Copula parameter estimation using Blomqvist’s beta
[L’emploi du bêta de Blomqvist pour l’estimation du paramètre d’une copule]
Journal de la société française de statistique, Numéro spécial sur les copules, Tome 154 (2013) no. 1, pp. 5-24.

Les auteurs s’intéressent à l’inversion du beta de Blomqvist comme estimateur des moments du paramètre de dépendance réel d’un modèle de copule bivarié. Cet estimateur est obtenu en isolant le paramètre de la copule dans l’équation β = β n , où β n est un estimateur de rangs de β déduit d’un échantillon aléatoire de taille n . La performance asymptotique et à taille finie de cet estimateur est comparée à celle d’un estimateur analogue obtenu en inversant le tau de Kendall. Bien que les résultats montrent que ce dernier est plus efficace, le calcul de β n ne requiert que O ( n ) opérations et non O ( n 2 ) comme pour l’estimation du tau de Kendall. Pour n grand, l’inversion de β fournit donc rapidement un estimateur sans biais et une bonne valeur initiale pour la maximisation de la vraisemblance canonique.

The authors consider the inversion of Blomqvist’s beta as a method-of-moments estimator for a real-valued dependence parameter in a bivariate copula model. This estimator results from solving the equation β = β n for the copula parameter, where β n is a rank-based estimate of β derived from a random sample of size n . Small- and large-sample comparisons are made between this estimator and an analogous estimator based on the inversion of Kendall’s tau. While the results show that the latter is more efficient, the computation of β n requires only O ( n ) operations, as opposed to O ( n 2 ) for the estimation of Kendall’s tau. Thus for large n , the inversion of β quickly leads to an unbiased estimator and a good starting value for canonical likelihood maximization.

Keywords: Archimedean copula, Blomqvist’s beta, Kendall’s tau, meta-elliptical copula, extreme-value copula
Mot clés : copule Archimédienne, beta de Blomqvist, tau de Kendall, copule meta-elliptiqu, copule de valeurs extrêmes
@article{JSFS_2013__154_1_5_0,
     author = {Genest, Christian and Carabar{\'\i}n-Aguirre, Alberto and Harvey, Fanny},
     title = {Copula parameter estimation  using {Blomqvist{\textquoteright}s} beta},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {5--24},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {154},
     number = {1},
     year = {2013},
     mrnumber = {3089614},
     zbl = {1316.62069},
     language = {en},
     url = {http://archive.numdam.org/item/JSFS_2013__154_1_5_0/}
}
TY  - JOUR
AU  - Genest, Christian
AU  - Carabarín-Aguirre, Alberto
AU  - Harvey, Fanny
TI  - Copula parameter estimation  using Blomqvist’s beta
JO  - Journal de la société française de statistique
PY  - 2013
SP  - 5
EP  - 24
VL  - 154
IS  - 1
PB  - Société française de statistique
UR  - http://archive.numdam.org/item/JSFS_2013__154_1_5_0/
LA  - en
ID  - JSFS_2013__154_1_5_0
ER  - 
%0 Journal Article
%A Genest, Christian
%A Carabarín-Aguirre, Alberto
%A Harvey, Fanny
%T Copula parameter estimation  using Blomqvist’s beta
%J Journal de la société française de statistique
%D 2013
%P 5-24
%V 154
%N 1
%I Société française de statistique
%U http://archive.numdam.org/item/JSFS_2013__154_1_5_0/
%G en
%F JSFS_2013__154_1_5_0
Genest, Christian; Carabarín-Aguirre, Alberto; Harvey, Fanny. Copula parameter estimation  using Blomqvist’s beta. Journal de la société française de statistique, Numéro spécial sur les copules, Tome 154 (2013) no. 1, pp. 5-24. http://archive.numdam.org/item/JSFS_2013__154_1_5_0/

[1] Abdous, B.; Genest, C.; Rémillard, B. Dependence properties of meta-elliptical distributions, Statistical Modeling and Analysis for Complex Data Problems, Volume 1, Springer, New York, 2005, pp. 1-15 | MR

[2] Blomqvist, N. On a measure of dependence between two random variables, Ann. Math. Statist., Volume 21 (1950), pp. 593-600 | MR | Zbl

[3] Borkowf, C.B. Computing the nonnull asymptotic variance and the asymptotic relative efficiency of Spearman’s rank correlation, Comput. Statist. Data Anal., Volume 39 (2002), pp. 271-286 | MR | Zbl

[4] Fang, H.-B.; Fang, K.-T.; Kotz, S. The meta-elliptical distributions with given marginals, J. Multivariate Anal., Volume 82 (2002 [Corrig.: J. Multivariate Anal., 94:222–223, 2005]), pp. 1-16 | MR | Zbl

[5] Genest, C.; Favre, A.-C. Everything you always wanted to know about copula modeling but were afraid to ask, J. Hydrol. Eng., Volume 12 (2007), pp. 347-368

[6] Genest, C.; Ghoudi, K.; Rivest, L.-P. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika, Volume 82 (1995), pp. 543-552 | MR | Zbl

[7] Ghoudi, K.; Khoudraji, A.; Rivest, L.-P. Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles, Canad. J. Statist., Volume 26 (1998), pp. 187-197 | MR | Zbl

[8] Genest, C.; MacKay, R.J. Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données, Canad. J. Statist., Volume 14 (1986), pp. 145-159 | MR | Zbl

[9] Genest, C.; Nešlehová, J.; Ben Ghorbal, N. Estimators based on Kendall’s tau in multivariate copula models, Aust. N. Z. J. Stat., Volume 53 (2011), pp. 157-177 | MR | Zbl

[10] Genest, C.; Nešlehová, J.; Quessy, J.-F. Tests of symmetry for bivariate copulas, Ann. Inst. Statist. Math., Volume 64 (2012), pp. 811-834 | MR | Zbl

[11] Genest, C.; Werker, B.J.M. Conditions for the asymptotic semiparametric efficiency of an omnibus estimator of dependence parameters in copula models, Distributions with given marginals and statistical modelling, Kluwer, Dordrecht, 2002, pp. 103-112 | MR | Zbl

[12] Hult, H.; Lindskog, F. Multivariate extremes, aggregation and dependence in elliptical distributions, Adv. Appl. Probab., Volume 34 (2002), pp. 587-608 | MR | Zbl

[13] Hoeffding, W. On the distribution of the rank correlation coefficient τ when the variates are not independent, Biometrika, Volume 34 (1947), pp. 183-196 | MR | Zbl

[14] Hoeffding, W. A class of statistics with asymptotically normal distribution, Ann. Math. Statist., Volume 19 (1948), pp. 293-325 | MR | Zbl

[15] Kojadinovic, I.; Yan, J. Comparison of three semiparametric methods for estimating dependence parameters in copula models, Insurance Math. Econom., Volume 47 (2010), pp. 52-63 | MR | Zbl

[16] Oakes, D. Multivariate survival distributions, J. Nonparametr. Statist., Volume 3 (1994), pp. 343-354 | MR | Zbl

[17] Rüschendorf, L. Asymptotic distributions of multivariate rank order statistics, Ann. Statist., Volume 4 (1976), pp. 912-923 | MR | Zbl

[18] Segers, J. Asymptotics of empirical copula processes under non-restrictive smoothness assumptions, Bernoulli, Volume 18 (2012), pp. 764-782 | MR | Zbl

[19] Sklar, A. Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris, Volume 8 (1959), pp. 229-231 | MR | Zbl

[20] Schmid, F.; Schmidt, R. Nonparametric inference on multivariate versions of Blomqvist’s beta and related measures of tail dependence, Metrika, Volume 66 (2007), pp. 323-354 | MR | Zbl

[21] Tsukahara, H. Semiparametric estimation in copula models, Canad. J. Statist., Volume 33 (2005), pp. 357-375 | MR | Zbl