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On the shrinkage estimation of variance
Titre : Sur l’estimation de la variance par “shrinkage”

Gérard Biau1 and Yannis G. Yatracos2

Abstract: For a large class of distributions and large samples, it is shown that estimates of the variance σ2 and of the
standard deviation σ are more often Pitman closer to their target than the corresponding shrinkage estimates which
improve the mean squared error. Our results indicate that Pitman closeness criterion, despite its controversial nature,
should be regarded as a useful and complementary tool for the evaluation of estimates of σ2 and of σ .

Résumé : Nous montrons dans cet article que certains estimateurs de la variance σ2 et de l’écart type σ sont plus
souvent proches de leur cible au sens de Pitman que les estimateurs correspondants obtenus par “shrinkage”, pourtant
connus pour améliorer l’erreur quadratique moyenne. Nos résultats sont valables asymptotiquement et pour une grande
famille de lois de probabilité. Ils indiquent en particulier que le critère de proximité de Pitman, malgré sa nature
controversée, devrait être envisagé comme un outil utile à l’évaluation de la qualité des estimateurs de σ2 et de σ .
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1. Introduction

Given two estimates θ̂1 and θ̂2 of an unknown parameter θ , Pitman [13] has suggested in 1937
that θ̂1 should be regarded as a “closer” estimate of θ if

P
(
|θ̂2−θ |> |θ̂1−θ |

)
> 1/2.

This criterion, which is often called Pitman closeness, has an intuitive appeal and is in accordance
with statistical tradition that preference should be expressed on a probability scale.

Much attention has been given to Pitman closeness criterion (PCC) properties in the 90’s. It
has been sharply criticized by some and vigorously defended by others on various counts. A
good illustration of the debate is the paper by Robert, Hwang, and Strawderman [14] and the
subsequent discussion by Blyth; Casella and Wells; Ghosh, Keating, and Sen; Peddada; and Rao
[14], in which different views in PCC’s favor or against it are presented.

Leaving the controversy behind, the object of this communication is to compare PCC with
the familiar concept of mean squared error for variance estimation purposes. For a large class
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of distributions and large samples, it is shown herein that estimates of the variance σ2 and of
the standard deviation σ are more often “closer” to their target than the corresponding shrinkage
estimates which improve the mean squared error. The same phenomenon is also observed for
small and moderate sample sizes. Our results modestly indicate that PCC should be regarded as a
useful and complementary tool for the evaluation of estimates of σ2 and of σ , in agreement with
Rao’s comment [14]: “I believe that the performance of an estimator should be examined under
different criteria to understand the nature of the estimator and possibly to provide information to
the decision maker. I would include PCC in my list of criteria, except perhaps in the rare case
where the customer has a definite loss function”.

To go straight to the point, suppose that X1, . . . ,Xn (n ≥ 2) are independent, identically dis-
tributed (i.i.d.) real-valued random variables, with unknown mean and unknown finite positive
variance σ2. We consider here the estimation problem of the variance σ2. Set

X̄n =
1
n

n

∑
i=1

Xi.

The sample variance estimate

S2
SV,n =

1
n

n

∑
i=1

(Xi− X̄n)
2

and the unbiased estimate

S2
U,n =

1
n−1

n

∑
i=1

(Xi− X̄n)
2

are both standard statistical procedures to estimate σ2. However, assuming squared error loss,
more general estimates of the form

δn

n

∑
i=1

(Xi− X̄n)
2
,

where (δn)n is a positive sequence, are often preferred. For example, if X1, . . . ,Xn are sampled from
a normal distribution, Goodman [3] proved that we can improve upon S2

SV,n and S2
U,n uniformly by

taking δn = 1/(n+1). This means, setting

S2
M,n =

1
n+1

n

∑
i=1

(Xi− X̄n)
2
,

that for all n and all values of the parameter,

E
[
S2

M,n−σ
2]2 < E

[
S2

SV,n−σ
2]2 and E

[
S2

M,n−σ
2]2 < E

[
S2

U,n−σ
2]2 .

To see this, it suffices to note that, in the normal setting,

E

[
δn

n

∑
i=1

(Xi− X̄n)
2−σ

2

]2

= σ
4 [(n2−1

)
δ

2
n −2(n−1)δn +1

]
, (1)

and that the right-hand side is uniformly minimized by δ ?
n = 1/(n+1) (Lehmann and Casella

[11, Chapter 2]). Since the values δn = 1/n and δn = 1/(n−1), corresponding to S2
SV,n and S2

U,n,
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On the shrinkage estimation of variance 7

respectively, lie on the same side of 1/(n+1), it is often referred to S2
M,n as a shrinked version of

S2
SV,n and S2

U,n, respectively. Put differently, S2
M,n = cnS2

SV,n (respectively, S2
M,n = c̃nS2

U,n) where, for
each n, cn (respectively, c̃n) belongs to (0,1).

Under different models and assumptions, inadmissibility results in variance and standard
deviation estimation were proved using such estimates, among others, by Goodman [3, 4], Stein
[16], Brown [2], Arnold [1] and Rukhin [15]. For a review of the topic, we refer the reader to
Maatta and Casella [12], who trace the history of the problem of estimating the variance based
on a random sample from a normal distribution with unknown mean. More recently, Yatracos
[18] provided shrinkage estimates of U-statistics based on artificially augmented samples and
generalized, in particular, the variance shrinkage approach to non-normal populations by proving
that, for all probability models with finite second moment, all values of σ2 and all sample sizes
n≥ 2, the estimate

S2
Y,n =

n+2
n(n+1)

n

∑
i=1

(Xi− X̄n)
2

ameliorates the mean squared error of S2
U,n. [Note that S2

Y,n = cnS2
U,n for some cn ∈ (0,1), so that

S2
Y,n is in fact a shrinked version of S2

U,n.]
Nevertheless, the variance shrinkage approach, which is intended to improve the mean squared

error of estimates, should be carefully considered when performing point estimation. The rationale
behind this observation is that the mean squared error is the average of the parameter estimation
error over all samples whereas, in practice, we use an estimate’s value based on one sample
only and we care for the distance from its target. To understand this remark, just consider the
following example, due to Yatracos [19]. Suppose again that X1, . . . ,Xn are independently normally
distributed, with finite variance σ2. Then, an easy calculation reveals that

P
(∣∣S2

M,n−σ
2∣∣> ∣∣S2

U,n−σ
2∣∣)= P

(
χ

2
n−1 < n− 1

n

)
, (2)

where χ2
n−1 is a (central) chi-squared random variable with n−1 degrees of freedom (for a rigorous

proof of this equality, see Lemma 1 in Section 4). Figure 1 depicts the values of probability (2)
for sample sizes ranging from 2 to 200. It is seen on this example that the probability slowly
decreases towards the value 1/2, and that it may be significantly larger than 1/2 for small and even
for moderate values of n.

Thus, Figure 1 indicates that, for a normal population, the standard unbiased estimate S2
U,n is

Pitman closer to the target σ2 than the shrinkage estimate S2
M,n, despite the fact that, for all n,

E
[
S2

M,n−σ
2]2 < E

[
S2

U,n−σ
2]2 .

Moreover, the advantage of S2
U,n with this respect becomes prominent for smaller values of n, and

a similar phenomenon may be observed by comparing the probability performance of S2
SV,n vs

S2
M,n. In fact, our main Theorem 1 reveals (in the particular case of normal distribution) that

P
(∣∣S2

M,n−σ
2∣∣> ∣∣S2

U,n−σ
2∣∣)= 1

2
+

5
6
√

πn
+o
(

1√
n

)
and

P
(∣∣S2

M,n−σ
2∣∣> ∣∣S2

SV,n−σ
2∣∣)= 1

2
+

13
12
√

πn
+o
(

1√
n

)
,
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FIGURE 1. Plot of P(χ2
n−1 < n−1/n) as a function of n, n = 2, . . . ,200.

that is, S2
U,n and S2

SV,n are both asymptotically Pitman closer to σ2 than S2
M,n. It is therefore clear,

at least on these Gaussian examples, that we should be cautious when choosing to shrink the
variance for point estimation purposes. As we recently discovered, the examples in Yatracos [19]
are similar to those studied in Khattree [7, 8, 9, 10].

In the present paper, we generalize this discussion to a large class of distributions. Taking a
more general point of view, we let X1, . . . ,Xn be a sample drawn according to some unknown
distribution with finite variance σ2, and consider two candidates to estimate σ2, namely

S2
1,n = αn

n

∑
i=1

(Xi− X̄n)
2 and S2

2,n = βn

n

∑
i=1

(Xi− X̄n)
2
.

Assuming mild moment conditions on the sample distribution, our main result (Theorem 1) offers
an asymptotic development of the form

P
(∣∣S2

2,n−σ
2∣∣≥ ∣∣S2

1,n−σ
2∣∣)= 1

2
+

∆√
n
+o
(

1√
n

)
,

where the quantity ∆ depends both on the moments of the distribution and the ratio of the sequences
(αn)n and (βn)n. It is our belief that this probability should be reported in priority before deciding
whether to use S2

2,n instead of S2
1,n, depending on the sign and values of ∆. Standard distribution

examples together with classical variance estimates are discussed, and similar results pertaining
to the estimation of the standard deviation σ are also reported.
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On the shrinkage estimation of variance 9

2. Main results

As for now, we let X1, . . . ,Xn (n ≥ 2) be independent and identically distributed real-valued
random variables, with unknown finite variance σ2 > 0. Throughout the document, we let X be a
generic random variable distributed as X1 and make the following assumption on the distribution
of X :

Assumption [A] Let m = EX . Then
(i) EX6 < ∞ and τ > 0, where

τ
2 = E

[
X−m

σ

]4

−1,

(ii) and
limsup
|u|+|v|→∞

∣∣Eexp
(
iuX + ivX2)∣∣< 1.

The latter restriction, often called Cramér’s condition, holds if the distribution of X is nonsingu-
lar or, equivalently, if that distribution has a nondegenerate absolutely continuous component—in
particular, if X has a proper density function. A proof of this fact is given in Hall [5, Chapter 2].

On the basis of the given sample X1, . . . ,Xn, we wish to estimate σ2. In this context, suppose
that we are given two estimates S2

1,n and S2
2,n, respectively defined by

S2
1,n = αn

n

∑
i=1

(Xi− X̄n)
2 and S2

2,n = βn

n

∑
i=1

(Xi− X̄n)
2
, (3)

where (αn)n and (βn)n are two positive sequences. Examples of such sequences have already
been reported in the introduction section, and various additional illustrations will be discussed
below. As a leading example, the reader should keep in mind the normal case, with αn = 1/(n−1)
(unbiased estimate) and βn = 1/(n+1) (minimum quadratic risk estimate). We first state our main
result, whose proof relies on the technique of Edgeworth expansion (see, e.g., Hall [5, Chapter
2]).

Theorem 1. Assume that Assumption [A] is satisfied, and that the sequences (αn)n and (βn)n in
(3) satisfy the constraints

(i) βn < αn and (ii)
2

αn +βn
= n+a+o(1) as n→ ∞,

where a ∈ R. Then, for the estimates S2
1,n and S2

2,n in (3),

P
(∣∣S2

2,n−σ
2∣∣≥ ∣∣S2

1,n−σ
2∣∣)= 1

2
+

1√
2πn

[
a+1

τ
− 1

τ3

(
γ

2− λ

6

)]
+o
(

1√
n

)
as n→ ∞, where

γ = E
[

X−m
σ

]3

and λ = E

[(
X−m

σ

)2

−1

]3

.
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10 Gérard Biau and Yannis Yatracos

Some comments are in order to explain the meaning of the requirements of Theorem 1.
Condition (i) may be interpreted by considering that S2

2,n is a shrinked version of S2
1,n. For

example, in the normal population context, we typically have the ordering

1
n+1

<
1
n
<

1
n−1

,

which corresponds to the successive shrinked estimates S2
M,n, S2

SV,n and S2
U,n. To understand

condition (ii), it is enough to note that an estimate of σ2 of the form δn ∑
n
i=1(Xi− X̄n)

2 is (weakly
or strongly) consistent if, and only if, δn ∼ 1/n as n→ ∞. Therefore, for consistent estimates S2

1,n
and S2

2,n, it holds 2/(αn +βn)∼ n, and condition (ii) just specifies this asymptotic development.
Finally, it is noteworthy to mention that all presented results may be adapted without too much

effort to the known mean case, by replacing ∑
n
i=1(Xi− X̄n)

2 by ∑
n
i=1(Xi−m)2 in the corresponding

estimates. To see this, it suffices to observe that the proof of Theorem 1 starts with the following
asymptotic normality result (see Proposition 1):

√
n

1
n ∑

n
i=1(Zi− Z̄n)

2−1
τ

D→N (0,1) as n→ ∞, (4)

where

Zi =
Xi−m

σ
and τ

2 = E
[

X−m
σ

]4

−1.

When the mean m is known, (4) has to be replaced by

√
n

1
n ∑

n
i=1 Z2

i −1
τ

D→N (0,1) as n→ ∞,

and the subsequent developments are similar. We leave the interested reader the opportunity to
adapt the results to this less interesting situation.

We are now in a position to discuss some application examples.

Example 1 Suppose that X1, . . . ,Xn are independently normally distributed with unknown
positive variance σ2. Elementary calculations show that, in this setting, τ2 = 2, γ = 0 and λ = 8.

The sample variance (maximum likelihood) S2
SV,n has αn = 1/n, whereas the unbiased (jacknife)

estimate S2
U,n has αn = 1/(n−1). The minimum risk estimate S2

M,n, which minimizes the mean
squared error uniformly in n and σ2, has βn = 1/(n+1) (Lehmann and Casella [11, Chapter 2]).
Thus, S2

M,n is a shrinked version of both S2
SV,n and S2

U,n (that is, βn < αn), with

2
αn +βn

=
2n2 +2n
2n+1

= n+
1
2
+o(1) for S2

M,n vs S2
SV,n, (5)

and
2

αn +βn
=

n2−1
n

= n− 1
n

for S2
M,n vs S2

U,n. (6)

Therefore, in this context, Theorem 1 asserts that

P
(∣∣S2

M,n−σ
2∣∣> ∣∣S2

SV,n−σ
2∣∣)= 1

2
+

13
12
√

πn
+o
(

1√
n

)
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On the shrinkage estimation of variance 11

and

P
(∣∣S2

M,n−σ
2∣∣> ∣∣S2

U,n−σ
2∣∣)= 1

2
+

5
6
√

πn
+o
(

1√
n

)
.

Put differently, S2
SV,n and S2

U,n are both asymptotically Pitman closer to σ2 than SM,n. It is also
interesting to note that, according to (1), the maximum likelihood estimate has uniformly smaller
risk than the unbiased estimate, i.e., for all n and all values of the parameter,

E
[
S2

SV,n−σ
2]2 < E

[
S2

U,n−σ
2]2 .

Clearly, S2
SV,n may be regarded as a shrinkage estimate of S2

U,n and, with αn = 1/(n− 1) and
βn = 1/n, we obtain

2
αn +βn

=
2n2−2n
2n−1

= n− 1
2
+o(1),

so that

P
(∣∣S2

SV,n−σ
2∣∣> ∣∣S2

U,n−σ
2∣∣)= 1

2
+

7
12
√

πn
+o
(

1√
n

)
.

The take-home message here is that even if shrinkage improves the risk of squared error loss, it
should nevertheless be carefully considered from a point estimation perspective. In particular, the
unbiased estimate S2

U,n is asymptotically Pitman closer to the target σ2 than the shrinked (and
mean squared optimal) estimate S2

M,n. We have indeed

lim
n→∞

√
n
[
P
(∣∣S2

M,n−σ
2∣∣> ∣∣S2

U,n−σ
2∣∣)− 1

2

]
=

5
6
√

π
,

despite the fact that, for all n,

E
[
S2

M,n−σ
2]2 < E

[
S2

U,n−σ
2]2 .

This clearly indicates a potential weakness for any estimate obtained by minimizing a risk function,
because extreme estimate’s values that have small probability can drastically increase the risk
function’s value.

To continue the discussion, we may denote by ` a real number less than 1 and consider variance
estimates of the general form

S2
`,n =

1
n+ `

n

∑
i=1

(Xi− X̄n)
2, n >−`. (7)

Clearly, S2
M,n is a shrinked version of S2

`,n and, in the normal setting, for all n >−`,

E
[
S2

M,n−σ
2]2 < E

[
S2
`,n−σ

2]2 .
Next, applying Theorem 1 with

αn =
1

n+ `
and βn =

1
n+1

,
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we may write
2

αn +βn
= n+

`+1
2

+o(1)

and, consequently,

P
(∣∣S2

M,n−σ
2∣∣> ∣∣S2

`,n−σ
2∣∣)= 1

2
+

1
4
√

πn

(
`+

13
3

)
+o
(

1√
n

)
.

The multiplier of the 1/
√

n term is positive for all ` >−13/3≈−4.33. Thus, for ` ∈ (−13/3,1),
the estimate (7) is asymptotically Pitman closer to σ2 than S2

M,n, the minimum quadratic risk
estimate. Note that this result is in accordance with Pitman’s observation that, in the Gaussian
case, the best variance estimate with respect to PCC should have approximately αn ≈ 1/(n−5/3)
(Pitman [13, Paragraph 6]).

Example 2 If X1, . . . ,Xn follow a Student’s t-distribution with ν > 6 degrees of freedom and
unknown variance σ2, then it is known (see, e.g., Yatracos [18, Remark 7]) that S2

M,n improves
both S2

SV,n and S2
U,n in terms of quadratic error. In this case, m = 0, γ = 0, whereas, for 0 < k < ν ,

even,

EXk = ν
k/2

k/2

∏
i=1

2i−1
ν−2i

.

Therefore,

σ
2 =

ν

ν−2
, EX4 =

3ν2

(ν−2)(ν−4)
and EX6 =

15ν3

(ν−2)(ν−4)(ν−6)
.

Consequently,

τ
2 =

(
ν−2

ν

)2

× 3ν2

(ν−2)(ν−4)
−1 =

2ν−2
ν−4

and

λ =

(
ν−2

ν

)3

× 15ν3

(ν−2)(ν−4)(ν−6)
−3
(

ν−2
ν

)2

× 3ν2

(ν−2)(ν−4)
+2

=
8ν(ν−1)

(ν−4)(ν−6)
.

Hence, using identities (5)-(6), Theorem 1 takes the form

P
(∣∣S2

M,n−σ
2∣∣> ∣∣S2

SV,n−σ
2∣∣)= 1

2
+

1
6
√

πn

(
ν−4
ν−1

)1/2(13ν/2−27
ν−6

)
+o
(

1√
n

)
and

P
(∣∣S2

M,n−σ
2∣∣> ∣∣S2

U,n−σ
2∣∣)= 1

2
+

1
6
√

πn

(
ν−4
ν−1

)1/2(5ν−18
ν−6

)
+o
(

1√
n

)
.
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We see that all the constants in front of the 1/
√

n terms are positive for ν > 6, despite the fact that

E
[
S2

M,n−σ
2]2 < E

[
S2

SV,n−σ
2]2 and E

[
S2

M,n−σ
2]2 < E

[
S2

U,n−σ
2]2 .

Example 3 For non-normal populations, S2
U,n may have a smaller mean squared error than

either S2
SV,n or S2

M,n. In this general context, Yatracos [18] proved that the estimate

S2
Y,n =

n+2
n(n+1)

n

∑
i=1

(Xi− X̄n)
2

ameliorates the mean squared error of S2
U,n for all probability models with finite second moment,

all values of σ2 and all sample sizes n≥ 2. Here,

αn =
1

n−1
and βn =

n+2
n(n+1)

,

so that, for all n≥ 2, βn/αn < 1 and

2
αn +βn

=
n3−n

n2 +n−1
= n−1+o(1).

It follows, assuming that Assumption [A] is satisfied, that

P
(∣∣S2

Y,n−σ
2∣∣≥ ∣∣S2

U,n−σ
2∣∣)= 1

2
+

1√
2πn

[
− 1

τ3

(
γ

2− λ

6

)]
+o
(

1√
n

)
.

For example, if X follows a normal distribution,

P
(∣∣S2

Y,n−σ
2∣∣> ∣∣S2

U,n−σ
2∣∣)= 1

2
+

1
3
√

πn
+o
(

1√
n

)
.

3. Standard deviation shrinkage

Section 2 was concerned with the shrinkage estimation problem of the variance σ2. Estimating
the standard deviation σ is more involved, since, for example, it is not possible to find an estimate
of σ which is unbiased for all population distributions (Lehmann and Casella [11, Chapter 2]).
Nevertheless, interesting results may still be reported when the sample observations X1, . . . ,Xn

follow a normal distribution N (m,σ2).
The most common estimates used to assess the standard deviation parameter σ typically have

the form √
S2

SV,n =
1√
n

[
n

∑
i=1

(Xi− X̄n)
2

]1/2

or
√

S2
U,n =

1√
n−1

[
n

∑
i=1

(Xi− X̄n)
2

]1/2

.

In all generality, both
√

S2
SV,n and

√
S2

U,n are biased estimates of σ . However, when the random
variable X is normally distributed, a minor correction exists to eliminate the bias. To derive
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14 Gérard Biau and Yannis Yatracos

the correction, just note that, according to Cochran’s theorem, ∑
n
i=1(Xi− X̄n)

2/σ2 has a chi-
squared distribution with n−1 degrees of freedom. Consequently, [∑n

i=1(Xi− X̄n)
2]1/2/σ has a

chi distribution with n−1 degrees of freedom (Johnson, Kotz, and Balakrishnan [6, Chapter 18]),
whence

E

[
n

∑
i=1

(Xi− X̄n)
2

]1/2

=

√
2Γ
(n

2

)
Γ
(n−1

2

) σ ,

where Γ(.) is the gamma function. It follows that the quantity

σ̂U,n =
Γ
(n−1

2

)
√

2Γ
(n

2

) [ n

∑
i=1

(Xi− X̄n)
2

]1/2

is an unbiased estimate of σ . Besides, still assuming normality and letting (δn)n be some generic
positive normalization sequence, we may write

E

δn

[
n

∑
i=1

(Xi− X̄n)
2

]1/2

−σ

2

= δ
2
n E

[
n

∑
i=1

(Xi− X̄n)
2

]
−2σδnE

[
n

∑
i=1

(Xi− X̄n)
2

]1/2

+σ
2,

hence

E

δn

[
n

∑
i=1

(Xi− X̄n)
2

]1/2

−σ

2

= σ
2

[
(n−1)δ 2

n −2δn

√
2Γ
(n

2

)
Γ
(n−1

2

) +1

]
.

Solving this quadratic equation in δn, we see that the right-hand side is uniformly minimized for
the choice

δ
?
n =

√
2Γ
(n

2

)
(n−1)Γ

(n−1
2

) = Γ
(n

2

)
√

2Γ
(n+1

2

) .
(see Goodman [3]). Put differently, the estimate

σ̂M,n =
Γ
(n

2

)
√

2Γ
(n+1

2

) [ n

∑
i=1

(Xi− X̄n)
2

]1/2

improves uniformly upon
√

S2
SV,n,

√
S2

U,n and σ̂U,n, which have, respectively,

δn =
1√
n
, δn =

1√
n−1

and δn =
Γ
(n−1

2

)
√

2Γ
(n

2

) .
Using the expansion

Γ
(n+1

2

)
Γ
(n

2

) =

√
n
2

[
1− 1

4n
+o
(

1
n

)]
,

we may write
Γ
(n

2

)
√

2Γ
(n+1

2

) = 1√
n

[
1+

1
4n

+o
(

1
n

)]
(8)
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On the shrinkage estimation of variance 15

and
Γ
(n−1

2

)
√

2Γ
(n

2

) = √2Γ
(n+1

2

)
(n−1)Γ

(n
2

) = 1√
n−1

[
1+

1
4n

+o
(

1
n

)]
. (9)

The relative positions of the estimates
√

S2
SV,n, σ̂M,n,

√
S2

U,n and σ̂U,n together with their coefficients
are shown in Figure 2.

FIGURE 2. Relative positions of the estimates
√

S2
SV,n, σ̂M,n,

√
S2

U,n and σ̂U,n, and their coefficients.

Theorem 2 below is the standard deviation counterpart of Theorem 1 for normal populations.
Let

σ̂
2
1,n = αn

[
n

∑
i=1

(Xi− X̄n)
2

]1/2

and σ̂
2
2,n = βn

[
n

∑
i=1

(Xi− X̄n)
2

]1/2

(10)

be two candidates to the estimation of σ .

Theorem 2. Assume that X has a normal distribution, and that the sequences (αn)n and (βn)n in
(10) satisfy the constraints

(i) βn < αn and (ii)
[

2
αn +βn

]2

= n+b+o(1) as n→ ∞,

where b ∈ R. Then, for the estimates σ̂1,n and σ̂2,n in (10)

P(|σ̂2,n−σ |> |σ̂1,n−σ |) = 1
2
+

1
2
√

πn

(
b+

5
3

)
+o
(

1√
n

)
as n→ ∞.

As expressed by Figure 2, σ̂M,n is a shrinked version of both
√

S2
U,n and σ̂U,n. Thus, continuing

our discussion, we may first compare the performance, in terms of Pitman closeness, of σ̂U,n vs
σ̂M,n. These estimates have, respectively,

αn =
Γ
(n−1

2

)
√

2Γ
(n

2

) and βn =
Γ
(n

2

)
√

2Γ
(n+1

2

) .
Using (8) and (9), we easily obtain[

2
αn +βn

]2

= n−1+o(1),

so that

P(|σ̂M,n−σ |> |σ̂U,n−σ |) = 1
2
+

1
3
√

πn
+o
(

1√
n

)
.
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16 Gérard Biau and Yannis Yatracos

Similarly, with

αn =
1√

n−1
and βn =

Γ
(n

2

)
√

2Γ
(n+1

2

) ,
we conclude

P
(
|σ̂M,n−σ |>

∣∣∣√S2
U,n−σ

∣∣∣)= 1
2
+

11
24
√

πn
+o
(

1√
n

)
.

Remark 1 The methodology developed in the present paper can serve as a basis for analyzing
other types of estimates. Suppose, for example, that X1, . . . ,Xn (n≥ 2) are independent identically
distributed random variables with common density f (x; µ,σ) = σ−1e−(x−µ)/σ (x > µ), where
−∞ < µ < ∞ and σ > 0. On the basis of the given sample we wish to estimate the standard
deviation σ . Denoting the order statistics associated with X1, . . . ,Xn by X(1), . . . ,X(n), one may
write the maximum likelihood estimate of σ (which turns out to be minimum variance unbiased)
in the form

TML,n =
1

n−1

n

∑
i=2

(X(i)−X(1)).

By sacrificing unbiasedness, we can consider as well the estimate

TM,n =
1
n

n

∑
i=2

(X(i)−X(1))

which improves upon TML,n uniformly (Arnold [1]) in terms of mean squared error. TM,n is a
shrinkage estimate of TML,n and, by an application of Lemma 1, we have

P(|TM,n−σ |> |TML,n−σ |) = P
(

Γn−1 <
2n(n−1)

2n−1

)
,

since ∑
n
i=2(X(i)−X(1))/σ is distributed as a gamma random variable with n−1 degrees of free-

dom, denoted Γn−1. Recalling that Γn−1 ∼ ∑
n−1
i=1 Yi, where Y1, . . . ,Yn−1 are independent standard

exponential random variables, we easily obtain, using the same Edgeworth-based methodology as
was used to prove Theorem 1,

P(|TM,n−σ |> |TML,n−σ |) = 1
2
+

5
6
√

2πn
+o
(

1
n

)
.

4. Proofs

4.1. Some preliminary results

Recall that X1, . . . ,Xn (n≥ 2) denote independent real-valued random variables, distributed as a
generic random variable X with finite variance σ2 > 0. Let Φ(x) be the cumulative distribution
function of the standard normal distribution, that is, for all x ∈ R,

Φ(x) =
1√
2π

∫ x

−∞

e−u2/2du.

We start by stating the following lemma, which is but a special case of Proposition 2.1 in Yatracos
[19].
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On the shrinkage estimation of variance 17

Lemma 1. Let T be a P-a.s. nonnegative real-valued random variable, and let (θ ,c) ∈ R+×
(−1,1) be two real numbers. Then

P(|cT −θ | ≥ |T −θ |) = P
(

T ≤ 2θ

1+ c

)
.

Proof of Lemma 1 Just observe that

P(|cT −θ | ≥ |T −θ |) = P
(
(cT −θ)2 ≥ (T −θ)2)

= P([(1+ c)T −2θ ] (c−1)T ≥ 0)

= P((1+ c)T −2θ ≤ 0)

(since T is P-a.s. nonnegative, c < 1 and θ ≥ 0)

= P
(

T ≤ 2θ

1+ c

)
(since c >−1).

�

Proposition 1. Assume that Assumption [A] is satisfied. Then, as n→ ∞,

P

(
n

∑
i=1

(Xi− X̄n)
2 ≤ (n+ t)σ2

)
= Φ

(
t

τ
√

n

)
+

1√
2πn

p1

(
t

τ
√

n

)
e−

t2

2τ2n +o
(

1√
n

)
,

uniformly in t ∈ R, where

p1(x) =
1
τ
+

1
τ3

(
γ

2− λ

6

)
(x2−1),

with

γ = E
[

X−m
σ

]3

and λ = E

[(
X−m

σ

)2

−1

]3

.

Proof of Proposition 1 Set

Z =
X−m

σ
and Zi =

Xi−m
σ

, i = 1, . . . ,n,

and observe that, by the central limit theorem and Slutsky’s lemma (van der Vaart [17, Chapter
2]),

√
n

1
n ∑

n
i=1(Zi− Z̄n)

2−1
τ

D→N (0,1) as n→ ∞,

where

Z̄n =
1
n

n

∑
i=1

Zi and τ
2 = VarZ2 = E

[
X−m

σ

]4

−1.
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18 Gérard Biau and Yannis Yatracos

The result will be proved by making this limit more precise using an Edgeworth expansion (see,
e.g., Hall [5, Chapter 2]). To this aim, we first need some additional notation. Set Z = (Z,Z2),
m = EZ = (0,1) and, for z = (z(1),z(2)) ∈ R2, let

A(z) =
z(2)− (z(1))2−1

τ
.

Clearly, A(m) = 0 and
√

n
1
n ∑

n
i=1(Zi− Z̄n)

2−1
τ

=
√

nA(Z̄n).

For j ≥ 1 and i j ∈ {1,2}, put

ai1...i j =
∂ jA(z)

∂ z(i1) . . .∂ z(i j)
|z=m.

For example,

a2 =
∂ 1A(z)
∂ z(2)

|z=m =
1
τ

and

a11 =
∂ 2A(z)

∂ z(1)∂ z(1)
|z=m =−2

τ
.

Let also
µi1...i j = E

[
(Z−m)(i1) . . .(Z−m)(i j)

]
,

where (Z−m)(i) denotes the i-th component of the vector (Z−m). Thus, with this notation,
according to Hall [5, Theorem 2.2], under the condition

limsup
|u|+|v|→∞

∣∣Eexp
(
iuX + ivX2)∣∣< 1,

we may write, as n→ ∞,

P
(√

nA(Z̄n)≤ x
)
= Φ(x)+

1√
2πn

p1(x)e−x2/2 +o
(

1√
n

)
,

uniformly in x ∈ R, where

p1(x) =−A1−
1
6

A2(x2−1).

The coefficients A1 and A2 in the polynomial p1 are respectively given by the formulae

A1 =
1
2

2

∑
i=1

2

∑
j=1

ai jµi j

and

A2 =
2

∑
i=1

2

∑
j=1

2

∑
k=1

aia jakµi jk +3
2

∑
i=1

2

∑
j=1

2

∑
k=1

2

∑
`=1

aia jak`µikµ j`.
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On the shrinkage estimation of variance 19

Elementary calculations show that

a2 = τ
−1, a11 =−2τ

−1, and a1 = a22 = a12 = a21 = 0.

Similarly,
µ11 = 1, µ22 = τ

2, µ12 = µ21 = E[X−m]3σ
−3, and

µ222 = E
[
(X−m)2

σ
−2−1

]3
.

Consequently,

A1 =−
1
τ

and A2 =
1
τ3

(
λ −6γ

2) ,
with

λ = E

[(
X−m

σ

)2

−1

]3

and γ = E
[

X−m
σ

]3

.

Therefore

p1(x) =
1
τ
+

1
τ3

(
γ

2− λ

6

)
(x2−1).

The conclusion follows by observing that, for all t ∈ R,

P

(
n

∑
i=1

(Xi− X̄n)
2 ≤ (n+ t)σ2

)
= P

(√
nA(Z̄n)≤

t
τ
√

n

)
.

�

4.2. Proof of Theorem 1

Observe that S2
2,n = cnS2

1,n, where cn = βn/αn ∈ (0,1) by assumption (i). Consequently, by Lemma
1,

P
(∣∣S2

2,n−σ
2∣∣≥ ∣∣S2

1,n−σ
2∣∣)= P

(
S2

1,n ≤
2σ2

1+βn/αn

)
= P

(
n

∑
i=1

(Xi− X̄n)
2 ≤ 2σ2

αn +βn

)

= P

(
n

∑
i=1

(Xi− X̄n)
2 ≤ (n+a+ζn)σ

2

)
(by assumption (ii)),

where ζn→ 0 as n→ ∞. Let Φ(x) be the cumulative distribution function of the standard normal
distribution, that is, for all x ∈ R,

Φ(x) =
1√
2π

∫ x

−∞

e−u2/2du.

Journal de la Société Française de Statistique, Vol. 153 No. 1 5-21
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2012) ISSN: 2102-6238



20 Gérard Biau and Yannis Yatracos

Thus, assuming [A] and using Proposition 1, we may write

P
(∣∣S2

2,n−σ
2∣∣≥ ∣∣S2

1,n−σ
2∣∣)= Φ

(
a+ζn

τ
√

n

)
+

1√
2πn

p1

(
a+ζn

τ
√

n

)
e−

(a+ζn)2

2τ2n +o
(

1√
n

)
,

where

p1(x) =
1
τ
+

1
τ3

(
γ

2− λ

6

)
(x2−1),

with

τ
2 = E

[
X−m

σ

]4

−1,

γ = E
[

X−m
σ

]3

and λ = E

[(
X−m

σ

)2

−1

]3

.

Using finally the Taylor series expansions, valid as x→ 0,

Φ(x) =
1
2
+

1√
2π

(
x+o(x2)

)
and ex = 1+o(1),

we obtain

P
(∣∣S2

2,n−σ
2∣∣≥ ∣∣S2

1,n−σ
2∣∣)= 1

2
+

1√
2πn

[
a+1

τ
− 1

τ3

(
γ

2− λ

6

)]
+o
(

1√
n

)
,

as desired.

4.3. Proof of Theorem 2

By assumption (i), we may write σ̂2,n = cnσ̂1,n, where cn = βn/αn ∈ (0,1). Consequently, by
Lemma 1,

P(|σ̂2,n−σ |> |σ̂1,n−σ |) = P(|σ̂2,n−σ | ≥ |σ̂1,n−σ |)

= P
(

σ̂1,n ≤
2σ

1+βn/αn

)

= P

[ n

∑
i=1

(Xi− X̄n)
2

]1/2

≤ 2σ

αn +βn


= P

(
n

∑
i=1

(Xi− X̄n)
2 ≤ (n+b+ζn)σ

2

)
(by assumption (ii)),

where ζn→ 0 as n→ ∞. The end of the proof is similar to the one of Theorem 1, recalling that, in
the Gaussian setting, τ2 = 2, γ = 0 and λ = 8.
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