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Abstract: Overabundance of clustering methods exists but none was devised with a variable selection procedure and a
missing data management. However in microarray datasets, genes are described by a growing number of experiments
and missing data always exist. It is also important to detect the relevant experiments for improving the gene clustering
and the data interpretation. A common practice is to remove genes with missing values or to replace missing values
with estimation. However it is known to have an important impact on the clustering result. We tackle variable selection
and missing data in a unique statistical framework: A versatile variable selection model based on multidimensional
Gaussian mixtures is proposed, taking variable roles for clustering into account. Moreover this statistical framework
manages missing values without imposing any data pre-processing. Numerical experiments highlight the gain of
our method compared to imputation methods which do not allow to find the true variable roles and sometimes lose
biological information.

Résumé : De nombreuses méthodes de classification non supervisée existent mais sont souvent conçues sans procédure
de sélection de variables et ne permettent pas toujours de gérer les données manquantes. Dans les données issues de
puces à ADN, les gènes sont décrits par un grand nombre d’expériences où il existe toujours des données manquantes.
Il est donc important de détecter les expériences biologiques significatives afin d’améliorer la classification des gènes
et son interprétation. Concernant les valeurs manquantes, il est courant d’écarter de l’étude les gènes non totalement
observés ou d’estimer les valeurs manquantes avant classification. Dans cet article, nous traitons la sélection de variables
et le problème des données manquantes grâce à une unique procédure. Nous proposons un modèle de sélection de
variables pour prendre en compte le rôle des variables pour la classification non supervisée par mélanges gaussiens, où
les données manquantes ne sont pas prétraitées. Des expériences numériques illustrent le gain de notre méthode par
rapport aux méthodes avec imputation des données manquantes qui ne permettent pas toujours de retrouver le vrai rôle
des variables et parfois perdent des informations biologiques.
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22 Maugis-Rabusseau, Martin-Magniette and Pelletier

1. Introduction

Overabundance of clustering methods exist but none was devised with a variable selection proce-
dure and a missing data management. However with microarray data, we are always confronted
to a large number of available experiments describing the genes and missing data due to technical
problems occurring during the production process. Intuitively, the more information we have
about each gene, the better a clustering method is expected to perform. However when the number
of experiments is large, the structure of interest may often be contained in a subset and some
experiments could be useless or harmful. Thus it is important to detect the relevant experiments
for the gene clustering. It leads to an improvement of gene clustering and its interpretation. This
variable selection problem for clustering is a recent topic coming from the increasingly frequent
study of high-dimensional datasets, such as gene expression datasets. Indeed expression data
provide the main source of information about genes and are used to improve functional annotation
by determining coexpressed gene clusters, usually assumed to be good candidats of coregulated
genes [5].

Recently, several authors have recast the variable selection for clustering in the setting of
Gaussian mixtures. After the work of Law et al. [11] and Raftery and Dean [18], successive
improvements of the variable role modeling have been presented in [13, 14]: The so-called SR
modeling and its generalization called SRUW modeling, which completely takes the variable role
into account by subsetting the relevant variables for the clustering, the redundant variables and
the independent variables. Theoretical properties of these methods are established: The model
collection is identifiable and despite the model complexity, the variable selection is consistent.
Moreover the interest of these two variable selection methods for studying gene expression data
has been highlighted in [13, 15].

Nevertheless these procedures remain unusable for transcriptome dataset analysis since they
do not take missing data into account. For this reason the transcriptome datasets studied in
[13, 15] were preliminary restricted to the subset of totally observed genes, removing thus
potential interesting genes. It is already known that missing values is a major factor of gene cluster
instability [4], so missing value management is all the more crucial when gene clustering procedure
includes a variable selection step. The objective of this paper consists of extending procedures
proposed by [13, 14], briefly presented in Section 2. This extension, named SelvarClustMV 1,
performs the variable selection and the clustering of data with missing values, without imposing
any imputation of these latter. The required assumptions to extend the two models proposed
by [13, 14] are discussed in Section 3. Imputation methods of missing values are presented in
Section 4. SelvarClustMV and the same variable selection model-based clustering combined with
an imputation method are compared in Section 5. SelvarClustMV seems to be more reliable than
imputation methods: It is able to find the true model up to 20% of missing values, the error rates
are among the smallest and it seems to keep easier biological information in the clusters.

1 SelvarClustMV is available at http://www.math.univ-toulouse.fr/~maugis/SelvarClustMVHomepage.
html

Journal de la Société Française de Statistique, Vol. 153 No. 2 21-36
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2012) ISSN: 2102-6238



SelvarClustMV 23

2. Background

A sample of n objects y = (y1, . . . ,yn) described by Q quantitative variables is considered. This
sample is decomposed into y = (yo,ym) where yo is the observed value subset and ym are the
missing entries. In the model-based clustering context, the data y are assumed to come from
several subpopulations (clusters) modeled with a multivariate Gaussian density. The observations
are assumed to arise from a finite Gaussian mixture with K components

f (yi|K,m,α) =
K

∑
k=1

pkΦ(yi|µk,Σk)

where p = (p1, . . . , pK) is the mixing proportion vector (pk ∈ (0,1) for all k = 1, . . . ,K and
∑

K
k=1 pk = 1) and the function Φ(.|µk,Σk) denotes the Q-dimensional Gaussian density with mean

vector µk and variance matrix Σk. The mixture form, denoted by m, is related to the form of the
possible variance matrices derived from assumptions on their eigenvalue decomposition which
allow to control the volume, the orientation and the shape of each cluster. A collection of 28
Gaussian mixture models is available in the MIXMOD software, which allows one to estimate
Gaussian mixture parameters (see for instance [2] for details.). Next, the Maximum A Posteriori
(MAP) rule is considering to cluster objects. This clustering rule consists of assigning each object
to the cluster with the highest conditional probability.

The variable selection problem for the model-based clustering with Gaussian mixtures is
recast into a model selection problem. In the SR modeling [13], the model family consists of
N = {(K,m,S,R); (K,m) ∈T , (S,R) ∈ V }. The set of variable partitions V contains couples
(S,R) where S is the nonempty set of relevant clustering variables and R is a subset of S containing
the relevant variables required to explain irrelevant variables according to a linear regression. For
the model (K,m,S,R), the data distribution is modeled by

f (y|K,m,S,R,θ) = fclust(yS|K,m,α) freg(ySc |a+yR
β ,Ω).

where θ denotes the parameter vector (α,a,β ,Ω), the function

fclust(yS|K,m,α) =
n

∏
i=1

{
K

∑
k=1

pkΦ(yS
i |µk,Σk)

}

corresponds to the Gaussian mixture density on variables S with the parameter vector α . The
function freg(ySc |a+yRβ ,Ω) corresponds to the multidimensional multivariate linear regression
density of ySc

on yR with the intercept vector a, the regression coefficient matrix β and the
variance matrix Ω.

In the SRUW modeling [14], a generalization of the variable roles is proposed. The irrelevant
clustering variables are divided into two variable subsets U and W . The variables belonging to U
are explained by a variable subset R of S according to a linear regression while the variables in W
are assumed to be independent of all the relevant variables. The marginal distribution of the data
on W is assumed to be a Gaussian distribution.

For these two models, a BIC-type criterion is proposed to solve the model selection problem. It
corresponds to the maximized loglikelihood minus a penalty term defined by the number of free
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24 Maugis-Rabusseau, Martin-Magniette and Pelletier

parameters times the logarithm of the number of objects. In practice, since the number of models
is huge in the two modelings, an exhaustive search is impossible. The so-called SelvarClust 2

and SelvarClustIndep 3 algorithms, embedding two backward stepwise algorithms for variable
selection for clustering and linear regression are proposed for the SR and the SRUW modelings
respectively. At each step of these two algorithms, the parameter estimation and the difference
of criterion values are required and calculated using MIXMOD (http://www.mixmod.org/).
After selecting the best model and estimating the associated parameter vector, the MAP rule is
considered to cluster objects.

3. Extension of the variable selection procedures for missing at random data

In this section, we are interested in the extension of our variable selection procedures for the
study of datasets with missing values. The aim is to take the existence of these missing values into
account by avoiding a preliminary estimation of the missing data. Thus we have to specify under
which assumptions such an extension is possible. An adaptation of the model selection criterion,
the parameter estimation and our variable selection algorithms have to be provided. In the sequel,
we focus on the SR modeling to explain the procedure adaptation, but a similar extension for the
SRUW modeling can be obtained and is explained in Section 3.3.

3.1. Nature of missing data

It is possible to distinguish three types of missing data according to the missing-data mechanism
[19]: missing completely at random, missing at random and, not missing at random. In this paper,
the missing data are assumed to be missing at random (MAR), namely the probability that a value
is missing is related to the observed data but not to the missing data. In the MAR assumption,
the missing-data mechanism is called ignorable [12, 20] and likelihood-based inference can be
obtained by ignoring the missing-data mechanism. Considering the missing-data indicator matrix
M defined by

Mi j =

{
1 if y j

i is observed
0 if y j

i is missing
(1)

as a random variable, the MAR assumption can be reformulated as “the distribution of the
missing-data mechanism M is independent of missing values ym” [19].

3.2. Model selection criterion

The model selection in the SR procedure is based on the maximization of f (yo,M|K,m,S,R),
the integrated observed likelihood. Using the MAR assumption, it is equivalent to select the
model maximizing the integrated observed likelihood ignoring the missing-data mechanism

2 SelvarClust is available at http://www.math.univ-toulouse.fr/~maugis/SelvarClustHomepage.html
3 SelvarClustIndep is available at http://www.math.univ-toulouse.fr/~maugis/

SelvarClustIndepHomepage.html
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f (yo|K,m,S,R). But this last quantity is difficult to evaluate and a BIC approximation is used.
The chosen model maximizes the criterion

2ln
{

f (yo|K,m,S,R, θ̂ )
}
−Ξ(K,m,S,R) ln(n), (2)

where θ̂ is the parameter vector maximizing the observed likelihood f (yo|K,m,S,R,θ) and
Ξ(K,m,S,R) is the total number of free parameters for model (K,m,S,R).

In order to be able to use this model selection criterion, the observed likelihood has to be made
explicit and the parameter vector θ̂ maximizing the observed likelihood f (yo|K,m,S,R,θ) has to
be evaluated. These two points are addressed in Sections 3.2.1 and 3.2.2, respectively.

3.2.1. Explicit observed likelihood expression

The observed likelihood ignoring the missing-data mechanism is defined by

f (yo|K,m,S,R,θ) =
∫

f (yo,ym|K,m,S,R,θ)dym. (3)

In order to evaluate explicitly this quantity, the distribution of the sample is recast into a global
Gaussian mixture: The likelihood can be written as

f (yo,ym|K,m,S,R,θ) =
n

∏
i=1

{
K

∑
k=1

pkΦ(yo
i ,y

m
i |νk,∆k)

}

where for all variables j ∈ {1, . . . ,Q},

νk j =

{
µk j if j ∈ S
(a+µkβ̃ ) j if j ∈ Sc (4)

∀ j ∈ S, ∀l ∈ Sc,

β̃ jl =

{
β jl if j ∈ R
0 if j ∈ S\R (5)

and, for all variables l and j,

∆k, jl =


Σk, jl if j ∈ S, l ∈ S
(Σkβ̃ ) jl if j ∈ S, l ∈ Sc

(β̃ ′Σk) jl if j ∈ Sc, l ∈ S
(Ω+ β̃ ′Σkβ̃ ) jl if j ∈ Sc, l ∈ Sc.

(6)

In order to set apart the conditional distribution of the missing values according to the observed
values, the mean vectors and the variance matrices are decomposed into

νk = (ν (i)
k,o,ν

(i)
k,m) and ∆k =

(
∆

(i)
k,oo ∆

(i)
k,om

∆
(i)
k,mo ∆

(i)
k,mm

)
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26 Maugis-Rabusseau, Martin-Magniette and Pelletier

according to the position of missing values for yi. According to Theorem 2.5.1 in [1], the Gaussian
mixture density can then be decomposed as follows

K

∑
k=1

pkΦ

(
yo

i |ν
(i)
k,o,∆

(i)
k,oo

)
Φ

(
ym

i |ν
(i)

k,m|o +yo
i ∆

(i)

k,m|o,∆
(i)

k,mm|o

)
,

where 
ν

(i)

k,m|o = ν
(i)
k,m−ν

(i)
k,o∆

(i)

k,m|o,

∆
(i)

k,m|o = (∆(i)
k,oo)

−1∆
(i)
k,om,

∆
(i)

k,mm|o = ∆
(i)
k,mm−∆

(i)
k,mo(∆

(i)
k,oo)

−1∆
(i)
k,om.

We deduce thus the expression of f (yo|K,m,S,R,θ) given by:

f (yo|K,m,S,R,θ) =
n

∏
i=1

K

∑
k=1

pkΦ

(
yo

i |ν
(i)
k,o,∆

(i)
k,oo

)
. (7)

Consequently, it is possible to calculate explicitly the observed likelihood using the global
Gaussian mixture with parameters (pk,νk,∆k)1≤k≤K and using the expression (7). The second
task is then to derive the parameter vector θ̂ maximizing it.

3.2.2. Maximum observed likelihood estimator

Since the sample density can be formulated as a global Gaussian mixture, an EM algorithm could
be used in order to estimate the parameters (p̂k, ν̂k, ∆̂k)1≤k≤K and to deduce then θ̂ = (α̂, â, β̂ ,Ω̂).
But the constraints (4), (5) and (6) do not lead to a close form update of θ̂ in the M step. We
propose thus to estimate the parameter vector α of the Gaussian mixture on S and the parameter
vector (a,β ,Ω) of the regression of Sc on R separately.

For estimating the Gaussian mixture parameter vector α̂ maximizing fclust(yS,o|K,m,α), an EM
algorithm is used on the objects having at least one observed value on S. In this EM algorithm,
the latent variables are composed of the unknown label vector z and the missing values yS,m (see
for instance [12] for more details). The tricky point concerns the estimation of the maximum
likelihood parameters for a multidimensional multivariate linear regression:

∀i ∈ {1, . . . ,n}, ySc

i = a+yR
i β + εi

where the εi’s are i.i.d N (0,Ω), because both matrices ySc
and yR may contain missing values. A

possible estimation method would consist of assuming that the vectors (ySc

i ,yR
i ) have a normal

distribution (see Section 8.4 in [12]). The parameter vector for the global Gaussian density
maximizing the observed likelihood would be then estimated using a classical EM algorithm
and the parameters (â, β̂ ,Ω̂) would be deduced. This strategy would be easily carried out but
the assumption is unrealistic because vectors (ySc

i ,yR
i ) cannot fulfill this normal law assumption

in our context since the vectors yR
i are modeled by a Gaussian mixture. Thereby, we suggest an

other strategy requiring the predictor matrix yR to be totally observed: The matrices ySc
and yR

are restricted to the objects totally observed on R and then an EM algorithm is used to estimate
the regression parameters (â, β̂ ,Ω̂).
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SelvarClustMV 27

3.3. Adaptation of SelvarClust and SelvarClustIndep

An analogous extension is available for the SRUW modeling where the parameters of the additional
Gaussian density on the independent variable subset are estimated by an usual EM algorithm and
this Gaussian density can be included into a global Gaussian mixture for the observed likelihood
calculation. Both softwares SelvarClust and SelvarClustIndep can be thus extended to take missing
values into account. Nevertheless the software MIXMOD does not consider missing values so it
is necessary to implement the EM algorithm for each mixture form. For this study, we focus on
Gaussian mixture having the same variance matrix for each component (Σk = Σ, ∀1 ≤ k ≤ K).
Indeed when SelvarClust is applied on transcriptome datasets, this mixture form, denoted [pkLC],
is most often selected with the form [pkLkC] (variance matrices fulfill Σk = λkΣ, ∀1≤ k ≤ K, λk
a scalar).

4. Imputation methods

In the gene expression framework, imputation methods are usually used to complete the gene
expression data. During the last decade, several imputation methods have been proposed (see for
instance [21, 26] for an overview) and evaluated [3, 4, 25, 22]. According to their conclusions,
we evaluate six imputations methods: The first three methods, called ZERO-imputation, ROW-
imputation and COL-imputation methods, consist of replacing missing values with zero, the row
(gene) average or the column (array) average respectively. They do not take the data correlation
structure into account. Troyanskaya et al. [23] propose two correlation-based imputation methods
including the KNN-imputation method. It consists of finding the k genes which are the closest
to the gene of interest with missing values according to a distance metric, most frequently the
Euclidian distance or Pearson correlation. The missing value is then estimated by the weighted
average of these k-nearest neighbour genes for the same array where the weights are calculated
from their similarity measurement. The R package impute.knn proposed by Hastie et al. [7] with
the choice per default k = 10 number of neighbours has been used. Oba et al. [16] show that
their BPCA-imputation method outperforms the previous method. The BPCA-imputation uses
Bayesian estimation to fit a probabilistic PCA model, which is based on the assumption that
the factor scores and the residuals obey normal distributions. The Matlab software BPCAfill.m
proposed by Oba et al. [16] has been used. The last tested imputation method is the Local Least
Squares (LLS-) imputation method of Kim et al. [10]. It estimates all missing values of an object
simultaneously. First, it selects the k-nearest neighbours of an object with missing values based on
the Pearson correlation. Second, this method performs a multiple regression using all k neighbours.
Then the missing values are imputed, based on the least square estimates. Kim et al.[10] propose
an heuristic method to select the number of neighbours k. The Matlab software impute_llsq_l2.m
has been used in this paper.

For comparing the six imputation methods, the accuracy measure, usually based on the root
mean squared error (RMSE) between the original matrix y and the imputed matrix ŷ, is calculated.
As in [17, 8, 24, 9], the RMSE is normalized by the root mean squared true values of the missing
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entries:

NRMSE =

√√√√√√√√
n
∑

i=1

Q
∑
j=1

(
y j

i − ŷ j
i

)2
1Mi j = 0

n
∑

i=1

Q
∑
j=1

(y j
i )

2 1Mi j = 0

allowing us to consider the ZERO-imputation method as reference (NRMSE is equal to 1 for the
ZERO-imputation). When the estimated values are accurate, the NRMSE reaches its minimum
value 0 and when the missing value estimation is poor, the NRMSE becomes large.

5. SelvarClustMV behavior

The objective in this section is to discuss the best way to manage missing values in a model-based
clustering with a variable role modeling. We compare SelvarClustMV which manages the missing
values and SelvarClust combined with a preprocessing imputation method (among the six studied
imputation methods).

5.1. Simulated dataset

A simulated dataset consisting of 2000 data points from a mixture of four Gaussian distributions
N (µk,Σ) is considered. The mean vectors are µ1 = (0,0,0), µ2 = (−6,6,0), µ3 = (0,0,6),
µ4 = (−6,6,6) and the variance matrix is Σ = A′× diag(6

√
2,1,2)×A where the matrix A is

the product of two 3×3 rotation matrices around the Oz and Ox axis with angle π/6 and π/3
respectively. The proportion vector of this mixture is p = (0.25,0.25,0.2,0.3). The fourth and
fifth variables are defined for all i ∈ {1, . . . ,n} by

(y4
i ,y

5
i ) = (−1,2)+(y1

i ,y
2
i )((0.5,2)

′,(1,0)′)+ εi,

εi being sampled from a N (0, rot(π/6)′diag(1,3)rot(π/6)) density where rot(π/6) is the 2×2
plane rotation matrix with angle π/6. Two noisy independent standard centered Gaussian variables
are also appended. The true model under the SR modeling is thus

(K0 = 4,m0 = [pkLC],S0 = {1,2,3},R0 = {1,2}).

We applied SelvarClustMV and the six imputation methods combined with SelvarClust. The
mixture form is fixed to [pkLC] and the component number varies from 1 to 8. Table 1 summarizes
the results according to the percentage of missing values.

First remark concerns the NRMSE. As expected, the first three methods not taking the data
correlation structure into account are inaccurate and the three others perform better. As [22], we
point out that the performance of imputation methods improves initially as the missing value rate
increase until an optimum point and then the performance are worse with increasing missing
value rate. The BPCA and LLS methods are the more accurate, the KNN-imputation gives also
reasonable NRMSE results. The second remark concerns the variable partition and the component
number: In all scenarios, SelvarClustMV selects the true variable partition and the true number of
clusters. In contrast, the variable selection procedure with a ZERO-, ROW- or COL-imputation in
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TABLE 1. Results given by SelvarClustMV(indicated by “-” in the second column) or SelvarClust with a preprocessing
imputation method for several percentages of missing values. The clustering error rate is calculated on objects with at
least one observed value among the declared relevant variables and on objects totally observed on the first three
variables (brackets). When the true model is selected, the solution is in bold.

percentage of imputation
NRMSE K̂ Ŝ R̂

clustering
missing values method error rate

c = 0% - - 4 1,2,3 1,2 1.15%

c = 1%

- - 4 1,2,3 1,2 1.55% [1.13%]
ZERO 1 6 1,2,3,4,5,6,7 /0 2.00%
ROW 1.1008 5 1,2,3,4,5 /0 2.10%
COL 0.8013 6 1,2,3,4,5 /0 1.70%
KNN 0.3617 4 1,2,3 1,2 1.45% [1.13%]
LLS 0.3337 4 1,2,3 1,2 1.45% [1.13%]

BPCA 0.3344 4 1,2,3 1,2 1.55% [1.1%]

c = 5%

- - 4 1,2,3 1,2 3.85% [1.10%]
ZERO 1 6 1,2,3,4,5,6,7 /0 6.55%
ROW 1.835 6 1,2,3,4,5,6,7 /0 44.45%
COL 0.8255 6 1,2,3,4,5 /0 6.35%
KNN 0.4883 6 1,2,3,4,5 /0 6.65%
LLS 0.4175 4 1,2,3 1,2 3.35% [1.04%]

BPCA 0.3784 4 1,2,3 1,2 3.60% [1.10%]

c = 10%

- - 4 1,2,3 1,2 7.17% [1.17%]
ZERO 1 6 1,2,3,4,5,6,7 /0 44.90%
ROW 1.0737 6 1,2,4,5 4,5 45.25%
COL 0.8035 6 1,2,3,4,5,7 /0 12.45%
KNN 0.5137 5 1,2,3,4,5,6 /0 3.35%
LLS 0.4143 4 1,2,3 1,2 6.45% [1.10%]

BPCA 0.4020 4 1,2,3 1,2 6.85% [1.17%]

c = 15%

- - 4 1,2,3 1,2 10.17% [0.56%]
ZERO 1 6 1,2,4,6 1,2,4 45.80%
ROW 1.0671 5 1,2,3,4,5 1,3,4 45.65%
COL 0.8284 6 1,2,3,4,5,6 /0 11.40%
KNN 0.5180 6 1,2,3,4,5 /0 9.35%
LLS 0.4467 4 1,2,3 1,2 8.90% [0.96%]

BPCA 0.4082 4 1,2,3 1,2 9.15% [0.96%]

c = 20%

- - 4 1,2,3 1,2 13.27% [1.17%]
ZERO 1 6 1,2,4,5 1,4 45.60%
ROW 1.0925 6 1,2,3,4,5,6,7 /0 45.85%
COL 0.8291 6 1,2,3,4,5,6,7 /0 45.05%
KNN 0.5833 6 1,2,3,4,5 /0 12.40%
LLS 0.5180 5 1,2,3,4,5 4,5 12.45%

BPCA 0.4450 4 1,2,3 1,2 11.90% [1.37%]
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preprocessing does not select the true model in all the cases. With the KNN-imputation method,
the procedure finds the true model only for c = 1% of missing values. With LLS- or BPCA-
imputation method, the variable selection procedure has a better behavior since it selects the true
model, except for c = 20% when the LLS-imputation is applied. It shows that it is better to use
the extensions of our variable selection procedures because in all cases, the variable partition is
well estimated.

Finally we estimate the clustering error rate. To do this, objects are assigned to a cluster
according to the Maximum A Posteriori rule which assigns an object to the cluster with the highest
conditional probability. Since the conditional probabilities of SelvarClustMV are based on the
selected relevant variables, objects which have not at least one value for the relevant variables
are not clustered. In our simulated dataset respectively, 5, 3 and 10 objects are not clustered for
c equals 10, 15 and 20 %. For SelvarClust combined with an imputation method, the clustering
error rate is always calculated from the 2000 objects. The difference of sample size being small,
we think that the error rates can be compared. For all methods except KNN-imputation method,
when the missing value percentage increases, the clustering error rate also increases. SelvarClust
combined with ZERO-, ROW- or COL-imputation gives large error rates, it confirms that such
naive imputation methods are too simple and should not be used. The other methods combined
with SelvarClust have similar error rate although KNN-imputation seems to be less stable than
LLS- ou BPCA-imputations. The error rate of SelvarClustMV is close to the error rate of the
best method for each missing value percentage. In fact, this error rate puts SelvarClustMV at a
disadvantage by comparison with the others because the conditional probabilities are evaluated on
the available values of the relevant variables. To be specific, Table 2 shows the 264 misclassified
objects for the scenario c = 20% according to their initial group and the position of their missing
values on the three relevant clustering variables. Only four objects without missing values on the
three relevant variables are misclassified. Moreover, the objects having at least one missing value
for the third variable most often belong to Groups 2 and 3. According to the simulation model, the
third variable allows to distinguish Group 1 from Group 3, and Group 2 from Group 4. For this
reason the 52 objects of Group 2 which are not observed on the third variable are consequently all
clustered in Cluster 4. It explains the increase of the clustering error rate with the missing value
percentage and why our extended variable selection procedure has not the smallest error rate.

To pursue the comparison a second error rate based on the objects completely observed on
the first three variables is calculated. The object number for each missing value percentage is
respectively 1949, 1722, 1454, 1249 and 1024. When the missing value percentage increases, the
clustering error rate for the objects completely observed on the first three variables is about 1%
except for SelvarClustMV when c = 15%. These percentages correspond to about ten misclassified
objects. Note that in all cases, the error rate of SelvarClustMV is identical to SelvarClust combined
with an imputation method or better when the missing value percentage is large (c greater than
15%). In conclusion, SelvarClustMV gives the best results since the true model is always found
whatever the missing value percentage. Moreover its error rates are among the smallest. The
difficult comes from objects with missing values on the relevant variables. For these objects,
caution should be taken.
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TABLE 2. Distribution of the 264 misclassified objects when c = 20% according to their initial group and the position
of their missing values on the three relevant clustering variables.

Positions of
Group 1 Group 2 Group 3 Group 4

the missing values
Variable 1 9 7 5 10
Variable 2 0 1 8 0
Variable 3 1 52 53 10
Variables 1 and 2 0 13 14 0
Variables 1 and 3 1 15 12 3
Variables 2 and 3 0 16 21 1
No missing values 4 3 2 3
Total 15 107 115 27

5.2. Transcriptome dataset

The dataset already analyzed in [13] is considered. It concerns n = 1267 genes declared differen-
tially expressed at least once in a time course of the hypocotyl growth switch and their expression
profiles are studied on T = 7 projects with Q = 27 experiments. The dataset was extracted from
the database CATdb [6]. For their study, [13] restricted the dataset to a subset of 1020 totally
observed genes. The 247 removed genes are 118 genes manually flagged by the experimenter in
some experiments for technical reasons and 129 genes removed because they did not satisfy the
homoscedastic assumption in the differentially analysis (see [6] for a detailed description of the
differential analysis). The first missing values are missing values at random but not the second
ones. It is thus important to distinguish them. For the 129 genes, we propose to recalculate a test
statistic as the expression difference normalized by the estimated standard deviation obtained with
all the genes satisfying the homoscedastic assumption. Hence the dataset is composed of 1149
totally observed genes and 118 genes with missing values: 107 genes with one missing value,
10 genes with two missing values and 1 gene with three missing values. Consequently, 9.3% of
genes have at least one missing value and the missing value percentage equals c = 0.38%.

We apply SelvarClustMV and also SelvarClust combined with LLS- or BPCA-imputation
method. In all cases, the mixture form is fixed to m = [pkLC], because this form was selected in
the analysis of [13]. The number of mixture components varies between 2 and 20. SelvarClustMV
selects a clustering with 17 clusters and Projects 1, 2, 3, 4, 6 and 7 are relevant, the last four
ones being required to explain Project 5. The result differs from the one of [13] which found also
17 clusters but declared Projects 1, 3, 4, 6 and 7 relevant with the last four ones required in the
regression model to explain Projects 2 and 5. The comparison of both results is not direct since the
additional genes could reveal new structures. Nevertheless we expect that the results are coherent.
Contingency table between the two clusterings on the 1020 genes studied in [13] is given Table 3.
Fourteen clusters are close to the ones for the dataset restricted to the 1020 totally observed genes.
Clusters 5 and 9 appear to be new clusters. They contain respectively 12 and 2 new genes and
their expression profiles have characteristic expressions in Project 2 contrary to the genes of the
other new clusters (see Figure 1). This can explain that Project 2 is now relevant. For Project 5,
the same projects are selected to explain it. The explanations based on the redifferentiation of cells
and the formation of giant cells given in [13] are still valid and the estimations of the regression
parameters are similar.

SelvarClust combined with an imputation method is also tested. To begin with, we generate
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FIGURE 1. Expression profiles of Clusters 5 and 9. The background color is white when the project is irrelevant.
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c = 0.38% of missing values among the 1020 totally observed genes and we repeat this 1000
times to evaluate their NRMSE. Results are summarized in Figure 2. ZERO-imputation results
are not given since by construction, NRMSE of this method always equals 1.

As previously observed on the simulated dataset, KNN-, LLS- and BPCA- imputations are
better than imputations not taking data correlation structure into account. The KNN-imputation
method has an intermediate behavior between the simple ZERO-, ROW- and COL-imputation
methods and the better methods LLS- and BPCA-imputation methods. The ROW-imputation
method behaves often worse. This method is clearly inappropriate for transcriptome data since a
gene is often differentially expressed from an experiment to an other. The better results are given
by the LLS- and the BPCA-imputation methods despite a large variability. Consequently, we only
applied SelvarClust combined with LLS- or BPCA-imputation methods.
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Concerning the variable partition, the results are analogous to SelvarClustMV . Projects 1, 2,
3, 4, 6 and 7 are relevant and the four last ones are required to explain Project 5. The difference
comes from the cluster number, which is smaller since SelvarClust with LLS selects 15 clusters.
The contingency table between SelvarClustMV and SelvarClust with LLS (see Table 4) shows
that the same gene clusters are defined, except Clusters 6, 9, 13 and 17 of SelvarClustMV which
are scattered in the other clusters. Moreover a closer look shows that Clusters 6, 13 and 17 are
mainly composed of genes totally observed (see Table 3), clustered together in the study of [13]
and kept by SelvarClustMV. When SelvarClust is combined with BPCA-imputation, the same
phenomenon is observed: 16 clusters are selected and genes of Clusters 6, 9, 13 and 17 are also
scattered (data not shown). Consequently we think that the results of SelvarClust combined with
an imputation method are less relevant since some biological interpretations are lost.

6. Discussion

In this paper, we were interested in the adaptability of the variable selection in model-based
clustering proposed by [13, 14] to study datasets with missing values. It requires a new strategy to
calculate the model selection criterion via the explicit expression of the observed loglikelihood
and a new parameter estimation method. These different changes alter the backward stepwise algo-
rithms and the code for constant variance matrix is available for the SR-model. The generalization
for the whole mixture forms is straightforward and requires only a coding work.

Objects are assigned to a cluster according to the Maximum A Posteriori rule. Since the
conditional probabilities are based on the relevant variables, objects which have not at least one
value for the relevant variables are not clustered. It concerns a limited number of objects and
solutions exist to overcome this problem. For example an intuitive solution would consist of
attributing such object to the cluster for which the average profile on all the variables is the closest.
This strategy is suitable if irrelevant variables are numerous and linked to the whole relevant
variables.

Imputation methods are easy to use but could have a major impact on results. Missing value
management inside the statistical model avoids this pre-processing step, often tricky. Applications
on simulated data and real data shown that the variable selection procedure combined with an
imputation method could have difficulties to find the variable partition. Whereas SelvarClustMV
has a good behavior up to 20% of missing values. Moreover SelvarClustMV seems easier to keep
the structure between genes totally observed. We emphasize that our method can be useful for
other post-genomic data as well as proteins or metabolites. Our method is neither organism- nor
data specific.
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