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1. Introduction

The notion of Return Period (hereinafter, RP) is frequently used in environmental sciences for
the identification of dangerous events, and provides a means for rational decision making and
risk assessment (for a review, see [Singh et al., 2007, AghaKouchak et al., 2013], and references
therein). Roughly speaking, the RP can be considered [Nappo and Spizzichino, 2009] as an
analogue of the “Value-at-Risk” in Economics and Finance, since it is used to quantify and assess
the risk.

The traditional definition of the RP is as “the average time elapsing between two successive
realizations of a prescribed event”, which clearly has a statistical base. Equally important is the
related concept of design quantile, usually defined as “the value of the variable(s) characterizing
the event associated with a given RP”. In engineering practice, the choice of the RP depends upon
the importance of the structure, and the consequences of its failure. While in the univariate case
the design quantile is usually identified without ambiguity, in the multivariate one this is not so.
Indeed, the identification problem of design events in a multivariate context has recently attracted
the attention of many researches (see, e.g., [Serfling, 2002, Belzunce et al., 2007, Chebana and
Ouarda, 2009, Chebana and Ouarda, 2011, Chaouch and Goga, 2010, AghaKouchak et al., 2013],
and references therein).

As we shall show later, the calculation of the RP is strictly related to the notion of Copula,
which is the restriction of a joint distribution with Uniform margins to Id = [0,1]d , d > 1. The
link between a multivariate distribution F and the associated d-dimensional copula C is given by
the functional identity stated by Sklar’s Theorem [Sklar, 1959, Durante et al., 2012]:

F(x1, . . . ,xd) = C(F1(x1), . . . ,Fd(xd)) (1)

for all x ∈ Rd , where the Fi’s are the univariate margins of F. If all the Fi’s are continuous, then C
is unique. Most importantly, the Fi’s in Eq. (1) only play the role of (geometrically) re-mapping the
probabilities induced by C on the subsets of Id onto suitable subsets of Rd , without changing their
values: viz., the dependence structure modeled by C plays a central role in tuning the probabilities
of joint occurrences. For a thorough theoretical introduction to copulas see [Joe, 1997, Nelsen,
2006, Durante and Sempi, 2010]; for a practical approach see [Salvadori et al., 2007, Jaworski
et al., 2010].

In order to avoid troublesome situations, hereinafter we shall assume that F is continuous
(but not necessarily absolutely continuous), and strictly increasing in each marginal. In turn, any
point x ∈ Rd can be uniquely re-mapped onto u ∈ Id (and vice-versa) via the Probability Integral
Transform (PIT):

(u1, . . . ,ud) = (F1(x1), . . . ,Fd(xd)). (2)

Later we shall use the Kendall’s distribution (or measure) function KC : I→ I [Genest and
Rivest, 1993, Genest and Rivest, 2001] given by

KC(t) = P(W ≤ t) = P(C(U1, . . . ,Ud)≤ t), (3)

where t ∈ I is a probability level, W = C(U1, . . . ,Ud) is a univariate random variable (hereinafter,
r.v.) taking value on I, and the Ui’s are Uniform r.v.s on I with copula C. Note that KC(t)
practically measures the probability that a random event will appear in the region of Id defined by
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Approximation of Kendall’s distribution function & Return Period 153

the inequality C(u)≤ t: this function was introduced as a generalization of the PIT, and stands its
name by the fact that it is related to Kendall’s measure of association — see [Genest and Rivest,
2001, Nappo and Spizzichino, 2009].

While in some cases (e.g., for bivariate Extreme Value copulas [Ghoudi et al., 1998], or
Archimedean copulas [Barbe et al., 1996, McNeil and Nešlehová, 2009]) a close formula for KC
is available, in general it is possible to resort to simulations for estimating specific values of KC
(see, e.g., the procedures outlined in [Barbe et al., 1996, Salvadori et al., 2011], and references
therein). As we shall see, KC turns out to be a fundamental tool for calculating a copula-based RP
for multivariate events.

The paper is organized as follows. In Section 2 we recall consistent definitions of RP’s and
quantiles in a multivariate environment. In Section 3 we present a constructive method for the
approximation of Kendall’s distribution in the bivariate case. In Section 4 we carry out a simulation
study, in order to test the performance of the approach outlined in the paper. Finally, in Section 5
we draw some conclusions and discuss possible future perspectives.

2. Multivariate Return period

In order to provide a consistent theory of RP’s in a multivariate environment, it is first necessary
to define the abstract framework where to embed the question. Preliminary studies can be found in
[Salvadori, 2004, Salvadori and De Michele, 2004, Durante and Salvadori, 2010, Salvadori and De
Michele, 2010], and some applications are presented in [De Michele et al., 2007, Salvadori and De
Michele, 2010, Vandenberghe et al., 2010, Salvadori et al., 2011]. Hereinafter, we shall consider
as the object of our investigation a sequence X = {X1,X2, . . .} of independent and identically
distributed d-dimensional random vectors, with d > 1: thus, each Xi has the same multivariate
distribution F as of the random vector X∼ F = C(F1, . . . ,Fd) describing the phenomenon under
investigation, with suitable marginals Fi’s and d-copula C.

In applications, usually, the event of interest is of the type {X ∈D}, where D is a non-empty
Borel set in Rd collecting all the values judged to be “dangerous” according to suitable criteria.
Let µ > 0 be the average inter-arrival time of the realizations in X (viz., µ is the average
time elapsing between Xi and Xi+1). According to [Salvadori et al., 2011], we may introduce a
consistent notion of RP as follows.

Definition 1. The RP associated with the event {X ∈D} is given by µD = µ/P(X ∈D).

Definition 1 is a very general one: the set D may be constructed in order to satisfy broad
requirements, useful in different applications. Indeed, most of the approaches already present
in literature are particular cases of the one outlined above. It is important to stress that the RP
is a quantity associated with a proper event. However, with a slight abuse of language, we may
also speak of “the RP of a realization”, meaning in fact “the RP of the event {X belongs to
the dangerous region Dx∗ identified by the given realization x∗}”. In a univariate framework,
usually the assignment of x∗ uniquely identifies the corresponding region Dx∗ ; instead, this is
not the case in a multivariate framework. Below we show how it is possible to associate a given
multi-dimensional realization x∗ ∈ Rd with a dangerous region Dx∗ ⊂ Rd . First of all we need to
introduce the following notion.
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154 G. Salvadori, F. Durante & E. Perrone

Definition 2. Given a d-dimensional distribution F = C(F1, . . . ,Fd) and t ∈ (0,1), the critical
layer L F

t of level t is defined as

L F
t = {x ∈ Rd : F(x) = t}. (4)

Clearly, L F
t is the iso-hyper-surface (having dimension d−1) where F equals the constant

value t: thus, L F
t is a (iso)line for bivariate distributions, a (iso)surface for trivariate ones, and so

on. Evidently, for any given x ∈ Rd , there exists a unique critical layer L F
t supporting x: namely,

the one identified by the level t = F(x). Note that, thanks to Eq. (2), there exists a one-to-one
correspondence between the two iso-hyper-surfaces L C

t = {u ∈ Id : C(u) = t} (pertaining to C
in Id) and L F

t (pertaining to F in Rd).
The critical layer L F

t partitions Rd into three non-overlapping and exhaustive regions:

1. R<
t = {x ∈ Rd : F(x)< t};

2. L F
t , the critical layer itself;

3. R>
t = {x ∈ Rd : F(x)> t}.

Practically, at any occurrence of the phenomenon, only three mutually exclusive things may
happen: either a realization of X lies in R<

t , or over L F
t , or in R>

t . Note that all these three
regions are Borel sets.

Thanks to the above discussion, it is now clear that the following (multivariate) notion of RP is
meaningful, and coincides with the one used in the univariate framework.

Definition 3. Let X be a multivariate r.v. with distribution F = C(F1, . . . ,Fd). Also, let L F
t be the

critical layer supporting a realization x of X (i.e., t = F(x)). Then, the RP associated with x is
defined as

1. for the region R>
t

T>
x = µ/P(X ∈R>

t ), (5)

2. for the region R<
t

T<
x = µ/P(X ∈R<

t ). (6)

For instance, in hydrology, T<
x may be of interest if droughts are investigated, while the study

of floods may require the use of T>
x . In the sequel we shall concentrate only upon R>

t : the
corresponding formulas for R<

t could easily be derived. Now, in view of the results outlined in
[Nelsen et al., 2001, Nelsen et al., 2003], it is immediate to show that

T>
x =

µ

1−KC(t)
, (7)

where KC is the Kendall’s distribution function associated with C. Clearly, T>
x is a function of

the critical level t identified by the relation t = F(x). It is then convenient to denote the above RP
via a special notation as follows.

Definition 4. The quantity κx = T>
x is called the Kendall’s RP of the realization x belonging to

L F
t (hereinafter, KRP).
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An advantage of the approach outlined in this work is that realizations lying over the same
critical layer do always identify the same “dangerous” region (i.e., R>

t ). In particular, all the
realizations y having a KRP κy < κx must lie in R<

t , whereas all those y having a KRP κy > κx
must lie in R>

t , while the realizations lying over L F
t share the same KRP κx.

Traditionally, in the univariate framework, once a RP (say, T ) is fixed (e.g., by design or
regulation constraints), the corresponding critical probability level p is calculated as 1− p =
P(X > xp) = µ/T , and by inverting the distribution FX of X it is then immediate to obtain the
critical quantile xp = F(−1)

X (p), which is usually unique. Then, xp is used in practice for design
purposes. As shown below, the same approach can also be adopted in a multivariate environment.

Definition 5. Given a d-dimensional distribution F = C(F1, . . . ,Fd) with d-copula C, and a
probability level p ∈ I, the Kendall’s quantile qp ∈ I of order p is defined as

qp = inf{t ∈ I : KC(t) = p}= K(−1)
C (p), (8)

where K(−1)
C is the (generalized) inverse of KC.

Definition 5 provides a close analogy with the definition of univariate quantile: indeed, recall
that KC is a univariate distribution function (see Eq. (3)), and hence qp is simply the quantile
of order p of KC. In turn, p is the probability measure induced by C on the region R<

qp
, while

(1− p) is the one of R>
qp

. From a practical point of view this means that, in a large simulation
of n independent d-dimensional vectors extracted from F, np realizations are expected to lie in
R<

qp
, and the others in R>

qp
. A heuristic procedure for estimating qp (if it cannot be calculated

analytically) is outlined in [Salvadori et al., 2011].

Remark 1. It is worth stressing that a common error is to confuse the value of the copula C with
the probability induced by C on Id (and, hence, on Rd): on the critical layer L C

qp
it is C = qp, but

the corresponding region R<
qp

has probability p = KC(qp)≥ qp, since KC is usually non-linear
(the same rationale holds for the region R>

qp
).

3. Approximation of KC (bivariate case)

Given the discussion in the previous Sections, it is now clear the importance of Kendall’s distribu-
tion function within the multivariate RP theory. In this Section we present a constructive method
for the approximation of a Kendall’s distribution in the bivariate case. Multivariate generalizations
will be discussed later.

Here the fundamental point is as follows. Given a random sample of m multivariate observations
{X1, . . . ,Xm} extracted from a common joint distribution F with copula C, it is possible to estimate
the corresponding values of KC at any point in I (e.g., via the procedure outlined in [Barbe et al.,
1996]). Then, the true (but unknown!) KC can be approximated as shown below. As a consequence,
the KRP’s of the events of interest can be estimated, without knowing the true copula model
ruling the actual multivariate statistics.
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156 G. Salvadori, F. Durante & E. Perrone

3.1. Construction and features

Let Tn be a dyadic partition of order n > 0 of the unit interval I, i.e.:

ti =
i

2n , i = 0, . . . ,2n. (9)

Note that we use here a dyadic partition for the sake of simplicity only: actually, the present
approach can easily be generalized to an arbitrary (finite) partition of I including the points {0}
and {1}. Let Yn be the set of values

yi = K̂(ti), i = 0, . . . ,2n, (10)

where the K̂(ti)’s are the values, or empirical estimates, of the (unknown) Kendall’s distribution
function KC associated with an (unknown) copula C. Clearly, y0 = 0 and y2n = 1; also, in order
to avoid troublesome cases — which would require an ad hoc treatment — we only use those yi’s
such that yi > ti (see the admissibility discussion at the beginning of Section 4.2, the constraint on
Kn below Eq. (16), and the note on the coefficients ci,n’s below Eq. (19)).

Now, the idea is to approximate the true KC, whose values Yn are assumed to be known
(estimated) at the points Tn, with a continuous, piecewise linear, distribution function Kn, which
depends upon the order n of the partition Tn. Such a choice is a very natural one: on the one
hand, Kn is the simplest continuous polynomial, and its construction is easy and requires a least
amount of parameters; on the other hand, the expression of the associated Archimedean generator
(see below) is both analytically and computationally tractable. En passant we note that, given the
constraints stated above, Kn turns out to be a proper Kendall’s distribution function.

In turn, we simply need to find suitable parameters ai,n’s and bi,n’s such that

Kn(t) = ai,n +bi,n t, t ∈ [ti−1, ti], (11)

with i = 1, . . . ,2n, and to solve the following system of equations:{
ai,n +bi,n ti−1 = yi−1

ai,n +bi,n ti = yi
. (12)

The solutions are {
ai,n = yi− i(yi− yi−1)

bi,n = 2n(yi− yi−1)
, (13)

with i = 1, . . . ,2n. Clearly, bi,n ≥ 0 for all indices i’s: indeed, Kn should represent a distribution
function over I — see Eq. (3), and hence it must be increasing. In addition, Kn converges pointwise
a.e. to KC in I as the order n of the partition Tn and the sample size m increase.

Now, since Kn is a (Kendall’s) distribution function, Theorem 4.3.4 in [Nelsen, 2006] states
that

Kn(t) = t− γn(t)
γ ′n(t+)

, t ∈ (0,1), (14)

where the function γn is the inner generator of a suitable Archimedean bivariate copula Cn.
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Approximation of Kendall’s distribution function & Return Period 157

Remark 2. We recall that a (strict) inner Archimedean generator γn must be positive, convex, and
strictly decreasing on I, with γn(0) = +∞ and γn(1) = 0. In turn, γn is continuous in I.

In view of Eq. (14), it is then possible to calculate γn, and eventually to construct an Archi-
medean copula Cn associated with Kn. Note that, in the present case, t−Kn(t) is continuos and
negative by construction for any n, and hence so is the ratio γn/γ ′n in (0,1).
Remark 3. The Archimedean copula Cn associated with Kn could be used to generate random
samples having a Kendall’s distribution approximating the unknown one of the available data
(i.e., KC). Clearly, the whole approach is expected to provide reasonable simulations in case the
underlying observations exhibit some kind of Archimedean dependence (e.g., exchangeability, or,
at least, a symmetric dependence structure). Recent tests to check the presence of these features
can be found in [Jaworski, 2010, Bücher et al., 2012, Genest et al., 2012, Kojadinovic and Yan,
2012].

Practically, we need to solve the set of differential equations

γi,n(t)
γ ′i,n(t)

= t−Kn(t) =−ai,n +(1−bi,n) t, t ∈ [ti−1, ti], (15)

in each i-th interval of the partition Tn, with i = 1, . . . ,2n. The corresponding solutions are

γi,n(t) =

{
ci,n exp(−t/ai,n) , if bi,n = 1

ci,n (|−ai,n +(1−bi,n) t|)
1

1−bi,n , if bi,n 6= 1
, (16)

where the ci,n’s are suitable positive constants (see below), t ∈ [ti−1, ti], and i = 1, . . . ,2n. Using
Eq. (15), and the constraint Kn(t) > t (except for t = 0 and t = 1, where Kn(t) = t), it follows
that the argument of the absolute value is strictly negative for all t ∈ [ti−1, ti]. As a consequence,
the inner Archimedean generator γn has the following piecewise representation:

γi,n(t) =

{
ci,n exp(−t/ai,n) , if bi,n = 1

ci,n (ai,n +(bi,n−1) t)
1

1−bi,n , if bi,n 6= 1
, (17)

with t ∈ [ti−1, ti] and i = 1, . . . ,2n. In turn, the full expression of γn is as follows:

γn(t) =
2n

∑
i=1

γi,n(t)1[ti−1,ti](t). (18)

The Lemmas given below show that γn features all the properties of a proper (strict) inner
Archimedean generator.

Lemma 1. The function γn, given by the piecewise representation (18), satisfies the boundary
conditions γn(0) = +∞ and γn(1) = 0.

Proof. Due to the constraint Kn(t) > t for t ∈ (0,1), one cannot have b1,n = 1 or b2n,n = 1,
otherwise the first or last segments of the piecewise linear function Kn would coincide with
the diagonal of the unit square: more particularly, one must have b1,n > 1 and b2n,n < 1, since
Kn(0) = 0 and Kn(1) = 1. In turn, the first and last portions of γn necessarily only admit the
power-law representation given by Eq. (17), and hence the boundary conditions γn(0) = +∞ and
γn(1) = 0 are trivially satisfied, being Kn(0) = a1,n = 0 and Kn(1) = a2n,n +b2n,n = 1.
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158 G. Salvadori, F. Durante & E. Perrone

According to Remark 2, suitable conditions must be satisfied by the coefficients ci,n’s, for all
indices i’s, in order to yield a proper inner Archimedean generator: here we shall only deal with
the non-trivial case bi,n 6= 1. First of all, we fix backwards the ci,n’s in such a way that γn, given
by Eq. (18), be continuous in I, i.e. γi,n(ti) = γi+1,n(ti). This yields

ci,n = ci+1,n
(ai+1,n +(bi+1,n−1) ti)

1
1−bi+1,n

(ai,n +(bi,n−1) ti)
1

1−bi,n

(19)

for i = 1, . . . ,2n−1. Clearly, ci,n > 0 for all indices i’s, since Kn(ti)> ti. Note that it is possible to
choose any arbitrary starting value c2n,n > 0, since the inner generator of an Archimedean copula
is uniquely defined up to a positive multiplicative constant. The following Lemmas show that γn

is strictly decreasing and convex over I.

Lemma 2. The function γn, given by the piecewise representation (18), has a continuous and
strictly negative first derivative over I, and hence is strictly decreasing.

Proof. A simple calculation shows that

γ
′
n(t) = γ

′
i,n(t) =

−
ci,n
ai,n

exp(−t/ai,n) , if bi,n = 1

−ci,n (ai,n +(bi,n−1) t)
bi,n

1−bi,n , if bi,n 6= 1
, (20)

with t ∈ [ti−1, ti] and i= 1, . . . ,2n. Thus, γ ′n is strictly negative, and by using Eq. (19) it is immediate
to show that γ ′n is also continuous, i.e. γ ′i,n(ti) = γ ′i+1,n(ti).

Lemma 3. The function γn, given by the piecewise representation (18), is convex over I.

Proof. In order to show the convexity of γn it is enough to prove that

γ
′
n(y)/γ

′
n(x)≤ 1 (21)

for all x≤ y in I, i.e. γ ′n is a non-decreasing function. We first note that γ ′n is continuous and strictly
negative, as shown in Lemma 2, and that all the piecewise components γi,n’s are convex. Then, we
proceed by induction over the partition Tn.

First consider the components γ ′1,n and γ ′2,n defined over, respectively, I1 = [t0, t1] and I2 = [t1, t2].
If x and y both belong either to I1 or I2, then the inequality (21) trivially holds, being γ ′1,n
and γ ′2,n both convex. Thus, let t0 ≤ x < t1 < y ≤ t2. In turn, since γ ′n is continuous in t1, then
γ ′1,n(t1) = γ ′2,n(t1), and hence

γ ′2,n(y)

γ ′1,n(x)
=

γ ′2,n(y)

γ ′2,n(t1)
·

γ ′1,n(t1)

γ ′1,n(x)
≤ 1,

being γ ′1,n and γ ′2,n both convex. Thus, γn is convex in [t0, t2]. By the same token, we can then prove
that γn is convex in [t0, t3], in [t0, t4], and so on, till the end point t2n of the unit interval I.

Remark 4. An alternative proof can be given by exploiting the (equivalent) integral representation
of γn given in [Genest and Rivest, 1993]:

γn(t) = exp
{∫ t

x0

1
x−Kn(x)

dx
}
,
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Approximation of Kendall’s distribution function & Return Period 159

where t ∈ I and x0 ∈ (0,1) is arbitrary. Given the particular expression of Kn, it is easy to show
that the inequality (21) holds for all x≤ y in I (however, the tedious calculations are not shown).

Now, given the fact that γn is a proper inner Archimedean generator, we can provide the explicit
expression of the corresponding Archimedean copula Cn via the standard formula

Cn(u,v) = γ
−1
n (γn(u)+ γn(v)), (22)

where (u,v) ∈ I2. Clearly, Cn has Kn as its Kendall’s distribution function. A further feature of
Cn is as follows.

Proposition 1. The Cn-measure of the level curves of Cn is zero.

Proof. For any t ∈ (0,1), the t-level curve of Cn is defined via the relation γn(u)+ γn(v) = γn(t).
According to Theorem 4.3.3 in [Nelsen, 2006], the corresponding Cn-measure is given by

γn(t)
γ ′n(t−)

− γn(t)
γ ′n(t+)

.

Since the ratio γn/γ ′n is continuos in (0,1) by construction, the claim follows.

As is well known [Nelsen et al., 2003], Kendall’s distribution function induces an equivalence
relation on the set of copulas as follows.

Definition 6. Let C1 and C2 be two copulas with respective Kendall’s distribution functions K1
and K2. Then, C1 is in relation with C2, and we write C1 ≡K C2, if and only if K1(t) = K2(t) for
all t ∈ I.

As a consequence, there is an entire class of copulas sharing the same Kendall’s distribution
function. In turn, the Archimedean copula Cn given by Eq. (22) may play the role as of the
“representative member” of the ≡Kn-equivalence class. Actually, in view of the results shown in
[Nelsen et al., 2009, Genest et al., 2011a, Genest et al., 2011b], there is exactly one Archimedean
copula in each equivalence class (however, it should be noted that such a uniqueness result is only
proven for dimensions two and three).

The last point to be investigated is the convergence of Cn to a proper copula C̃: here we use the
following result shown in [Charpentier and Segers, 2008].

Proposition 2. Let γ ′n and γ̃ ′ be the right-hand derivatives of, respectively, the inner Archimedean
generators γn and γ̃ . Then, set

λn(t) =
γn(t)
γ ′n(t)

, λ̃ (t) =
γ̃(t)
γ̃ ′(t)

, Kn(t) = t−λn(t), K̃(t) = t−λ (t),

where Kn and K̃ are, respectively, Kendall’s distribution functions of the Archimedean copulas
Cn and C̃. Then, the following five conditions are equivalent:

1. limn→∞ Cn(u,v) = C̃(u,v) for all (u,v) ∈ I2.

2. limn→∞
γn(u)
γ ′n(v)

= γ̃(u)
γ̃ ′(v) for every u ∈ (0,1] and v ∈ (0,1) such that γ̃ ′ is continuous in v.

3. limn→∞ λn(u) = λ̃ (u) for every u ∈ (0,1) such that λ̃ (u) is continuous in u.

4. There exist positive constants kn such that limn→∞ knγn(u) = γ̃(u) for all u ∈ I.
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160 G. Salvadori, F. Durante & E. Perrone

5. limn→∞ Kn(t) = K̃(t) for every t ∈ (0,1) such that K̃ is continuous in t.

In our case, the last claim follows directly from the pointwise convergence of Kn to KC. In
turn, Proposition 2 guarantees the pointwise convergence of the sequence of copulas Cn to the
Archimedean copula C̃, having KC as its Kendall’s distribution function. As a consequence, C̃
may play the role as of the (Archimedean) “representative member” of the equivalence class of
copulas sharing the original KC Kendall’s distribution function, which obviously includes the
(unknown) copula C.

3.2. Global and local simulation

Besides the explicit construction of the approximating copula Cn, the crucial point in applications
is the possibility to generate random samples having such a dependence structure, yielding the
corresponding Kendall’s distribution function Kn of interest here. Since Cn is Archimedean,
several algorithms are available: here we use a well known one, providing a global simulation.

Algorithm 1. (See Exercise 4.15 in [Nelsen, 2006])

1. Generate two independent variates s and t Uniform on (0,1).

2. Set w = γn(K−1
n (t)).

3. Set u = γ−1
n (sw) and v = γ−1

n ((1− s)w).

4. The desired pair is then (u,v).

Instead, in order to provide “local” scenarios (e.g., to simulate on a given critical layer of
interest), here we adapt an algorithm based on the Conditional Inverse Method for exchangeable
Archimedean copulas (see Algorithm 3.8 in [Brechmann, 2012]).

Algorithm 2. Let p ∈ (0,1) be a fixed probability level.

1. Calculate Kendall’s quantile qp = K−1
n (p) (see Definition 5).

2. Set w = γn(qp).

3. Generate a variate s Uniform on (0,1).

4. Set u = γ−1
n (sw) and v = γ−1

n ((1− s)w).

5. The desired pair is then (u,v).

Essentially, the difference between the two procedures given above is that in Algorithm 1 two
independent variates s and t are needed, whereas in Algorithm 2 only one is used: this is obvious,
since in the latter case the pair (u,v) is constrained to lie on the critical layer (onedimensional
isoline) L Cn

qp
. Clearly, the realization generated by Algorithm 2 has a KRP equal to µ/(1− p).

4. A simulation study (bivariate case)

In order to test the techniques outlined in the previous Sections we adopt a simulation approach:
first, we generate random samples from known copulas, and then we check how the corresponding
Kendall’s distribution functions (and, hence, the estimates of the return periods) are approximated
by the techniques outlined above. Below we describe the testing strategy.
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4.1. Design of the testing procedure

We briefly outline here the steps of the testing procedure adopted in this work.

1. A bivariate copula C (with suitable parameter θ ) is chosen among five well known families:
Gumbel, Frank, Clayton, Gaussian, and Cuadras-Augé. This gives the possibility to test
the performance of the approximating model against different structures of dependence,
whose features are briefly summarized below [Nelsen, 2006, Salvadori et al., 2007]. Note
that the range of the parameters may also include the limiting cases corresponding to the
2-copulas W2 (the Fréchet-Hoeffding lower bound), Π2 (the Product copula), or M2 (the
Fréchet-Hoeffding upper bound), with Kendall’s τ equal to −1, 0, and +1, respectively.

Gumbel. This family is Archimedean and Extreme Value, with Kendall’s τ ranging in
[0,1], is absolutely continuous, and has upper tail dependence. The expressions of the
copula and the corresponding generator are as follows:

Cθ (u,v) = exp
(
−
[
(− lnu)θ +(− lnv)θ

] 1
θ

)
, (23)

with θ ∈ [1,+∞), and
γθ (t) = (− ln t)θ . (24)

Frank. This family is Archimedean, with Kendall’s τ ranging in [−1,1], is absolutely
continuous, and has no tail dependence. The expressions of the copula and the corre-
sponding generator are as follows:

Cθ (u,v) =−
1
θ

ln
(

1+
(e−θu−1)(e−θv−1)

e−θ −1

)
, (25)

with θ ∈ R, and

γθ (t) =− ln
e−θ t −1
e−θ −1

. (26)

Clayton. This family is Archimedean, with Kendall’s τ ranging in [−1,1], is absolutely
continuous, and has lower tail dependence. The expressions of the copula and the
corresponding generator are as follows:

Cθ (u,v) =
[
max

(
u−θ + v−θ −1,0

)]− 1
θ

, (27)

with θ ∈ [−1,+∞), and

γθ (t) =
1
θ

(
t−θ −1

)
. (28)

Gaussian. This family is not Archimedean, with Kendall’s τ ranging in [−1,1], is abso-
lutely continuous, and has no tail dependence The expression of the copula is as
follows:

Cθ (u,v) =
1

2π
√

1−θ 2

∫
Φ−1(u)

−∞

∫
Φ−1(v)

−∞

exp
(
−s2−2θst + t2

2(1−θ 2)

)
dsdt, (29)

with θ ∈ [−1,+1], where Φ−1(·) denotes the inverse of the Normal distribution.
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FIGURE 1. Example of a sample of size m = 50 extracted from the “reference” Gumbel copula — see text. Also shown
are the isolines of the Gumbel copula, for the selected levels t = 0.1,0.2, . . . ,0.9.

Cuadras-Augé. This family is not Archimedean, with Kendall’s τ ranging in [0,1], has
both an absolutely continuous and a singular component, and has upper tail depen-
dence. The expression of the copula is as follows:

Cθ (u,v) = (uv)θ min{u1−θ ,vθ}, (30)

with θ ∈ [0,1].

2. Three different values of the copula parameter θ are selected, in order to yield the following
values of Kendall’s τ associated with C: τ1 = 0.25 (for θ = θ1), τ2 = 0.5 (for θ = θ2), and
τ3 = 0.75 (for θ = θ3). This gives the possibility to test the robustness of the approximating
procedure against different levels of association / concordance.

3. Three different orders n of the partition Tn are selected: n1 = 3, n2 = 4, and n3 = 5. Thus,
T1 contains 9 points, T2 contains 17 points, and T3 contains 33 points. This gives the
possibility to check the role played by the order of the partition in terms of “goodness” of
approximation.

4. In order to carry out the tests, it is necessary to use a sample {X1, . . . ,Xm} of bivariate
observations. Three different values of the sample size m are selected: m1 = 50, m2 = 500,
and m3 = 5000. In particular, m1 is chosen in order to represent the typical size of the
samples frequently found, e.g., in hydrological or environmental applications (i.e., small
sizes). Instead, m3 should provide a statistically significant sample size, i.e. large enough
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FIGURE 2. Comparison between Kendall’s distribution function KC of the “reference” Gumbel copula, its empirical
estimate K̂, and the corresponding approximation Kn. Also shown are the lower bound KM2 , as well as the inverse
function K−1

n . Here the random sample used to calculate K̂ and Kn is the one shown in Figure 1, and the dyadic
partition Tn is of order n = 4.

to draw reasonable conclusions from a statistical point of view. The value chosen for m2
represents an intermediate case between m1 and m3, and is used to fully assess the behavior
of the techniques proposed in this work.

5. The performance of the approach outlined in this work will be investigated via simulation
techniques: thus, for each combination (Ci,θ j,nk,ml), N = 1000 independent bivariate
random samples of size ml are extracted from the “reference” copula Ci with parameter
θ j, and analyzed by using a partition of order nk. The value N = 1000 is large enough
to construct reliable empirical confidence intervals for the quantities of interest here. As
an illustration, in Figure 1 we show an example of (starting) sample extracted from the
“reference” Gumbel copula, with parameter θ = 2 and τ = 0.5: hereinafter, this copula will
be used to illustrate the results.

4.2. Details of the procedure

For each combination (Ci,θ j,nk,ml), and for each of the N independent samples of size ml
extracted from the “reference” copula Ci with parameter θ j, the following steps are carried out by
using a partition of order nk. Without loss of generality, here we fix the average inter-arrival time
of the realizations as µ = 1 year (see Section 2). Thus, the temporal unit of the Return Periods
calculated in the sequel will be in years.

1. An empirical estimate K̂ of the true KC is calculated at the abscissas of the partition Tn,
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FIGURE 3. Estimates of the coefficients ai,n’s, bi,n’s, and ci,n’s by using the random sample shown in Figure 1:
here the order of the dyadic partition Tn is n = 4. Also shown is the Archimedean generator γn associated with the
approximating function Kn shown in Figure 2, as well as (a version of) the one of the “reference” Gumbel copula.

generating the set of values Yn. Since the estimating procedure is not “intrinsic”, some
of the estimates K̂’s may be smaller than the lower bound KM2(t) = t at some abscissas
ti’s. In turn, these latter are discarded, and only the consistent estimates are eventually
used. As an illustration, in Figure 2 we show a comparison between Kendall’s distribution
function KC of the “reference” Gumbel copula, and its empirical estimate K̂. In particular,
a non-admissible empirical estimate y15 is well visible in the right upper corner of Figure 2
at the abscissa t15 = 15/16: once discarded, the approximating function Kn simply joins
the closest admissible values y14 and y16.
Note that the arbitrary dismissal of some yi’s may yield a biased estimate of KC, whose
precise features are difficult to quantify. However, on the one hand, we believe that a priori
it makes little sense to construct a possibly non-consistent approximation Kn; on the other
hand, the regularity (smoothness) of the approximating function Kn generally improves by
discarding the non-admissible yi’s, as shown in Figure 2: this may yield random simulations
extracted from Cn less prone to show bizarre (practically unreliable) structures — see later
the discussion of the features of Figure 4.
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FIGURE 4. Simulated sample of size 10,000 extracted from the approximating copula Cn constructed using the
Archimedean generator γn shown in Figure 3. Also shown are the isolines of the “reference” Gumbel copula, for the
selected levels t = 0.1,0.2, . . . ,0.9.

2. The sequences of the relevant parameters ai,n’s, bi,n’s, and ci,n’s are calculated. As an
illustration, in Figure 3 we show the estimates of these coefficients, by using the sample
shown in Figure 1. It is worth noting how the calculation of the ci,n’s is a numerically
ill-conditioned problem: in fact, the estimates range over quite a few orders of magnitude,
with local abrupt jumps. In addition, some numerical care is needed when fixing the bi,n’s:
in fact, if bi,n ≈ 1 (within a software-dependent numerical tolerance), then the power-law
term in Eq. (17) may “explode”, and the corresponding exponential expression has to be
used instead — here we adopt the numerical criterion |bi,n−1|< 0.03. It is also interesting
to note that, essentially due to a limited sample size, the empirical estimate K̂ of Kendall’s
distribution function KC may sometimes be constant at two (or more) successive abscissas
ti’s: this is well evident in Figure 2, at the abscissas t7–t8 and t12–t13, and is due to a lack of
sample observations between the isolines of levels 0.4–0.5 and 0.7–0.8 shown in Figure
1. Then, in order to improve the usability of Kn (see later the discussion of the features
of Figure 4), these pathological values, yielding a flat approximating distribution function
Kn with negligible density, are discarded by simply joining the closest values y7–y9 and
y12–y14, as shown in Figure 2.

In turn, the approximating function Kn is constructed, yielding the generator γn and the
corresponding Archimedean copula Cn via Eq. (22). As an illustration, in Figure 2 we
show a comparison between Kendall’s distribution function KC of the “reference” Gumbel
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copula, and the corresponding approximation Kn: overall, the interpolation looks empiri-
cally acceptable. Also, in Figure 3 we show the approximating Archimedean generator γn

associated with Kn, as well as (a version of) the one of the “reference” Gumbel copula: a
direct comparison is meaningless, since Archimedean generators are uniquely defined up to
a multiplicative constant.

3. The KRP’s T = 10,20,50,100,200,500,1000 years, of interest in practical applications, are
selected, and the corresponding probability levels p = 1−µ/T and Kendall’s quantiles qp’s
are calculated (by inverting Eq. (11)). Then, by inverting the N approximating functions
Kn’s (calculated over all the N simulations mentioned above), estimates of the mean
values of Kendall’s quantiles qp’s are computed, as well as suitable corresponding empirical
Confidence Intervals. In fact, here the target is to investigate how good (or bad) the approach
outlined in this work may approximate the “reference” Kendall’s distributions. In particular,
we check to what extent the approximation is correct (i.e., unbiased).
As an illustration, considering the case of the “reference” Gumbel copula, in Figure 5 we
plot the estimates of the mean values of Kendall’s quantiles qp’s, and approximate 90%
Confidence Intervals, for all the values of the parameters m and n used in this work. The
estimates should be compared with the exact values of Kendall’s quantiles calculated by
using the “reference” Kendall’s distributions plotted in the same pictures.

4. In order to test whether the approximating dependence structure Cn may generate samples
having the required KRP’s, we calculate the percentages of simulated pairs “below” each
critical layer L Cn

qp
(see Definition 2, and also the discussion ensuing Definition 5) for

the KRP’s T = 10,20,50,100,200,500,1000 years mentioned above, and compare these
estimates with the expected values given by p = 1−µ/T .
For this purpose, a large simulation of size 10,000 is generated from the approximating
copula Cn via Algorithm 1: see Figure 4 for an illustration. It is interesting to note the
very particular structure of the simulated pairs, as well as the link with the corresponding
approximating function Kn shown in Figure 2. Evidently, the density of points in the unit
square is proportional to the density of Kn given by K′n(t) = dKn(t)/dt = bi,n, for some
suitable index i depending upon t. The plot of the coefficients bi,n’s shown in Figure 3
provides the graph of K′n: in fact, the bi,n’s are simply the slopes of the linear segments
forming Kn. In turn, intervals in I where Kn is particularly flat (or, equivalently, K′n is small)
correspond to “circular strips” in I2 where only a few pairs can be generated, coherently
with the probabilistic meaning of Kendall’s distribution function (see Eq. (3)): a small
value of bi,n in the i-th interval means that it is unlikely that random realizations could be
simulated in the corresponding circular strip.

4.3. Analysis of the results

In this Section we briefly discuss the results of the tests mentioned in the previous Sections. For
three of the families of copulas considered here (namely, the Gumbel, the Gaussian, and the
Cuadras-Augé), in Tables 1–3 below we report the quantities

∆ = 100 ·
qp−qp

qp
, (31)
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TABLE 1. Estimates of the relative percent biases ∆’s for the Gumbel family: shown are the percentages “%”.

n
KRP θ m 3 4 5 τ

50 4.147 2.695 2.477
4
3 500 0.597 0.407 0.256 1

4
5000 0.298 0.105 0.044

50 1.523 1.093 0.683
10 y 2 500 0.529 0.289 0.149 1

2
5000 0.276 0.038 0.0523

50 -0.225 -0.755 -1.236
4 500 0.082 0.098 -0.119 3

4
5000 0.069 0.021 0.020

50 0.659 0.702 0.583
4
3 500 0.404 0.255 0.269 1

4
5000 0.457 0.141 0.083

50 0.012 0.030 -0.109
100 y 2 500 0.095 0.038 0.071 1

2
5000 0.103 0.035 0.011

50 -0.095 -0.208 -0.297
4 500 0.014 -0.003 -0.064 3

4
5000 0.025 0.005 -0.002

50 0.085 0.089 0.078
4
3 500 0.060 0.041 0.015 1

4
5000 0.066 0.035 0.019

50 0.003 0.005 -0.009
1000 y 2 500 0.011 0.006 0.004 1

2
5000 0.012 0.006 0.003

50 -0.006 -0.017 -0.026
4 500 0.005 0.003 -0.003 3

4
5000 0.006 0.004 0.003

where qp is the exact Kendall’s quantile of order p, and qp the (average) estimated one. Thus, the
∆’s represent the percent relative biases, which provide sensible measures to study the goodness
of the approximating approach proposed in this work. For the sake of shortness, the results
concerning the Frank and the Clayton Archimedean families are not reported, being similar to the
Gumbel case. Also, only three KRP’s are shown: namely, 10, 100, and 1000 years (for instance,
in hydrology, these are the return periods frequently used to design structures like, respectively,
sewers, harbors, and dams).

The analysis of Tables 1–3 yields the following considerations. In general, the percent relative
biases ∆’s are quite small: these are always smaller than 5%, and smaller than 1% (if not negligible)
in almost all cases. In turn, the approximating procedure outlined in this work seems to provide
valuable results concerning the interpolation of the true (but unknown) KC. Below we discuss
how the parameters of interest may affect the quality of the approximations.

The partition order. Apparently, the ∆’s get smaller and smaller by increasing n when the bias is
positive (i.e., in case of over-estimation), whereas they increase, in an absolute sense, when
the bias is negative (i.e., in case of under-estimation). Shortly, finer partitions generally
reduce the amount of over-estimation of Kendall’s quantiles.
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TABLE 2. Estimates of the relative percent biases ∆’s for the Gaussian family: shown are the percentages “%”.

n
KRP θ m 3 4 5 τ

50 3.807 2.619 2.204
0.38268 500 1.046 0.542 0.519 1

4
5000 0.713 0.145 0.108

50 2.593 1.952 0.955
10 y 0.70711 500 0.647 0.388 0.108 1

2
5000 0.453 0.140 0.047

50 0.373 0.014 -0.495
0.92388 500 0.271 0.212 0.011 3

4
5000 0.189 0.118 0.082

50 3.342 2.829 2.565
0.38268 500 2.110 0.970 0.736 1

4
5000 2.068 0.264 0.179

50 1.185 1.073 0.805
100 y 0.70711 500 1.109 0.533 0.334 1

2
5000 1.102 0.501 0.085

50 0.274 0.135 0.051
0.92388 500 0.352 0.223 0.118 3

4
5000 0.365 0.231 0.101

50 1.182 1.133 1.109
0.38268 500 1.065 0.840 0.707 1

4
5000 1.062 0.818 0.476

50 0.323 0.312 0.286
1000 y 0.70711 500 0.315 0.258 0.190 1

2
5000 0.314 0.256 0.194

50 0.069 0.056 0.046
0.92388 500 0.077 0.065 0.052 3

4
5000 0.079 0.065 0.052

The sample size. Apparently, the ∆’s get smaller and smaller by increasing m. Indeed, this has
to be expected: a larger sample size usually provides a better estimate of the true (but
unknown) KC.

The Kendall’s τ . Apparently, the ∆’s always get smaller and smaller by increasing τ . Indeed,
this has to be expected: in fact, intuitively speaking, a larger concordance means that the
dependence structure described by C is “closer” to the one of the co-monotone copula M2,
independently of the family of C. In turn, samples extracted from C tend to arrange along
the main diagonal in the unit square, and the spread decreases by increasing τ . Then, both
KC and Kn tend to the common lower bound given by the main diagonal in the unit square,
thus reducing the biases of the estimates.

The copula family. As long as both the sample size m and the partition order n are large enough,
the role played by the copula family seems to be more and more irrelevant. In fact, appar-
ently, in the limiting case, the magnitudes of the ∆’s are practically the same in all the cases
illustrated here.

Finally, considering the case of the “reference” Gumbel copula, in Figure 5 we show the
comparisons between the exact probabilities of the sub-critical regions (i.e., the ones “below” the
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TABLE 3. Estimates of the relative percent biases ∆’s for the Cuadras-Augé family: shown are the percentages “%”.

n
KRP θ m 3 4 5 τ

50 3.845 3.080 0.991
2
5 500 0.864 0.465 0.591 1

4
5000 0.362 0.173 0.068

50 1.891 0.876 0.246
10 y 2

3 500 0.536 0.405 0.182 1
2

5000 0.291 0.046 0.074
50 -0.421 -0.693 -1.009

6
7 500 0.048 0.068 -0.071 3

4
5000 0.035 0.033 0.037

50 0.650 0.618 0.274
2
5 500 0.483 0.159 0.474 1

4
5000 0.459 0.138 0.084

50 0.080 0.006 -0.147
100 y 2

3 500 0.112 0.048 0.045 1
2

5000 0.108 0.046 0.015
50 -0.094 -0.164 -0.255

6
7 500 0.012 -0.001 -0.054 3

4
5000 0.027 0.013 0.006

50 0.080 0.077 0.043
2
5 500 0.064 0.027 0.033 1

4
5000 0.061 0.030 0.014

50 0.014 0.007 -0.009
1000 y 2

3 500 0.017 0.011 0.007 1
2

5000 0.017 0.011 0.008
50 -0.007 -0.013 -0.022

6
7 500 0.004 0.003 -0.003 3

4
5000 0.006 0.004 0.003

critical layers), for the KRP’s T = 10,20,50,100,200,500,1000 years, and the corresponding
empirical estimates. Evidently, the agreement is valuable in all cases: in particular, the estimated
probabilities are practically the same as of the theoretical expected ones. Similar results are
found by using the other four families of copulas investigated here (namely, the Frank, Clayton,
Gaussian, and Cuadras-Augé families): however, some of these structures exhibit some (or all)
kinds of Archimedean dependence (e.g., exchangeability, or, at least, a symmetric dependence
structure).

5. Conclusions and perspectives

In this work we outline a constructive approach for the approximation of Kendall’s measure
and Kendall’s Return Period in the bivariate case. First, we introduce a suitable theoretical
framework, based on the Theory of Copulas, where to embed the issue. Then, we outline the
original construction procedure. The whole approach is semi-parametric, since the approximation
of Kendall’s measure is only based on the available data, and is simply given by a (suitable)
continuous piece-wise linear function on the unit interval. In turn, the Archimedean copula
associated with the approximating Kendall’s measure is worked out, and used for the simulation
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of random samples featuring suitable properties. Finally, a sensitivity analysis is carried out via a
simulation study, in order to investigate the robustness of the approach proposed against several
relevant factors: namely, the parent family of copulas, the level of association / concordance, the
sampling density, and the size of the available sample. As a conclusion, the approximation strategy
outlined in this work may yield reasonable and valuable results in all the cases investigated here.

Below, we discuss future perspectives, as well as possible improvements and generalizations,
of the approach sketched in the previous Sections, which may find fruitful applications to practical
problems.

Generalization to the multivariate case. In this work we limited our attention to the bivariate
case. It would be interesting to check whether a similar approach can be adopted in a
more general d-variate case, with d > 2. The starting point is the general result given by
Proposition 4.5 in [McNeil and Nešlehová, 2009], which provides the expression of the
Kendall’s distribution function of an Archimedean d-copula C. Now, as in Section 3.1, the
idea is to approximate the true KC with a continuous, piece-wise linear, distribution function
Kn, and then solve a suitable differential equation in order to calculate the approximating
Archimedean generator. However, for dimensions d > 2, numerical estimates of the high-
order derivatives involved may be needed, and this can make the procedure ill-conditioned
(to be compared with [Hofert et al., 2012]).

A “better” partition. As already mentioned in Section 4.3, the dyadic partition may not always
be the best choice: for instance, a non-uniform partition could provide better information
about the left (or right) tail of the Kendall’s distribution, which may be of interest in
practical applications. The construction of suitable “optimal” partitions, devised for specific
purposes and targets, is in progress.

Comparison of parametric vs. non-parametric approaches. A further test of interest would
be the comparison between the results achieved by the present approach with those obtained
exploiting known parametric models. For instance, in view of a possible better assessment
of hydrological structures’ safety (e.g., dams, harbors, dikes, and so on), the re-analysis of
several publications already present in Literature might yield an improvement of the design
values previously estimated (see, e.g., [Salvadori et al., 2011, Gräler et al., 2013]).
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