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Sampling from hierarchical Kendall copulas
Titre: Génération d’échantillons pseudo-aléatoires à partir de copules de Kendall hiérarchiques

Eike Christian Brechmann1

Abstract: As copulas are frequently used to model dependence in statistical models, it is of central importance to be
able to accurately and efficiently sample from them. In the case of hierarchical Kendall copulas, a top-down sampling
strategy involves simulation of a random vector given that it lies in a particular level set. While explicit solutions are
available when hierarchical Kendall copulas are built from Archimedean copulas, this paper presents new results for
the Plackett copula and for Archimax copulas, which also include the class of extreme-value copulas. Additionally, new
approximate sampling procedures for hierarchical Kendall copulas are proposed and evaluated in a simulation study.

Résumé : Les copules étant fréquemment utilisées pour modéliser la dépendance, il est crucial de disposer d’algo-
rithmes efficaces permettant de générer des échantillons pseudo-aléatoires à partir de ces distributions. Dans le cas des
copules de Kendall hiérarchiques, une stratégie d’échantillonnage descendante repose sur la simulation d’un vecteur
aléatoire sachant qu’il prend ses valeurs dans un ensemble de niveau de la copule. Après avoir rappelé les solutions
explicites dans le cas où la construction repose sur les copules Archimédiennes, cet article présente de nouveaux
résultats pour la copule de Plackett et pour les copules Archimax contenant la classe des copules de valeurs extrêmes.
En complément, de nouveaux algorithmes approchés de génération d’échantillons pseudo-aléatoires pour les copules
de Kendall hiérarchiques sont proposés et évalués par le biais de simulations.

Keywords: sampling copulas, hierarchical copulas, Kendall distribution function, copula level set, sample reordering
Mots-clés : génération d’échantillons pseudo-aléatoires, copules hiérarchiques, fonction de distribution de Kendall,
ensembles de niveau d’une copule
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1. Introduction

Developing accurate and efficient sampling methods for dependence models is a major challenge.
Copulas arise as a fundamental tool to model statistical dependence in Sklar’s Theorem [Sklar,
1959]. It states that the d-dimensional distribution function F of a random vector X = (X1, ...,Xd)

′

equals a copula C evaluated at the values of the univariate marginal distribution functions F1, ...,Fd :

F(x) =C(F1(x1), ...,Fd(xd)) ∀x = (x1, ...,xd)
′ ∈ [−∞,∞]d . (1)

Furthermore, the copula C is unique if F1, ...,Fd are continuous. It follows that a copula is just a
multivariate distribution function with uniform margins. Comprehensive references on copulas
are [Joe, 1997] and [Nelsen, 2006], while applications in finance and environmental sciences can
be found in, e.g., [Cherubini et al., 2004] and [Salvadori et al., 2007].

Sampling from different classes of copulas has been a major subject of the copula literature
of the last years. For instance, Archimedean and nested Archimedean copulas have been treated
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in [Whelan, 2004], [McNeil, 2008], [Hofert, 2008] and [Hofert, 2011], while solutions for pair-
copula constructions have been discussed in [Kurowicka and Cooke, 2006], [Aas et al., 2009] and
[Dißmann et al., 2013]. For an overview, we refer to [Mai and Scherer, 2012].

Recently, hierarchical Kendall copulas were proposed in [Brechmann, 2012] as a new depen-
dence model. By grouping variables at different hierarchical levels, this model lends itself to
analyses of high dimensional data that arise from applications in areas like finance and insurance.
To facilitate statistical inference, groups of variables, whose dependence is described by a specific
copula, are aggregated at each hierarchical level through the Kendall distribution function. This
Kendall distribution function is derived from the copula of the variables and can be interpreted
as the multivariate analog of the univariate probability transform. The construction therefore
naturally mimics Sklar’s Theorem (1) for multivariate margins.

Properties and statistical inference of hierarchical Kendall copulas are discussed in [Brech-
mann, 2012]. In particular, a top-down sampling procedure is proposed, which is based on the
distribution of a random vector given that it lies in a particular level set. More specifically, let
U := (U1, ...,Ud)

′ ∼C and z ∈ (0,1). Then, the procedure involves the (d−1)-dimensional dis-
tribution of U|C(U) = z. While a closed-form solution for Archimedean copulas is derived in
[Brechmann, 2012], such explicit solutions are generally hard to find.

In this paper, we fill the gaps and present new top-down sampling procedures for the Plackett
copula [Plackett, 1965] as well as the class of Archimax copulas [Capéraà et al., 2000], which
includes the popular extreme-value copulas. In addition, we propose three approximate sampling
methods that are not restricted to any particular copula class: top-down rejection-like sampling,
bottom-up sample reordering, and bottom-up density resampling. The sampling accuracy of these
approaches is evaluated in a simulation study.

The remainder of the paper is organized as follows. The concept of hierarchical Kendall copulas
is defined and motivated in Section 2. Section 3 treats closed-form top-down sampling procedures
of Plackett and Archimax copulas and reviews the method for Archimedean copulas. As an
approximate solution, rejection-like sampling is proposed. Subsequently, Section 4 discusses
approximate bottom-up simulation algorithms. These are evaluated and compared in Section 5.

2. Hierarchical Kendall copulas

Hierarchical Kendall copulas are dependence models built up from different hierarchical levels.
In order to stay tractable for inference, information is aggregated at each level using Kendall
distribution functions. Kendall distribution functions are multivariate analogs of the univariate
probability integral transform and were first studied in [Genest and Rivest, 1993] and [Barbe
et al., 1996]. For a random vector U := (U1, ...,Ud)

′ ∼ C, where C is a d-dimensional copula,
the Kendall distribution function is defined as K(t) = P(C(U)≤ t) for t ∈ (0,1). Hence, it is the
distribution of the level sets of a copula,

L(z) = {u ∈ [0,1]d : C(u) = z}, z ∈ (0,1). (2)

Here and in the following, it is assumed that copulas are absolutely continuous with continuous
Kendall distribution functions. The Kendall distribution function K is then such that K(C(U))∼
U(0,1). As such, it is a natural choice to aggregate information of a random vector within a
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(V1, ..., Vn0)
′ ∼ C0

V1 := K1(C1(U1)) ∼ U(0, 1) V2 := K2(C2(U2)) ∼ U(0, 1) Vn0 := Kn0(Cn0 (Un0)) ∼ U(0, 1)

U1 := (U1, ..., Um1)
′ ∼ C1 U2 := (Um1+1, ..., Um2)

′ ∼ C2 Un0 := (Umn0−1+1, ..., Umn0
)′ ∼ Cn0

U1, ..., Un

· · ·

· · ·

FIGURE 1. Illustration of Definition 1.

hierarchical dependence model. The following definition for the case of two hierarchical levels is
given in [Brechmann, 2012].

Definition 1 (Hierarchical Kendall copula). Let U1, ...,Un ∼ U(0,1) and let C0,C1, ...,Cn0 be
copulas of dimensions n0,n1, ...,nn0 , respectively, where ni ≥ 1, i = 1, ...,n0, and n = ∑

n0
i=1 ni.

Further, let K1, ...,Kn0 denote the Kendall distribution functions corresponding to C1, ...,Cn0 .
We define mi = ∑

i
j=1 n j, i = 1, ...,n0, and m0 = 0 as well as Ui := (Umi−1+1, ...,Umi)

′ and Vi :=
Ki(Ci(Ui)) for i = 1, ...,n0. Under the assumptions that

A1: U1, ...,Un0 are mutually independent conditionally on (V1, ...,Vn0)
′, and

A2: the conditional distribution of Ui|(V1, ...,Vn0)
′ is the same as the conditional distribution

of Ui|Vi for all i = 1, ...,n0,
the random vector (U1, ...,Un)

′ is said to be distributed according to the hierarchical Kendall
copula CK with nesting copula C0 and cluster copulas C1, ...,Cn0 if

1. Ui ∼Ci ∀i ∈ {1, ...,n0},

2. (V1, ...,Vn0)
′ ∼C0.

The construction is illustrated in Figure 1. Note that the cluster and nesting copulas can all be
chosen from arbitrary copula families to build flexible models. According to [Brechmann, 2012],
the density cK of a 2-level hierarchical Kendall copula CK is given as

cK(u) = c0(K1(C1(u1)), ...,Kn0(Cn0(un0)))
n0

∏
i=1

ci(ui), (3)

where u := (u1, ...,un)
′ and ui := (umi−1+1, ...,umi)

′ for i = 1, ...,n0.
The construction in Definition 1 can easily be extended to k > 2 levels. In this way, it is even

possible to construct higher-dimensional dependence models solely in terms of bivariate copulas.
It is however sufficient to treat only the 2-level case here, since all sampling algorithms naturally
extend to the general k-level case.
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FIGURE 2. Distribution of U|C(U) = z for the Plackett copula. The left panel shows the level set L(z) for z = 0.4 and
the middle panel illustrates the probability density in L(z). A sample in L(z) is shown in the right panel. The parameter
of the Plackett copula is α = 25, which corresponds to a Kendall’s τ of 0.62.

3. Top-down sampling

We first discuss top-down sampling procedures as proposed in [Brechmann, 2012]. The general
idea of top-down simulation of hierarchical Kendall copulas is as follows.

Algorithm 1 (Top-down sampling of hierarchical Kendall copulas). Let CK be a hierarchical
Kendall copula with nesting copula C0 and cluster copulas C1, ...,Cn0 .

1. Sample v = (v1, ...,vn0)
′ from C0.

2. Set zi = K−1
i (vi) ∀i ∈ {1, ...,n0}.

3. Sample ui from Ui|Ci(Ui) = zi for i = 1, ...,n0.

4. Return u = (u1, ...,un)
′.

In other words, top-down sampling proceeds by first sampling the level set (see Equation
(2)) of each cluster (top of Figure 1) and then generating observations from each cluster given
that level set (bottom of Figure 1). While Step 1 is fairly standard for most known copulas
(see, e.g., [Mai and Scherer, 2012]), Step 3 is more challenging: Let U ∼ C, where C is a d-
dimensional copula, then we need to sample from the distribution of U|C(U) = z as illustrated
in Figure 2 for the Plackett copula (see Section 3.2). A common approach to this issue is using
the conditional inverse method. It proceeds by iteratively sampling u j from the conditional
distribution of U j|(U1 = u1, ...,U j−1 = u j−1,C(U) = z) for j = 1, ...,d−1. Finally, ud is given by
solving C(u) = z for ud . Solutions for common classes of copulas are discussed in the following.
Alternatively, rejection-like sampling may be used.

3.1. Archimedean copulas

A d-dimensional Archimedean copula with d-monotone generator ϕ (see [McNeil and Nešlehová,
2009]) is defined as C(u1, ...,ud ;ϕ) = ϕ−1(ϕ(u1)+ ...+ϕ(ud)) and possesses a closed-form
expression of the Kendall distribution function in terms of its generator (see [Barbe et al., 1996]
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and [McNeil and Nešlehová, 2009]),

K(t;ϕ) = t +
d−2

∑
i=1

(−ϕ(t))i

i!
(ϕ−1)(i)(ϕ(t))+

(−ϕ(t))d−1

(d−1)!
(ϕ−1)

(d−1)
− (ϕ(t)),

where (ϕ−1)
(d−1)
− denotes the left-hand derivative of ϕ−1 of order d− 1. Two alternatives to

conditionally sample from an Archimedean copula are presented in [Brechmann, 2012]. First, a
closed-form conditional inverse sampling algorithm is derived solely in terms of the generator
(see also [Wu et al., 2007]).

Algorithm 2 (Conditional inverse method for Archimedean copulas). Let C(·;ϕ) be a d-dimensional
Archimedean copula with generator ϕ and z ∈ (0,1).

1. Sample w1, ...,wd−1 independently from the uniform distribution.

2. Set u j = ϕ−1((1−w1/(d− j)
j )(ϕ(z)−∑1≤i< j ϕ(ui))) for j = 1, ...,d−1.

3. Set ud = ϕ−1(ϕ(z)−∑1≤i<d ϕ(ui)).

4. Then u = (u1, ...,ud)
′ are observations from U|C(U;ϕ) = z.

Alternatively, a result of [McNeil and Nešlehová, 2009] may be exploited, which relates
Archimedean copulas to `1-norm symmetric distributions and allows to precisely characterize the
(d−1)-dimensional space, on which the distribution of U|C(U;ϕ) = z is defined. In particular,

[U|C(U;ϕ) = z] d
=
(
ϕ
−1(S1ϕ(z)), ...,ϕ−1(Sdϕ(z))

)
,

where S = (S1, ...,Sd)
′ is uniformly distributed on the unit simplex {x≥ 0 : ∑

d
j=1 x j = 1}.

This characterization as a distribution projected to a (d−1)-dimensional space allows to state
the following alternative sampling algorithm for Archimedean copulas.

Algorithm 3 (Projected distribution sampling for Archimedean copulas). Let C(·;ϕ) be a d-
dimensional Archimedean copula with generator ϕ and z ∈ (0,1).

1. Sample (s1, ...,sd)
′ from S.

2. Set u j := ϕ−1(s jϕ(z)) for j = 1, ...,d.

3. Then u = (u1, ...,ud)
′ are observations from U|C(U;ϕ) = z.

For copulas with similar characterization results for the distribution of U|C(U) = z, analogous
sampling procedures could be used. However, generally the conditional inverse method and
variants of it, as also employed in the following two sections, seem more promising.

3.2. Plackett copula

The Plackett copula [Plackett, 1965, Mardia, 1970] is a bivariate copula, which is derived through
the constant cross-product ratio

C(u1,u2;α)(1−u1−u2 +C(u1,u2;α))

(u1−C(u1,u2;α))(u2−C(u1,u2;α))
= α +1, α ∈ (−1,∞)\{0},
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and is of the form

C(u1,u2;α) =
1

2α

(
1+α(u1 +u2)−

√(
1+α(u1 +u2)

)2−4α(α +1)u1u2

)
. (4)

It does not belong to either one of the popular classes of elliptical, Archimedean and extreme-value
copulas. If α →−1, C(·, ·;α) converges to the countermonotonic copula, while comonononicity
is obtained for α → ∞. Further, the independence copula is the limit as α → 0. The density of the
Plackett copula is denoted by c(·, ·;α).

Let (U1,U2)′ ∼C(·, ·;α) and define Z :=C(U1,U2;α). In [Brechmann, 2012] it is shown that
the conditional distribution function FU1|Z can be determined for u ∈ (z,1) as

FU1|Z(u;z,α) =

∫ u
z g(u1;z,α)du1∫ 1
z g(u1;z,α)du1

,

where g(u1;z,α) = c
(
u1,C−1(z;u1,α);α

)
∂

∂ zC
−1(z;u1,α), and C−1(·;u1,α) denotes the inverse

of the copula C(·, ·;α) with respect to the second argument such that C(u1,C−1(z;u1,α);α) = z.
This inverse can be determined for the Plackett copula (4) as

C−1(z;u,α) = z
1+α(u− z)

z+(α +1)(u− z)
.

If D(z,α) = 4αz(α(1− z)+1)−α−1 > 0, the following closed-form expression for the condi-
tional distribution function could be conveniently derived with the help of a computer algebra
system:

FU1|Z(u;z,α) =(
α2z(1+α)(u− z)

(
(1+α)(2α(uz+ z−u)−u−1)−2α2z2

)
u(1+α)(1+α(u−2z))+α2z2 +h(u;z,α,σ ,β )

)/
(

2α
2z(1+α)(z−1)+h(1;z,α,σ ,β )

)
,

where
h(w;z,α,σ ,β ) := σβ (arctan(σ)+ arctan(σ(2α(z−w)−1)))

with

σ = σ(z,α) :=

√
1+α

4αz(1+α(1− z))−α−1

β = β (z,α) :=−
(
1+α(1−2z)+2α

2z(z−1)
)(

1+α(1−2z)
)
.

If D(z,α) < 0, the arctangent function in h(·;z,α,σ ,β ) needs to be replaced by the inverse
hyperbolic (co)tangent function for α < 0 (α > 0). In the case D(z,α) = 0, the conditional
distribution function FU1|Z(·;z,α) reduces to a rational function.

Therefore, we have the following conditional inverse sampling algorithm for Plackett copulas.
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198 Eike Christian Brechmann

Algorithm 4 (Conditional simulation of the Plackett copula). Let C(·, ·;α) be a Plackett copula
with parameter α ∈ (−1,∞)\{0} and z ∈ (0,1).

1. Sample w from the uniform distribution.
2. Set u1 = F−1

U1|Z(w;z,α) and u2 =C−1(z;u1,α).

3. Then (u1,u2)
′ are observations from (U1,U2)|C(U1,U2;α) = z.

An exemplary sample drawn according to this conditional simulation algorithm is shown in the
right panel of Figure 2.

Another copula that does not belong to the above-mentioned three popular classes of copulas
is the Farlie-Gumbel-Morgenstern (FGM) copula, which may be interpreted as first-order ap-
proximation of the Plackett copula [Nelsen, 2006, Exercise 3.39]. For the FGM copula, a similar
derivation as the above is possible but does not lead to such a convenient closed-form expression.
Also note that the range of dependence that can be modeled by an FGM copula is rather limited in
contrast to the Plackett copula family [Nelsen, 2006, Example 5.2].

3.3. Archimax copulas

A further class of bivariate copulas, which encompasses both the classes of Archimedean and of
extreme-value copulas, are Archimax copulas [Capéraà et al., 2000]. They are defined as

C(u1,u2;ϕ,A) = ϕ
−1
(
(ϕ(u1)+ϕ(u2))A

(
ϕ(u1)

ϕ(u1)+ϕ(u2)

))
, (5)

where ϕ is a 2-monotone Archimedean generator (see [McNeil and Nešlehová, 2009]) and
A : [0,1]→ [1/2,1] is a convex function satisfying max(t,1− t)≤ A(t)≤ 1 for all t ∈ [0,1]. The
function A is typically called dependence function but should not be confounded with the copula
itself. Note that if A(t) ≡ 1, then the Archimax copula (5) becomes a bivariate Archimedean
copula with generator ϕ . Conversely, if ϕ(t) =− log(t) (generator of the independence copula), it
corresponds to an extreme-value copula with dependence function A (see [Pickands, 1981]). The
Gumbel copula is known to be the only copula that belongs to both classes [Genest and Rivest,
1989].

Let (U1,U2)
′ ∼C(·, ·;ϕ,A) and define V := ϕ(U1)/(ϕ(U1)+ϕ(U2)) and Z :=C(U1,U2;ϕ,A).

Assuming that all required derivatives exist, it holds according to [Capéraà et al., 2000, Proposition
5.1] that

P(V ≤ v,Z ≤ z) = Kϕ(z)
(

v+ v(1− v)
A′(v)
A(v)

)
+
(
z−Kϕ(z)

)
τA(v), v,z ∈ [0,1],

where Kϕ(z) = z−ϕ(z)/ϕ ′(z) is the Kendall distribution function of the bivariate Archimedean
copula with generator function ϕ and

τA(v) =
∫ v

0

t(1− t)
A(t)

dA′(t),

which is the Kendall’s τ of the extreme-value copula with dependence function A if v = 1 (see
also [Ghoudi et al., 1998]). It follows that the Kendall distribution function of an Archimax copula
is given by

K(z;ϕ,A) = P(Z ≤ z) = Kϕ(z)+
(
z−Kϕ(z)

)
τA(1),
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FIGURE 3. Left panel: level set L(z) at z = 0.4 of the Plackett copula with parameter α = 25 (solid line). The dashed
lines illustrate the non-rejection area (z− ε, z+ ε) for ε = 0.01. Right panel: scatter plot of corresponding samples
generated through rejection-like sampling.

and

FV |Z(v;z,ϕ,A) := P(V ≤ v|Z = z) =
kϕ(z)

(
v+ v(1− v)A′(v)

A(v)

)
+(1− kϕ(z))τA(v)

1− (1− τA(1))(1− kϕ(z))
,

where kϕ(z) = K′ϕ(z) = ϕ(z)ϕ ′′(z)/(ϕ ′(z))2.
This gives the following simulation algorithm for Archimax copulas, which is a variant of the

standard conditional inverse method.

Algorithm 5 (Conditional simulation of Archimax copulas). Let C(·, ·;ϕ,A) be an Archimax
copula with generator ϕ and dependence function A. Further, let z ∈ (0,1).

1. Sample w from the uniform distribution.

2. Set v = F−1
V |Z(w;z,ϕ,A).

3. Set u1 = ϕ−1
(

v ϕ(z)
A(v)

)
and u2 = ϕ−1

(
(1− v)ϕ(z)

A(v)

)
.

4. Then (u1,u2)
′ are observations from (U1,U2)|C(U1,U2;ϕ,A) = z.

Note that the values u1 and u2 are the solutions of the equations ϕ(u1)/(ϕ(u1)+ϕ(u2)) = v
and C(u1,u2;ϕ,A) = z.

3.4. Rejection-like sampling

For classes of copulas, for which no closed-form solutions are available, such as the elliptical
copulas, approximate rejection-like sampling may be used to generate approximate observations
from U|C(U) = z: Instead of sampling from U|C(U) = z, one chooses a small number ε > 0 and
samples from U|(z− ε <C(U)< z+ ε). This is illustrated in the left panel of Figure 3.

Algorithm 6 (Rejection-like sampling). Let C be a d-dimensional copula, z ∈ (0,1) and ε > 0.

1. Sample u from C.
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200 Eike Christian Brechmann

2. If |C(u)− z|< ε , return u. Otherwise go back to Step 1.

The right panel of Figure 3 shows an exemplary sample from a Plackett copula with parameter
α = 25 at level z = 0.4. The error ε is chosen as 0.01. Notice in particular the difference to the
closed-form solution in Figure 2.

The accuracy of this approximate method can be controlled through the choice of ε > 0, which
is an upper bound on the absolute sampling error |C(u)− z|. The smaller ε is, the more accurate
the results are, but, at the same time, the higher the computing time is. We will assess this trade-off
in a simulation study in Section 5.

4. Bottom-up sampling

In this section we propose two methods for bottom-up sampling of hierarchical Kendall copulas
as alternatives to the top-down approach discussed above. Both methods have in common that
they start by drawing a sample of multivariate independent observations. These observations are
then appropriately reordered (first method) or resampled (second method) such that they represent
an approximate sample of the hierarchical Kendall copula. This means that we essentially start
at the bottom of Figure 1 and then adjust the sample according to the hierarchical dependence
structure of the model.

Here, the nature of the approximation to the true distribution is different to rejection-like
sampling, which allows for setting an explicit error bound. When using either one of the presented
bottom-up sampling methods, convergence to the true distribution is only attained with increasing
sample sizes. In other words, in small samples the exact underlying distribution is unknown,
leading to potentially false conclusions. Such small-sample effects are therefore investigated in
the simulation study in Section 5.

4.1. Sample reordering

In the context of hierarchical dependence models, the use of sample reordering, which was
originally described in [Iman and Conover, 1982], is proposed in [Arbenz et al., 2012]. The idea
of sample reordering is to independently sample margins and the copula and then to reorder the
independent margins according to the ranks of the dependent sample generated from the copula.
For hierarchical copulas, this may be used to reorder aggregated samples from the different clusters
according to a sample from the nesting copula. Bottom-up sampling using sample reordering
proceeds as follows.

Algorithm 7 (Sample reordering of hierarchical Kendall copulas). Let CK be a hierarchical
Kendall copula with nesting copula C0 and cluster copulas C1, ...,Cd .

1. Generate a sample (uI
i )i=1,...,N of size N from the n-dimensional independence copula.

2. Generate samples (u0
i,mk−1+1, ...,u

0
i,mk

)i=1,...,N of size N from the cluster copulas C1, ...,Cn0 .

3. Set p j(i) = ∑
N
`=1 1{u0

` j≤u0
i j}, the rank of u0

i j among (u0
1 j, ...,u

0
N j)
′, for j = 1, ...,n.

4. Set uC
p j(i), j

= uI
(i), j for j = 1, ...,n, where uI

(i), j is the ith order statistic of (uI
1 j, ...,u

I
N j)
′ such

that uI
(1), j ≤ uI

(2), j ≤ ...≤ uI
(N), j.
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5. Set vI
ik = Kk(Ck(uC

i,mk−1+1, ...,u
C
i,mk

)) for k = 1, ...,n0.

6. Generate a sample (v0
i )i=1,...,N of size N from the nesting copula C0.

7. Set qk(i) = ∑
N
`=1 1{v0

`k≤v0
ik}, the rank of v0

ik among (v0
1k, ...,v

0
Nk)
′, and rk(i) = ∑

N
`=1 1{vI

`k≤vI
ik},

the rank of vI
ik among (vI

1k, ...,v
I
Nk)
′, for k = 1, ...,n0.

8. Return the observations uqk( j)(i), j = uI
rk( j)(i), j

, i= 1, ...,N, where k( j) is the cluster of variable
j ∈ {1, ...,n}.

In Steps 1-4 a sample from each cluster copula Ck, k = 1, ...,n0, is generated using the method
described in [Iman and Conover, 1982]. Clearly, Steps 1, 3 and 4 are redundant given Step 2, but
we include them, since they show how other margins than uniform can be used instead. The final
sample from the hierarchical Kendall copula is obtained by reordering the original independent
sample according to the independent aggregated clusters in Step 5 and the dependent sample
from the nesting copula C0 in Step 6. That is, the sample is reordered twice: first according to the
cluster copulas, and second according to the nesting copula.

Strong uniform consistency of this method as N → ∞ was recently shown under certain
regularity conditions stated in [Mainik, 2012], where also convergence rates are given. These
conditions are satisfied by any componentwise non-decreasing aggregation function and by any
copula with bounded density. Aggregation using the Kendall distribution function and the copula
clearly is componentwise non-decreasing, since copulas are multivariate distribution functions and
Kendall distribution functions are non-decreasing. However, most common copulas such as the
Gaussian, the Student’s t or the Clayton have unbounded density. In [Mainik, 2012] convergence
is shown for the Gaussian and the Clayton copula but remains an open question for other families.

4.2. Density resampling

In contrast to the bottom-up method presented in the previous section, this method does not
modify the observations per variable but leaves them as they are. For copulas with available
density, the density resampling approach has been proposed in [Kurowicka and Cooke, 2006,
Section 6.4.3]. The idea is to resample from a large number of independent uniform observations
according to probabilities proportional to the density evaluated at the observations (see also the
sampling/importance resampling method described in [Rubin, 1987, Rubin, 1988]).

For hierarchical Kendall copulas with density given in Equation (3), this can be used as follows.

Algorithm 8 (Density resampling of hierarchical Kendall copulas). Let CK be a hierarchical
Kendall copula with density cK. To generate a sample of size N, let N′� N.

1. Generate a sample (wi)i=1,...,N′ of size N′ from the n-dimensional independence copula.

2. Resample N times from (wi)i=1,...,N′ according to probabilities proportional to cK(wi), i =
1, ...,N′. That is, draw a sample Λ of size N without replacement from {1, ...,N′} according
to probabilities pi = cK(wi)/∑

N′
i=1 cK(wi), i = 1, ...,N′.

3. Return the resulting sample (ui)i=1,...,N := (wi)i∈Λ.

Clearly, this is rather inefficient, since N′ should be chosen significantly larger than N to gener-
ate a reasonably good sample. Especially when the evaluation of the density cK is computationally
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202 Eike Christian Brechmann

fast, it may however be considered as an alternative to rejection-like sampling (Section 3.4) and
also to sample reordering (Section 4.1), which may also require a large number of observations
to generate an accurate sample. The finite sample performance and the computing time of all
three approximate sampling approaches are considered in a numerical study in the next section.
In particular, two different choices of N′ relative to N are compared.

5. Numerical comparison

Three of the methods discussed here are approximate: rejection-like sampling (Section 3.4),
sample reordering (Section 4.1) and density resampling (Section 4.2). We therefore perform a
simulation study in order to assess these approaches to sampling from hierarchical Kendall copulas.
In particular, we investigate different choices of ε for rejection-like sampling (see Algorithm 6)
and of N′ for density resampling (see Algorithm 8); sample reordering does not require any choice
of control parameters.

The sampling procedures are compared based on a four-dimensional hierarchical Kendall
copula with bivariate Clayton and Joe cluster copulas and Gaussian nesting copula. The cluster
copulas are tail-asymmetric with lower and upper tail dependence, respectively. The Gaussian
nesting copula is tail independent. Parameters are chosen according to a Kendall’s τ of τ0 = 0.5
for the Gaussian copula (medium dependence; copula parameter of θ0 = 0.71) and τ1 = τ2 = 0.7
for the cluster copulas (strong dependence; copula parameters of θ1 = 4.67 for the Clayton and
θ2 = 5.46 for the Joe copula). In the case of sample reordering, convergence for the Clayton and
the Gaussian copula is shown in [Mainik, 2012] but not for the Joe copula. We therefore verify
the required regularity conditions (15) and (16) of [Mainik, 2012] along the lines of Proposition
4.2 in [Mainik, 2012]. The density of the Joe copula is given for θ > 1 as

c(u1,u2;θ) =
(
(1−u1)

θ +(1−u2)
θ − (1−u1)

θ (1−u2)
θ

)1/θ−2
(1−u1)

θ−1(1−u2)
θ−1 (6)

×
(

θ −1+(1−u1)
θ +(1−u2)

θ − (1−u1)
θ (1−u2)

θ

)
. (7)

We observe that K(ε) = esssup{c(u1,u2;θ) : (u1,u2)
′ ∈ [ε,1−ε]2} is polynomial, since the term

in (7) is bounded by θ , (1−ui)
θ−1 ≤ 1 for i = 1,2, and the first term in (6) can be rewritten as((1−u1

1−u2

)θ

+
(1−u2

1−u1

)θ

−1
)1/θ−2 (

(1−u1)(1−u2)
)1−2θ ≤

(
(1−u1)(1−u2)

)1−2θ
,

which is a polynomial. This proves condition (16) of [Mainik, 2012]. The proof of condition (15)
is exactly as in [Mainik, 2012, Proposition 4.2], noting that for fixed u2 ∈ (0,1) the copula density
c(·,u2;θ) reaches its maximum at

u∗1 = u∗1(u2) = max

{
1−
(

(1−u2)
θ (1− (1−u2)

θ −θ)

((1−u2)θ −1)(θ − (1−u2)θ )

)1/θ

,0

}
.

This means that it is actually reasonable to use sample reordering here.
As benchmark for the approximate methods, we generate a large sample (u0

i )i=1,...,N∗ of size
N∗ = 1000000 using closed-form conditional inverse sampling for Archimedean copulas (see
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FIGURE 4. A sample of size 500 from the simulated benchmark data. Variables 1 and 2 form the first cluster with
Clayton copula, variables 3 and 4 the second with Joe copula.

Algorithms 2, 3 and 5), since both the Clayton and the Joe copula families are Archimedean. As
an illustration, a sample of size 500 of this benchmark data is shown in Figure 4.

To compare the different approaches, we generate samples (ui)i=1,...,N of different sizes N ∈
{100,200,500,1000,2000} and compare different evaluation criteria. The following six criteria
are considered based on R = 1000 repetitions:

1. Mean squared difference of pairwise Kendall’s τ values:

1
R

R

∑
r=1

1
6 ∑

1≤i< j≤4

(
τ̂
(r)
i j − τ̂

0
i j

)2
,

where τ̂
(r)
i j is the empirical Kendall’s τ of variables i and j in repetition r and τ̂0

i j that of the
benchmark data.

2. Mean squared difference of pairwise lower-tail Kendall’s τ values:

1
R

R

∑
r=1

1
6 ∑

1≤i< j≤4

(
τ̂
(r)
i j,L− τ̂

0
i j,L

)2
,

where τ̂
(r)
i j,L is the empirical 20% lower-tail Kendall’s τ of variables i and j in repetition

r and τ̂0
i j,L that of the benchmark data. The 20% lower-tail Kendall’s τ is given for two

Journal de la Société Française de Statistique, Vol. 154 No. 1 192-209
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238



204 Eike Christian Brechmann

uniform random variables U1 and U2 as the Kendall’s τ of (U1,U2|U1 < 0.2,U2 < 0.2). It is
a rank-based version of the exceedance correlation coefficient used in [Longin and Solnik,
2001] and serves as a measure of lower tail behavior.

3. Mean squared difference of pairwise upper-tail Kendall’s τ values:

1
R

R

∑
r=1

1
6 ∑

1≤i< j≤4

(
τ̂
(r)
i j,U − τ̂

0
i j,U

)2
,

where τ̂
(r)
i j,L is the empirical 20% upper-tail Kendall’s τ of variables i and j in repetition

r and τ̂0
i j,L that of the benchmark data. The 20% upper-tail Kendall’s τ is defined in an

analogous way as the lower-tail Kendall’s τ and measures upper tail behavior.

4. Mean squared difference of empirical copulas:

1
R

R

∑
r=1

1
|∆|4 ∑

v∈∆4

(
Ĉ(r)(v)−Ĉ0(v)

)2
,

where Ĉ(r) is the empirical copula of the sample (u(r)
i )i=1,...,N in the rth repetition and Ĉ0

that of the benchmark data. Further, ∆ is an equispaced partition of [0,1] of size |∆|= 25.
That is, in each repetition the empirical copulas are evaluated at |∆|4 = 254 = 390625
points of [0,1]4.

5. Mean squared difference of log-likelihoods:

1
R

R

∑
r=1

(
1
N

N

∑
i=1

logcK
(
u(r)

i

)
− 1

N∗
N∗

∑
i=1

logcK
(
u0

i
))2

,

where u(r)
i denotes the ith observations in the rth repetition and cK is the density of the

hierarchical Kendall copula (see Equation (3)) evaluated at the true parameters. The log-
likelihoods are standardized by the sample sizes to allow for comparison.

6. Mean squared difference of parameters:

1
R

R

∑
r=1

1
3 ∑

i∈{0,1,2}

(
τi(θ̂i)− τi

)2
,

where θ̂i are maximum likelihood estimates of θi, i = 0,1,2, which are transformed to
Kendall’s τ values using the respective relationships τi(·) implied by the copulas (see, e.g.,
[Brechmann and Schepsmeier, 2013]).

While the first three criteria focus on data characteristics, namely the level of general dependence
as well as lower and upper tail behavior, the fourth criterion directly compares the empirical
copulas and the last two criteria investigate the effects on estimation and model selection.

Based on these six criteria we evaluate and compare the three approximate procedures. For
rejection-like sampling we choose ε ∈ {10−2,10−3,10−4}, while for density resampling we
choose N′ as a multiple of N, namely N′/N ∈ {100,1000}. Simulation results for all three

Journal de la Société Française de Statistique, Vol. 154 No. 1 192-209
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238



Sampling from hierarchical Kendall copulas 205

TABLE 1. Results of the simulation study: evaluation criteria per method and sample size N. For better readability, all
numbers, except for the mean computing time, are multiplied by 1000.

Rejection Rejection Rejection Reordering Resampling Resampling
N (ε = 10−2) (ε = 10−3) (ε = 10−4) (N′ = 100N) (N′ = 1000N)

Mean squared difference of pairwise Kendall’s τ values
100 2.370 2.288 2.320 2.349 6.937 2.790
200 1.157 1.141 1.155 1.129 5.835 1.586
500 0.433 0.435 0.446 0.410 5.165 0.907

1000 0.214 0.211 0.215 0.227 4.870 0.694
2000 0.107 0.108 0.107 0.106 4.752 0.585

Mean squared difference of pairwise lower-tail Kendall’s τ values
100 59.918 55.171 59.534 58.778 114.189 69.979
200 22.160 21.929 21.746 22.188 45.796 27.472
500 7.728 7.839 7.792 7.483 20.606 11.178

1000 3.722 3.663 3.658 3.754 14.754 6.290
2000 1.751 1.817 1.796 1.788 11.942 4.731

Mean squared difference of pairwise upper-tail Kendall’s τ values
100 58.545 57.782 55.722 54.802 131.255 77.715
200 21.718 21.071 21.520 21.387 47.561 28.954
500 7.335 7.478 7.397 7.573 24.404 12.906

1000 3.678 3.611 3.609 3.693 17.016 7.993
2000 1.816 1.773 1.854 1.721 14.539 6.306

Mean squared difference of empirical copulas
100 1.069 1.072 1.086 0.870 1.410 1.010
200 0.550 0.557 0.563 0.423 0.930 0.545
500 0.219 0.220 0.220 0.173 0.694 0.245

1000 0.101 0.103 0.103 0.083 0.574 0.155
2000 0.056 0.057 0.057 0.043 0.539 0.102

Mean squared difference of log-likelihoods
100 36.936 38.659 36.622 538.005 188.034 55.476
200 17.295 18.048 18.821 193.092 178.572 39.643
500 7.137 7.038 7.081 42.874 177.134 31.608

1000 3.764 3.638 3.532 14.238 171.918 30.154
2000 1.762 1.838 1.810 4.735 172.114 28.672

Mean squared difference of parameters
100 2.089 2.019 2.019 8.280 5.164 4.337
200 0.561 0.545 0.547 3.321 2.269 1.206
500 0.162 0.159 0.160 0.896 0.574 0.196

1000 0.081 0.077 0.078 0.348 0.345 0.112
2000 0.039 0.039 0.039 0.135 0.303 0.068

Mean computing time (in seconds)
100 0.642 4.486 42.517 0.006 0.126 1.304
200 1.017 6.019 54.021 0.008 0.257 2.816
500 2.060 9.818 87.708 0.014 0.709 9.574

1000 4.042 15.227 128.706 0.025 1.623 25.079
2000 9.067 28.012 218.319 0.044 4.279 69.327

Journal de la Société Française de Statistique, Vol. 154 No. 1 192-209
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238



206 Eike Christian Brechmann

100 200 500 1000 2000

Kendall's τ

Sample size

0
1

2
3

4
5

6
7

100 200 500 1000 2000

Lower−tail Kendall's τ

Sample size

0
30

60
90

12
0

100 200 500 1000 2000

Upper−tail Kendall's τ

Sample size

0
30

60
90

12
0

100 200 500 1000 2000

Empirical copula

Sample size

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

100 200 500 1000 2000

Log likelihood

Sample size

0
10

0
20

0
30

0
40

0
50

0

100 200 500 1000 2000

Parameter

Sample size

0
2

4
6

8

100 200 500 1000 2000

Computing time

Sample size

T
im

e 
in

 s
ec

on
ds

0
50

10
0

15
0

20
0

Rejection (ε = 10−2)
Rejection (ε = 10−3)
Rejection (ε = 10−4)
Reordering
Resampling (N = 100 N)
Resampling (N = 1000 N)

FIGURE 5. Illustration of the results of the simulation study reported in Table 1.
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methods and all six criteria are shown in Table 1 and illustrated in Figure 5. In addition, we report
the mean computing time in seconds (on a 2.6Ghz AMD Opteron).

With respect to the data characteristics of Kendall’s τ as well as lower- and upper-tail Kendall’s
τ , rejection-like sampling and sample reordering give very similar results. Most interestingly, the
choice of the error ε in rejection-like sampling has only little influence on the results. The choice
of N′ in relation to the sample size N for density resampling however strongly influences the
performance. Only if N′/N = 1000, the results are similarly good as for the other two methods.
In general, it should be noted that the general dependence in terms of Kendall’s τ is better
approximated than tail behavior as measured by the lower- and upper-tail Kendall’s τ . For larger
sample sizes, the differences are however quite small, so that we can conclude that simulation using
rejection-like sampling, sample reordering and, to some extent, density resampling appropriately
reproduces data characteristics.

Results are similar for the empirical copula. The criterion is minimized when sample reordering
is used, but also rejection-like sampling and density resampling with N′/N = 1000 work quite
well. As before, this holds irrespective of the choice of ε in rejection-like sampling. Choosing
N′/N = 100 for density resampling is however clearly too small.

In terms of log-likelihoods and copula parameters, the results provide additional insights which
allow to better discriminate among the methods. While rejection-like sampling does very well
and shows little dependence on ε (notable difference between the choices of ε only for N = 100
and the log-likelihood difference), sample reordering strongly suffers from small sample sizes
(in particular N ≤ 500), where convergence of the method can clearly not be assumed. Density
resampling also performs rather poorly in terms of the log-likelihood but does not suffer as
heavily from small sample sizes as sample reordering. Once again, the results clearly show that
N′/N = 100 is not appropriate.

Finally, a look at the computing times reveals that rejection-like sampling with very small ε

is inefficient and also density resampling with N′/N = 1000 is quite time-consuming. Sample
reordering, on the other hand, is computationally very efficient for any sample size. This is due to
the fact that no spare samples need to be generated, from which the final sample is selected, as in
the other two methods. Rejection-like sampling with ε = 10−2 also has reasonable computing
times even for larger sample sizes.

In summary, rejection-like sampling appears to work best and already a choice of ε = 10−2

seems to lead to a very good approximation. As the computing time strongly depends on ε , these
results are very beneficial for the method of rejection-like sampling; a choice of ε = 10−2 requires
only little computing time. For density resampling we compared two choices of N′/N, which, of
course, also determine the computing time, and only N′/N = 1000 gave satisfactory results, yet
indicating that choices of N′/N > 1000 may be necessary. But this would require an excessive
computing time, even when the density of the hierarchical Kendall copula is efficient to evaluate,
as it is the case here. Overall, based on the results of this simulation study, we cannot recommend
the use of density resampling for hierarchical Kendall copulas. Sample reordering however proved
to be a valid alternative to rejection-like sampling if sample sizes are sufficiently large (at least
N ≥ 1000), so that convergence of the method can be assumed. This is e.g. the case when risk
capital figures need to be simulated in finance and insurance as discussed in [Arbenz et al., 2012].
The generation of such large samples using sample reordering is very time-efficient.

If a closed-form solution as for Archimedean (Section 3.1), Plackett (Section 3.2) or Archimax
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208 Eike Christian Brechmann

copulas (Section 3.3) is not available for the simulation of a hierarchical Kendall copula, we there-
fore recommend to use either top-down rejection-like sampling (Section 3.4) or, for sufficiently
large sample sizes, bottom-up sample reordering (Section 4.1).
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