫
E

Eθ

(
rT (x, θ̂T )− rT (x,θ)

)2
dµθ ,T (x)6 Eθ

(
sup
x∈E

∣∣rT (x, θ̂T )− rT (x,θ)
∣∣)2

6 c2Eθ (θ̂T −θ)2,

and

Eθ

(
rT (X , θ̂T )− rT (X ,θ)

)2
6 Eθ

(
sup
x∈E
|rT (x, θ̂T )− rT (x,θ)|

)2

6 c2Eθ (θ̂T −θ)2.

The result follows.
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For a sharper result about the QER we use the following assumptions.

Assumption 2.3.

1. ∂θ rT (x,θ) exists ∀x ∈ E, ∀θ ∈Θ, ∀T > 0.

2. rT (·,θ) ∈ L2(µθ ,T ) and ‖∂θ rT (·,θ)‖2
µθ ,T
−−−→
T→∞

U(θ), for all θ ∈Θ,

3. ∃α ∈ (0,1], ∃cT (x) such that supT ‖cT‖µθ ,T < ∞ and

|∂θ rT (x,θ ′)−∂θ rT (x,θ)|6 cT (x)|θ ′−θ |α , ∀x ∈ E, ∀θ ,θ ′ ∈Θ, ∀T > 0.

In addition, θ̂T is an estimator of θ with values in Θ such that

4. limT→∞ T Eθ (θ̂T −θ)2 =V (θ) ∈ (0,∞),

5. Eθ |θ̂T −θ |2+2α = o
( 1

T

)
.

Proposition 2.5. Under Assumption 2.3,

T ρT (θ)−−−→
T→∞

U(θ)V (θ).

Proof. We have

rT (x, θ̂T )− rT (x,θ) = (θ̂T −θ)∂θ rT (x, θ̃T )

where θ̃T ∈ [min(θ , θ̂T ),max(θ , θ̂T )]. Let

δT (x) = (θ̂T −θ)(∂θ rT (x, θ̃T )−∂θ rT (x,θ)).

Hence

rT (x, θ̂T )− rT (x,θ) = (θ̂T −θ)∂θ rT (x,θ)+δT (x),

and using condition 3 of Assumption 2.3

|δT (x)|6 cT (x)|θ̂T −θ |1+α . (8)

On the other hand,

ρT (θ) = Eθ (θ̂T −θ)2
∫

E
(∂θ rT (x,θ))2dµθ ,T (x)+

∫
E

Eθ (δ
2
T (x))dµθ ,T (x)

+2
∫

E
Eθ [(θ̂T −θ)δT (x)]∂θ rT (x,θ)dµθ ,T (x)

= J1 + J2 + J3.

From (8) it follows that

|J2|6 Eθ (|θ̂T −θ |2+2α)
∫

E
c2

T dµθ ,T .
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32 D. Bosq and E. Onzon

Since ‖cT‖µθ ,T is bounded, condition 5 of Assumption 2.3 implies |J2|= o( 1
T ). Now (8) gives

|J3|6 2Eθ (|θ̂T −θ |2+α)
∫

E
cT |∂θ rT (·,θ)|dµθ ,T

6 2Eθ |θ̂T −θ |2+α‖cT‖µθ ,T ‖∂θ rT (·,θ)‖µθ ,T

6 2Eθ

[
|θ̂T −θ ||θ̂T −θ |1+α

]
‖cT‖µθ ,T ‖∂θ rT (·,θ)‖µθ ,T

6 2
(

Eθ (θ̂T −θ)2
) 1

2
(

Eθ |θ̂T −θ |2+2α

) 1
2 ‖cT‖µθ ,T ‖∂θ rT (·,θ)‖µθ ,T

6 O

(
1√
T

)
o
(

1√
T

)
= o

(
1
T

)
.

Finally T J1 −→U(θ)V (θ).

Remark 2.6. Under Assumptions 2.1, 2.2 and 2.3, the estimator rT (·, θ̂T ) is asymptotically efficient
for the QER as soon as V (θ) = limT→∞

T
IT (θ)

.

Example 2.2. Ornstein-Uhlenbeck process
Here we choose µθ ,T = Pθ ,XT = Pθ ,X0 , the distribution of XT under Pθ . The maximum likelihood
estimator (MLE) θ̂T satisfies conditions 4 and 5 of Assumption 2.3 with V (θ) = I(θ)−1 = 2θ

(see [6] p. 121).
On the other hand ∂θ rT (x,θ) =−hxe−θh hence

Eθ (∂ rT (XT ,θ))
2 = h2e−2θhEθ (X2

T ) =
h2e−2θh

2θ
∈ (0,∞).

and

|∂θ rT (x,θ ′)−∂θ rT (x,θ)|= (∂θ )
2rT (x,θ ′′)|θ ′−θ |, θ

′′ ∈ [min(θ ,θ ′),max(θ ,θ ′)].

with |(∂θ )
2rT (x,θ ′′)|= |h2xe−θ ′′h|6 h2|x| thus

sup
T

∫
E
((∂θ )

2rT (·,θ))2dPθ ,X0 6 h4
∫

E
x2dPθ ,X0(x) =

h4

2θ
< ∞,

Therefore we can apply Proposition 2.5 with U(θ) = h2e−2θh

2θ
and V (θ) = 2θ , and we find

T ρT (θ)−→ h2e−2θh.
Remark that instead of choosing µθ ,T = Pθ ,XT , we might alternatively choose µθ ,T = δ(x0) with

x0 ∈R. This would lead to results about estimation of the regression function evaluated at one
particular point x0.

3. Risk comparison

In this section we give conditions under which the QEP and the QER are asymptotically equivalent.
This will allow to define asymptotic efficiency for predictors and make possible to use the results
of section 2 for prediction problems. As in section 2, the process (Xt , t > 0) is assumed to be
Markov. The QER will always be taken with respect to µθ ,T = Pθ ,XT the distribution of XT .
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3.1. Assumptions and lemmas

We are now interested in the QEP defined by

RT (θ) = Eθ

(
rT (XT , θ̂T )− rT (XT ,θ)

)2
, θ ∈Θ.

In order to compare it with ρT (θ) we consider an auxiliary predictor rT (XT , θ̂S(T )) and the
corresponding estimator of the regression function rT (·, θ̂S(T )) where θ̂S(T ) is based on X(S(T ))
with S :R+→R+ an increasing function such that S(T ) < T for all T > 0 and S(T ) ∼ T , as
T → ∞. In what follows, S will always stand for S(T ), omitting the argument T to make notations
lighter.

For all T > 0, we define the function θ̄T : XT →Θ, such that θ̄T (X(T )) = θ̂T .
Let

∆r(x,ξ ) = rT (x, θ̄S(ξ ))− rT (x,θ), ∀x ∈ E,ξ ∈XS,

where the dependence of ∆r in T and θ is kept implicit, to make notations lighter.
The distribution Pθ ,(XT ,X(S)) of (XT ,X(S)), is assumed to be dominated by a σ -finite measure

λ and fθ ,XT , fθ ,X(S) and fθ ,(XT ,X(S)) stand for the densities of XT , X(S) and (XT ,X(S)) respectively.
Now let

RS
T (θ) =

∫
E×XS

(∆r(x,ξ ))2dPθ ,(XT ,X(S))(x,ξ ) =
∫

E×XS

(∆r(x,ξ ))2 fθ ,(XT ,X(S))dλ (x,ξ )

and

ρ
S
T (θ) =

∫
E×XS

(∆r(x,ξ ))2dPθ ,XT (x)dPθ ,X(S)(ξ ) =
∫

E×XS

(∆r(x,ξ ))2 fθ ,XT (x) fθ ,X(S)(ξ )dλ (x,ξ )

Also let
∆ f (x,ξ ) = | fθ ,(XT ,X(S))(x,ξ )− fθ ,XT (x) fθ ,X(S)(ξ )|,

keeping the dependence of ∆ f in T and θ implicit.
We measure the dependence of XT and X(S) by the coefficient

β̃ (S,T ) =
∫

E×XS

(∆ f )dλ .

Remark 3.1. It is bounded from above by the usual β -mixing coefficient. It holds β̃ (S,T ) 6
2β (T −S) with

β (t) = sup
s>0

∥∥Ps
0,θ ⊗P∞

s+t,θ −Ps,t,θ
∥∥

TV

where Ps
0,θ is the distribution of (Xu)06u6s, P∞

s+t,θ the distribution of (Xu)u>s+t , Ps,t,θ the joint
distribution of ((Xu)06u6s,(Xu)u>s+t), and ‖ ·‖TV the total variation norm for signed measures, i.e.
if µ is a signed measure on a measurable space A , then ‖µ‖TV = supA∈A |µ(A)|. For a reference
about mixing coefficients see [4].

We now make the following assumption.

Assumption 3.1.
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34 D. Bosq and E. Onzon

1. ∃m ∈ (2,∞] : δθ ,m = supS,T ‖∆r‖Lm(µ) < ∞, with µ = (∆ f )λ ,

2. β̃ (S,T ) = o
(
(ρS

T )
m

m−2

)
, as T → ∞.

Lemma 3.1. Under Assumption 3.1, RS
T ∼ ρS

T as T → ∞.

Proof. Suppose m < ∞, we have

|RS
T −ρ

S
T |6

∫
(∆r)2

∆ f dλ .

Applying Hölder inequality to (∆r)2(∆ f )
1
p and (∆ f )

1
q with p = m

2 and q = m
m−2 we get

|RS
T −ρ

S
T |6

(∫
(∆r)m

∆ f dλ

) 2
m
(∫

∆ f dλ

)m−2
m

6 δ
2
θ ,mβ̃ (S,T )1− 2

m .

It is straightforward to verify this inequality for the case m = ∞. We deduce∣∣∣∣RS
T

ρS
T
−1
∣∣∣∣6 δ

2
θ ,m

β̃ (S,T )1− 2
m

ρS
T

−→ 0.

Example 3.1. Ornstein-Uhlenbeck process
We take S = T −

√
T . Here λ = `⊗Pθ0,X(S) with ` the Lebesgue measure on R and Pθ0,X(S) the

distribution of X(S) under some fixed parameter θ0 ∈Θ. It holds |∆r(x,ξ )|6 |x|, for all x ∈R. We
deduce the first condition of Assumption 3.1 is fulfilled,

‖∆r‖m
Lm(µ) 6

∫
|∆r|m∆ f dλ 6 2Eθ |X0|m < ∞.

In particular for m = 4, this upper bound is 2Eθ |X0|4 = 6(Eθ X2
0 )

2 = 3
θ

. For the second condition,
we have

ρ
S
T = (Eθ X2

T )Eθ

(
e−θ̂Sh− e−θh

)2
∼ C

T
, as T → ∞,

for some constant C (see [6]). The Ornstein-Uhlenbeck process is geometrically β -mixing (see
[13]), i.e. there exists some γ > 0 such that β (t)6 e−γt . Moreover

β̃ (S,T )6 2β (T −S) = 2β (
√

T ).

Hence the second condition of Assumption 3.1 is fulfilled too for any m > 2.

We are now looking for conditions under which RT ∼ ρT . We will use the following lemma.

Lemma 3.2. Let (F,d) be a metric space, (un) a sequence of real numbers, then the conditions
und(an,bn)→ l and und(bn,cn)→ 0 imply und(an,cn)→ l.

We denote by
b

θ̂T
(θ) = Eθ θ̂T −θ

the bias of the estimator θ̂T . And we make the following assumption.
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Assumption 3.2. Condition 2 of Assumption 2.1 holds and,

1. for any x ∈ E, Eθ (θ̂T )
2 < ∞ and ∂θ Eθ θ̂T exists and is differentiable under

∫
, i.e.

∂θ Eθ θ̂T =
∫

XT

∂θ

(
θ̄T (ξ ) fT (ξ ,θ)

)
dν(ξ ).

In addition, as T → ∞, the following conditions hold.

2. There exists I(θ)> 0 such that IT (θ)∼ T I(θ).

3. T Eθ (θ̂T −θ)2→ I(θ)−1.

4. ∂θ b
θ̂T
(θ)→ 0.

Remark 3.2. Under Assumptions 2.1 and 3.2, the estimator θ̂T fulfills the definition of asymptotic
efficiency of Remark 2.4. Conversely, if IT (θ)∼ T I(θ) and θ̂T is an estimator of θ that fulfills
the definition of asymptotic efficiency of Remark 2.4, then Assumption 3.2 is satisfied.

Lemma 3.3. Under Assumption 3.2,

T Eθ (θ̂T − θ̂S)
2 −−−→

T→∞
0.

Proof. Let θ̃T = 1
2(θ̂T + θ̂S). For any vectors x and y, the parallelogram identity is

‖x+ y‖2 +‖x− y‖2 = 2‖x‖2 +2‖y‖2.

Taking x = θ̂T −θ and y = θ̂S−θ in the normed space L2(Pθ ) one gets

Eθ (θ̂T + θ̂S−2θ)2 +Eθ (θ̂T − θ̂S)
2 = 2Eθ (θ̂T −θ)2 +2Eθ (θ̂S−θ)2.

Hence
4T Eθ (θ̃T −θ)2 +T Eθ (θ̂T − θ̂S)

2 = 2T Eθ (θ̂T −θ)2 +2T Eθ (θ̂S−θ)2.

Now to complete the proof it remains to prove that

T Eθ (θ̃T −θ)2 −−−→
T→∞

I(θ)−1. (9)

From
|a+b|2 6 2|a|2 +2|b|2,

with a = θ̂T−θ

2 and a = θ̂S−θ

2 one obtains

T Eθ (θ̃T −θ)2 6 2
[1

4
T Eθ (θ̂T −θ)2 +

1
4

T Eθ (θ̂S−θ)2
]
,

and since S∼ T ,

lim
T→∞

T Eθ (θ̃T −θ)2 6 2
[1

4
I(θ)−1 +

1
4

I(θ)−1
]
= I(θ)−1. (10)
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Now the information inequality gives

T Eθ (θ̃T −θ)2 > T (b
θ̃T
(θ))2 +T

(
∂θ b

θ̃T
(θ)+1

)2

IT (θ)
,

and
∂θ b

θ̃T
(θ) =

1
2
[
∂θ b

θ̂T
(θ)+∂θ b

θ̂S
(θ)
]
−−−→
T→∞

0,

therefore
lim

T→∞

T Eθ (θ̃T −θ)2 > lim
T→∞

T ∂θ b
θ̃T
(θ)+ I(θ)−1. (11)

From inequalities (10) and (11) we get limT→∞ T ∂θ b
θ̃T
(θ) = 0. We deduce that (9) is true. This

completes the proof.

3.2. Asymptotic equivalence of the QER and the QEP

Assumption 3.3. As T → ∞, T Eθ (θ̂T − θ̂S)
2→ 0.

Remark 3.3. Assumption 3.2 implies Assumption 3.3. Hence, if IT (θ) ∼ T I(θ), and θ̂T is
an estimator of θ that fulfills the definition of asymptotic efficiency of Remark 2.4, then, by
Lemma 3.3, Assumption 3.3 is satisfied.

Proposition 3.1. Under Assumptions 2.3, 3.1 and 3.3, if there exists some deterministic constant
C > 0 such that

|rT (XT ,θ
∗)− rT (XT ,θ)|6C|θ ∗−θ |, ∀θ ,θ ∗ ∈Θ, (12)

then
RT ∼ ρT , as T → ∞.

Proof. With Assumption 3.1, Lemma 3.1 gives RS
T ∼ ρS

T . On the other hand, with Assumptions 2.3
and the condition S∼ T , Proposition 2.5 gives ρS

T ∼ ρT . Now by condition (12)

T Eθ |rT (XT , θ̂T )− rT (XT , θ̂S)|2 6C2T Eθ |θ̂T − θ̂S|2.

With Assumption 3.3, the right-hand side vanishes as T → ∞. Hence

T Eθ |rT (XT , θ̂T )− rT (XT , θ̂S)|2 −−−→
T→∞

0.

Since
T RS

T = T Eθ |rT (XT , θ̂S)− rT (XT ,θ)|2 −→U(θ)V (θ),

by Lemma 3.2 we deduce RT ∼ RS
T , and finally,

RT ∼ RS
T ∼ ρ

S
T ∼ ρT .

Proposition 3.2. Suppose the following conditions hold.

1. T 2Eθ |θ̂T − θ̂S|4 = O(1), as T → ∞.
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2. There exists a measurable function ` : E→R+ such that

|rT (XT ,θ
∗)− rT (XT ,θ)|6 `(XT )|θ ∗−θ |.

3. Cθ = supT Eθ

(
`4+ν(XT )

)
< ∞ for some ν > 0.

Then again, under Assumptions 2.3, 3.1 and 3.3,

RT ∼ ρT , as T → ∞.

Proof. Let c > 0 and

∆T = T Eθ

(
rT (XT , θ̂T )− rT (XT , θ̂S)

)2
6 T Eθ

[
`2(XT )(θ̂T − θ̂S)

2(1`(XT )6c +1`(XT )>c)
]
.

First, by Assumption 3.3

T Eθ

(
`2(XT )(θ̂T − θ̂S)

2
1`(XT )6c

)
6 c2T Eθ (θ̂T − θ̂S)

2 −→ 0.

On the other hand, applying Hölder inequality with p1 = 1+ ν

8+ν
and q1 = 1+ 8+ν

ν
,

AT = Eθ

(
`2(XT )(θ̂T − θ̂S)

2
1`(XT )>c

)
6
(

Eθ

(
`2p1(XT )(θ̂T − θ̂S)

2p1
)) 1

p1 (Pθ (`(XT )> c))
1

q1 .

Applying Hölder inequality again with p2 = 2+ ν

4 and q2 = 1+ 4
4+ν

,(
Eθ

(
`2p1(XT )(θ̂T − θ̂S)

2p1
)) 1

p1 6
(
Eθ `

2p1 p2(XT )
) 1

p1 p2

(
Eθ (θ̂T − θ̂S)

2p1q2
) 1

p1q2

6C
2

4+ν

θ

(
Eθ (θ̂T − θ̂S)

4
) 1

2
.

Since 2p1 p2 = 4+ν and 2p1q2 = 4. Now, using the condition 1, there are some constants M > 0
and T0 > 0, that do not depend on c, such that,

sup
T>T0

TAT 6 Mc−
1

q1 .

Now let ε > 0 and choose c such that supT>T0
TAT < ε . Hence limT→∞ ∆T < ε . Therefore

∆T −→ 0.

In a first version of this article, we used the condition Eθ `
8(XT )< ∞ instead of the condition 3

of Proposition 3.2. We thank the anonymous referee for pointing us how the use of the Hölder
inequality could weaken this condition.

It can be seen that the result applies to the Ornstein-Uhlenbeck process.
In light of Propositions 3.1 and 3.2 and section 2 we see that the following definition of

asymptotic efficiency for plug-in predictors makes sense.

Definition 3.1. Let rT (XT , θ̂T ) be a plug-in predictor of rT (XT ,θ) and suppose either the assump-
tions of Proposition 3.1 or those of Proposition 3.2 are fulfilled as well as Assumptions 2.1 and
2.2. We say that the predictor rT (XT , θ̂T ) is asymptotically efficient if

T Eθ (θ̂T −θ)2 −−−→
T→∞

I(θ)−1.
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4. Limit in distribution for plug-in predictors

In this section we weaken the assumption that the process (Xt)t>0 is Markov and assume instead

Eθ [XT+h|X(T )] = rT (ZT ,θ), ∀T > 0,

where ZT is σ
(
Xt ,φ(T )6 t 6 T

)
-measurable, with φ(T )

T → 1, and h > 0 is the horizon of predic-
tion. We consider a plug-in predictor rT (ZT , θ̂T ) where θ̂T is an estimator of θ .

4.1. Limit in distribution

We make the following assumptions.

Assumption 4.1.
1. The process is α-mixing i.e.

αθ (u) = sup
t>0

sup
A∈F t

0
B∈F ∞

t+u

|Pθ (A∩B)−Pθ (A)Pθ (B)| −−−→
u→∞

0

with F t
0 = σ(Xs,0 6 s 6 t) and F ∞

t+u = σ(Xs, t +u 6 s < ∞).

2. There exist two independent random variables U and V such that

∂θ [rT (ZT ,θ)]
d−−−→

T→∞
U ∼ Qθ ,

and √
T (θ̂T −θ)

d−−−→
T→∞

V ∼ Rθ with θ̂T
Pθ−−−→

T→∞
θ .

3. Let S :R+→R+ be an increasing function such that φ(T )−S(T )→∞ and S(T )
T → 1, then

δT =
rT (ZT , θ̂S(T ))− rT (ZT ,θ)

θ̂S(T )−θ
−∂θ rT (ZT ,θ)

Pθ−−−→
T→∞

0.

In order to get a limit in distribution we first consider a predictor rT (ZT , θ̂S(T )) with an estimator
θ̂S(T ) based on X(S(T )).

Proposition 4.1. Under Assumption 4.1

√
T
(
rT (ZT , θ̂S(T ))− rT (ZT ,θ)

) d−−−→
T→∞

UV

with (U,V )∼ Qθ ⊗Rθ .

Proof. Let UT = ∂θ rT (ZT ,θ) and VT =
√

T (θ̂S(T )−θ). The α-mixing condition gives

sup
A∈BR
B∈BR

|Pθ (UT ∈ A,VT ∈ B)−Pθ (UT ∈ A)Pθ (VT ∈ B)|6 αθ

(
φ(T )−S(T )

)
−−−→
T→∞

0
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Let A,B ∈BR, such that Pθ (U ∈ ∂A) = 0 and Pθ (V ∈ ∂B = 0), then

|Pθ (UT ∈ A,VT ∈ B)−Pθ (U ∈ A)Pθ (V ∈ B)|6 |Pθ (UT ∈ A,VT ∈ B)−Pθ (UT ∈ A)Pθ (VT ∈ B)|
+ |Pθ (UT ∈ A)Pθ (VT ∈ B)−Pθ (U ∈ A)Pθ (V ∈ B)|.

Therefore (see [1] theorem 3.1 p. 20)

(UT ,VT )
d−−−→

T→∞
(U,V ).

Now let

∆T =
√

T
(
rT (ZT , θ̂S(T ))− rT (ZT ,θ)

)
=
(
∂θ rT (ZT ,θ)+δT

)√
T
(
θ̂S(T )−θ

)
= (UT +δT )VT .

Condition 3 of Assumption 4.1 states δT
Pθ−−−→

T→∞
0. Then (see [1] p. 25)(

(UT +δT ),VT
) d−−−→

T→∞
(U,V ).

Hence ∆T
d−−−→

T→∞
UV .

Now we can replace S(T ) with T in the result under some additional assumptions.

Proposition 4.2. Under Assumptions 3.3 and 4.1, suppose the following two conditions hold,
1. UT = ∂θ rT (ZT ,θ) is bounded in distribution, i.e. there exists a random variable Ũ such

that
P(|UT |> y)6 P(|Ũ |> y), ∀y > 0,

2.

δ
∗
T =

rT (ZT , θ̂T )− rT (ZT , θ̂S(T ))

θ̂T − θ̂S(T )
−∂θ rT (ZT ,θ)

Pθ−−−→
T→∞

0.

Then, √
T
(
rT (ZT , θ̂T )− rT (ZT ,θ)

) d−−−→
T→∞

UV,

with (U,V )∼ Qθ ⊗Rθ .

Proof. Let

∆
∗
T =
√

T
(
rT (ZT , θ̂T )− rT (ZT , θ̂S(T ))

)
=
(
UT +δ

∗
T
)√

T
(

θ̂T − θ̂S(T )

)
,

Let
AT =UT +δ

∗
T and BT =

√
T
(

θ̂T − θ̂S(T )

)
.

And let ε > 0, then

Pθ (|∆∗T |> ε) = Pθ (|AT BT |> ε, |AT |> a)+Pθ (|AT BT |> ε, |AT |< a)

6 Pθ (|AT |> a)+Pθ

(
|BT |>

ε

a

)
6 Pθ

(
|UT |>

a
2

)
+Pθ

(
|δ ∗T |>

a
2

)
+Pθ

(
|BT |>

ε

a

)
6 Pθ

(
|Ũ |> a

2

)
+Pθ

(
|δ ∗T |>

a
2

)
+Pθ

(
|BT |>

ε

a

)
.
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By Assumption 3.3,

Pθ

(√
T |θ̂T − θ̂S(T )|> ε

)
6 ε

−2Eθ

[
T
(

θ̂T − θ̂S(T )

)2
]
−−−→
T→∞

0.

Hence
BT

Pθ−−−→
T→∞

0. (13)

Let η > 0, then ∃a > 0 such that

Pθ

(
|Ũ |> a

2

)
<

η

3
,

and ∃T0 > 0 such that ∀T > T0, by condition 2 and (13) respectively,

Pθ

(
|δ ∗T |>

a
2

)
<

η

3
and Pθ

(
|BT |>

ε

a

)
<

η

3
.

Hence Pθ (|∆∗T |> ε)< η . Finally ∆∗T
Pθ−→ 0. Therefore

√
T
(

rT (ZT , θ̂T )− rT (ZT ,θ)
)
= ∆

∗
T +∆T

d−−−→
T→∞

UV.

Example 4.1. Ornstein-Uhlenbeck process
The process is β -mixing, hence it is α-mixing. Condition 2 of Assumption 4.1 and condition 1 of
Proposition 4.2 are fulfilled since

UT = ∂θ rT (ZT ,θ) =−hXT e−θh ∼N

(
0,

h2e−2θh

2θ

)
,

and √
T (θ̂T −θ)

d−→N (0,2θ).

For the condition 3, we have

Pθ (δT > ε) = Pθ

(
|XT |

∣∣∣∣∣e−θ̂S(T )− e−θh

θ̂S(T )−θ
+he−θh

∣∣∣∣∣> ε

)

6 Pθ (|XT |> a)+Pθ

(∣∣∣∣∣e−θ̂S(T )− e−θh

θ̂S(T )−θ
+he−θh

∣∣∣∣∣> ε

a

)

6 Pθ (|X0|> a)+Pθ (|θ̂S(T )−θ |> α)+Pθ

(∣∣∣∣∣e−θ̂S(T )− e−θh

θ̂S(T )−θ
+he−θh

∣∣∣∣∣> ε

a
, |θ̂S(T )−θ |< α

)
.

Now let η > 0, then ∃a > 0 such that Pθ (|X0| > a) < η

2 ). There exists α > 0 such that for all
θ ′ ∈R+

|θ ′−θ |< α ⇒

∣∣∣∣∣e−θ ′h− e−θh

θ ′−θ
+he−θh

∣∣∣∣∣6 ε

a
.

And ∃T0 > 0, ∀T > T0, Pθ (|θ̂S(T )− θ | > α) < η

2 . Thus Pθ (δT > ε) < η (θ̂T is consistent, see
[6]). Hence condition 3 of Assumption 4.1 is fulfilled. Proof for condition 2 of Proposition 4.2 is
similar.
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4.2. Asymptotic efficiency

Convergence in distribution of ∂θ rT (ZT ,θ) only depends on the statistical model. It is therefore
natural to define, under conditions of Proposition 4.2, the asymptotic QEP of the predictor
rT (ZT , θ̂T ) as

Eθ (U2V 2) = Eθ (U2)Eθ (V 2).

We see here that it is natural to define that a plug-in predictor is asymptotically efficient if and only
if it is based on an asymptotically efficient estimator of θ . Provided that asymptotic efficiency of
the estimator of θ is defined with respect to its asymptotic variance (i.e. EθV 2) and that appropriate
conditions to avoid supereffiency are fulfilled (see for instance [8] section 6.2 or [12] section 8.5).

5. Simulations

In the previous sections it has been seen that, when the assumptions are fulfilled, the asymptotic
efficiency of the estimator of the parameter ensures the asymptotic efficiency of the corresponding
plug-in predictor. In particular the problem of prediction of the Ornstein-Uhlenbeck process fulfills
those assumptions. Hence a plug-in predictor based on an asymptotically efficient estimator like
the MLE is an asymptotically efficient predictor. We will call this plug-in predictor the MLP.

The results of the previous sections are limit theorems and they do not tell anything about
how large the sample need to be in order to have the QEP get close to the asymptotic bound of
efficiency, where we call asymptotic bound of efficiency (ABE) the function

T 7→ U(θ)

T I(θ)
=

h2e−2θh

T
,

where

I(θ) = lim
T→∞

IT (θ)

T
=

1
2θ

and U(θ) = lim
T→∞

Eθ

(
∂θ rT (XT ,θ)

)2
=

h2e−2θh

2θ
.

In order to check visually how quickly the QEP of the predictor gets close to the ABE, we
performed Monte-Carlo simulations of the Ornstein-Uhlenbeck process with θ ∈ {0.1,0.3,1,3}
and computed the error of its (approximated) MLP for h ∈ {1,3}. We also compute the QER with
respect to the distribution of XT .

A program was written by the authors in the OCaml language to carry out the calculations of the
simulated sample paths, the predictor, its QEP and QER and the ABE. The number of simulated
paths of the process for each value of θ is 106. Paths of the Ornstein-Uhlenbeck process were
generated with a discretization step of 0.05. The discretized sample paths were computed from the
innovation processes, which are i.i.d. sequences of gaussian samples. They were generated using
the zigurrat algorithm of the GNU Scientific Library (GSL) with the pseudo-random number
generator taus of the same library. The graphical output was performed with the R programming
language.

The MLE of θ is

θ̂T =
T −X2

0 −X2
T +

√
(T −X2

0 −X2
T )

2 +8
∫ T

0 X2
t dt

4
∫ T

0 X2
t dt

,
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and we use the following discretized approximation instead

θ̃T =
T −X2

0 −X2
T +

√
(T −X2

0 −X2
T )

2 +8s∑
T/s
n=0 X2

sn

4s∑
T/s
n=0 X2

sn

,

with s, the size of the discretization step, is such that s = 1
r = 0.05 with the sampling rate r = 20.

Off course the MLE is not computable since we always get a finite number of pieces of data and
never a continuum of observations.

Figures 1 and 2 show plots of the QEP and the QER of the MLP in thin black and blue lines
respectively, plotted against the time T at which the prediction of Eθ [XT+h|XT ] is performed,
along with the ABE in thick red line. Logarithmic scales are used for both axis of the plots to
make them easier to interpret.

The QEP stands less favorably with respect to the ABE as θ and h get large. The QER does
not show this pattern. For all the values of h and θ tested, the QEP and the QER finally attain a
regime of asymptotic efficiency at some point. The time at which the QEP, the QER and the ABE
become of the same order of magnitude varies according to the parameter θ and the horizon of
prediction h. The QEP attains this regime more quickly for h = 1 than h = 3. But otherwise, no
clear relationship appears between the time at which the asymptotic regime is attained and the
values of the parameters.

We also note that the QEP and the QER converge to the ABE even though the estimator we
used, in the plug-in predictor, is only a discretized approximation of the MLE.
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FIGURE 1. ABE, QEP and QER plotted against time, for h = 1
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FIGURE 2. ABE, QEP and QER plotted against time, for h = 3
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